• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation of Particle/Matrix Interface Failure in Composite Propellant

    2012-07-25 06:22:46CHANGWujun常武軍JUYutao鞠玉濤HANBo韓波HUShaoqing胡少青WANGZhengshi王政時(shí)
    Defence Technology 2012年3期
    關(guān)鍵詞:抗溫噻唑示蹤劑

    CHANG Wu-jun(常武軍),JU Yu-tao(鞠玉濤),HAN Bo(韓波),HU Shao-qing(胡少青),WANG Zheng-shi(王政時(shí))

    (School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,Jiangsu,China)

    Introduction

    The composite propellant is a kind of energetic material with very high volume fraction of particles in binder matrix,and therefore its macroscopic mechanical behavior strongly depends on its microstructure.In the microscale,it is a heterogeneous mechanical mixture,and has obvious interfaces between components.Thus,its mechanical properties depend upon the viscoelastic properties of the polymer binder,particle volume fraction and particle/matrix interface cohesive properties greatly.Under external loads,the microstructure of propellant will take place a series of changes,such as microcracks propagation,voids growth and localized stress concentration.The microstructure of cohesive interface will be damaged,leading to particle/matrix interfacial debonding,namely dewetting,thereby affecting the macroscopic mechanical properties.However,due to the complexity of micromechanics behavior and the limitations of experiment equipment and test method,it is difficult to quantitatively analyze the microstructure failure and damage evolution laws experimentally.Therefore,the numerical simulation based on microstructure model has a great significance.However,it is confronted with some difficulties,such as the modeling of microstructure,the mechanical model and constitutive parameters of components and the simulation scheme.The complexity of numerical simulation is associated with the coupled of competing physical processes in large scale:finite deformation of quasi-incompressible polymeric matrix,large stiffness mismatch between energetic particles and the matrix,particle debonding,matrix tearing,void growth and coalescence,particles interaction[1],etc.

    In order to illustrate the composite propellant damage characteristics and failure process,LIU[2]and YUAN[3]analyzed the micro-mechanical failure mechanisms of composite propellant.Zhong[4],Matous[1,5]and Inglis’s[6]studied the cohesive theory and particles interface debonding damage evolution.HAN[7]used a cohesive model to simulate the crack propagation process.But,the microscopic damage evolution law and the essential reasons on the development of macroscopic behavior have not yet been clear,thus,we need to further reveal the correlation between microstructure and macroscopic mechanical properties.

    In this paper,the particle/matrix interface damage is simulated using cohesive elements;the mechanical response is governed by using the bilinear constitutive relation.The influences of the interface cohesive properties on the mechanical characteristics are analyzed.The damage evolution of the composite propellant subjected to uniaxial tension load is simulated in finite deformation.The damage nucleation,propagation mechanism and non-uniform distribution of microstructural stress-strain field are obtained.It provides a theoretical basis for damage and failure assessment methods based on the cohesive zone model.

    1 Analysisfor Interface Cohesive Failure

    The particle/matrix interface of composite propellant is formed in complex chemical and physical processes while the solidfication and cross-linking reactions between binder matrix and particles.The interface chemical bond forces at chemical cross-linking points and the interface physical adsorption forces at physical cross-linking points exist in two-phase interface.The composite propellant has very large specific surface area,i.e.the interface area per unit volume,because of high volume fraction of energetic particles.Therefore,the mechanical behavior of particle/matrix interface significantly influences the macroscopic behavior greatly.

    The experimental studies[8]show that the microcracks appear in tension process at some large particles,with opening normal to the applied loading direction.As the deformation continues,the original and new cracks propagate along interfaces,making the large amount of particles dewetting.The bridge stress in zones of large particles results in the stress concentration and more serious debonding.The debonding leads to a decline of macroscopic elastic modulus,the nonlinear stress-strain curves and also the volume expansion,so that Poisson's ratio gradually decreases.It ultimately makes the propellant materials fracture.Fig.1 presents the dewetting morphology before the fracture of propellant specimen.It can be seen that the volume fraction of solid particles is higher and the majority of large particles are fully debonding.Therefore,the interface debonding in the microstructure is one of the principal forms of damage and failure of these materials.

    Fig.1 Propellant microscopic morphology at strain of 42%(×50)

    2 Microstructure and Finite Element Simulation

    2.1 Computational Model

    To achieve high energy content,the composite propellant is typically characterized by a wide distribution of particle sizes.Larger particles are 100-300 μm in diameter,while the small particles have a mean diameter of about 20 μm.As mentioned earlier,the interface damage starts from the larger particles.The small particles serve merely to stiffen the binder matrix.Therefore,the volume fraction of ammonium perchlorate(AP)particles can be assumed as 64%,with large particles of 34%.The remaining small particles of 30%are combined with binder and other constituents to create a composite matrix.Thus,an ideal solid propellant can be considered as the composition of AP particles randomly embedded in a matrix.The particulate composite system can be modeled as three models,i.e.2D cubic cell model,four-particles model and random particles stacking model generated by the random algorithm[9],as shown in Fig.2.To simulate the mechanical behavior under uniaxial tension with constant speed,the boundary should remain straight deformation[2-3,10].Namely,σx= ∫σxdy=0.The microstructure is calculated under plane strain assumption,by means of loading displacement.

    Fig.2 FEM models of propellant

    2.2 Material Constitutive Model

    AP particles can be approximately considered as rigid,because of its huge elastic modulus compared with polymer binder,while the small particles and binder can be considered as uniform hyperelastic composite matrix and its nearly incompressible mechanical behavior can be described by using Neo-Hookean constitutive model.The strain energy function can be written as

    whereWis the strain energy per unit of reference volume,C10andD1are the material parameters,is the first deviatory strain invariant defined as,the deviatory stretches,Jis the total volume ratio,The initial shear modulusμ0and bulk modulusK0are

    To describe the mechanical behavior of the nearly incompressible matrix under plane strain assumption,slight compressibility is introduced.The ratio ofK0/μ0can be also expressed in terms of Poisson's ratio,since

    Other parameters of composite matrix are obtained from Eq.(2)and(3),as shown in Tab.1,andK0/μ0=555.2,D1=0.001 461.

    Tab.1 Mechanical properties of individual constituents[1]

    2.3 Mechanical Model of Interface

    To exactly describe the interface mechanical behavior and damage evolution,the cohesive zone model is used to simulate the nucleation and propagation of interface damage.A phenomenological relation between normal or shearing stress and opening or sliding displacement is used to define the particle/matrix constitutive behavior.Moreover,the bilinear constitutive model[2,5-6,11]is widely used because of relatively simple expression and can be written as

    whereTmaxdenotes the interface strength,Kis the interface modulus,is the softening modulus,δ0andδfare the critical opening displacement of damage initiation and interfacial failure,respectively.

    黃永超[18]發(fā)明了一種熒光微球示蹤劑。該示蹤劑以丙烯酰胺和N-苯并噻唑馬來亞酰胺為主要原料,采用反相乳液聚合法制成。為納米級(jí)顆粒,具有分散性好、抗溫抗鹽能力強(qiáng)、用量少、檢測(cè)靈敏度高和熒光強(qiáng)度高等優(yōu)點(diǎn)。

    The determination of interface parameters is the key in numerical calculation,which are predicted by references and experience at present.The interface strength represents initiation of damage,and has a great influence on the numerical results.Tan[12]considered that the interface strength differed from the macroscopic strength a litter for the materials with high particles volume fraction.Thus,the interface strength can be taken as 0.5-1.0 MPa,according to the performance of HTPB propellant at normal temperature.The interface modulus has little effect on the results,but it affects the convergence greatly.The small initial stiffness of interface will cause an extra deformation,while too large one results in the parasitic oscillation of interface stress[11].Due to the large stiffness mismatch between particles and matrix,the interface modulus should be determined by repeat numerical attempts.TakeK=500 MPa/mm.The opening displacement of failure is related to fracture energy,thusGc=2-8 J/m2.

    Fig.3 Bilinear constitution

    The deformation in the bilinear model interface before damage is assumed as linear elastic deformation.The damage process begins when the interface bears a critical load as shown in Fig.3.Thus,the elastic behavior can be written as

    For the arc interface of AP spherical particles,the states of stress-strain are more complex.In the mixed mode of shearing and normal stresses together,The damage may initially occur when the stress is less than the interface strength.Therefore,a quadratic stress criterion is used to predict the damage initiation.Its expression can be written as

    2.4 Meshing Method

    Under the planar strain assumption,the hybrid element has to be chosen to simulate the mechanical response of incompressible hyperelastic matrix.When the large deformation occurs in the matrix,the penetration across particles/matrix often happens.Thus,the general contact algorithm is used by defining friction penalty function.

    Embed a layer of cohesive element with zero thickness in the interface to analog the mechanical response of particle/matrix interface.The sweep meshing technology has to be used to partition the cohesive elements.In addition,the appropriate viscosity can be introduced to cohesive elements,and a smaller load step can be set to ensure a perfect convergence.

    whereσaveandGcare the average interface strengths and fracture energy,respectively.The minimum size of cohesive zone can be obtained by substituting the material properties of composite matrix and interface.

    3 Results and Analyses

    3.1 Effects of Interface Properties on Mechanical Behavior

    The macroscopic stress-strain curves of single particle model at different interface strength are shown in Fig.4.The elastic deformation and stress increase linearly in stageⅠ.The overall modulus is obviously larger than that of the pure matrix,and the particles have great enhancement effect.The stress-strain curves coincide essentially before reaching the critical strength.In stageⅡ,when reaching the critical strength,the stress appears to soften.The interface damage evolution happens sharply,and the load capacity drops rapidly.The maximum stress firstly occurs near the polar region of particles,and leads to the damage initiation.With the development of crack propagation along the particle/matrix interface,the macroscopic mechanical behavior changes gradually.Then,in stageⅢ,the stress-strain curves rise gradually because of the large deformation of composite matrix,and the complete failures are similar.

    With the increase of interface strength,the propellant deforms elastically to greater tensile strength before the interface damage begins,and the decline of stress is steeper.Thus,the interface damage evolution and material failure process takes place quickly,because the improvement of interface strength makes the higher stress threshold and gathers more strain energy before the material damage.Therefore,more energy will release rapidly once the failure happens.

    Fig.4 Stress-strain curve at different interface strengthes

    Figure 5 shows the distribution of Mises and axial stresses at the interfacial strength of 1 MPa and strain of 10%,when the interface de-bonds to 45°.The stress distribution of composite propellant is highly heterogeneous,and the maximum value occurs near the tip of cohesive zone,prior to the crack.The particles can hinder the matrix deformation,so the compressive stress occurs in the equatorial plane of particle.The interface damage fraction,i.e.the ratio of damage interface length to total interface length,can be considered as a criterion to judge the damage extent.The damage evolution law is shown in Fig.6.It is clear that the damaged interface has reached to 80%or more,when the crack tip is in the position of 45°,so the interface has a longer cohesive zone length.

    Fig.5 Stress contours of unit cell at strain of 10%

    Fig.6 Particle interface damage evolution law

    Figure 7 illustrates the influence of interface fracture energy on the macroscopic stress-strain law in the same critical strength.There are only little influence on the linear stage and complete failure stage.With the increase of fracture energy increases,the macroscopic tensile strength improves also,and the interface damage evolution will slow down.After the complete interface damage,the interface does not bear the load and the matrix becomes the only subject to bear the load.It can be seen that,for larger fracture energy,the material can achieve a greater elongation at the moment of failure.The fracture energy is a measure of energy dissipation in the failure process.The improvement of interface toughness will result in a larger cohesive zone,thus the interface can bear the load for longer time before the failure occurrence.

    Fig.7 Stress-strain curve for different fracture energies

    3.2 Multi-scale Damage Characteristics and Failure Mechanism

    It can be known from the damage evolution of four-particles model,as shown in Fig.8 and 9,that the macroscopic stress-strain curve becomes more complex,and the damage evolution has the critical points corresponding to the damage initiation and complete failure of large and small particles,respectively.The damage starts around the larger particles as observed in experiments,and is closely related to the particle interaction and sizes.The stress concentration appears at the stress bridging zone and cohesive tip of large particles,likely leading to the matrix tearing and void gathering,then the small particles will gradually produce larger stress after the unloading of large particles.Therefore,the micromechanical failure process of composite propellant can be divided into four stages,as shown in Fig.9.The stage I is an overall elastic deformation stage.In the stage II,the damage evolution of particle/matrix interface happens,and the stress decrease gradually with the increasing strain.This is the microscopic reasons of strain softening in propellants.The large deformation of matrix occurs in the stage III.The stress increases along with the strain,because the matrix is the only subject to bear the load after complete interface damage,i.e.the matrix tensile deformation is the main reason for the strain enhancement of propellant.Then,the matrix will tear and fracture in the stage IV,with the particle debonding and the large deformation of matrix,the fibrils of binder matrix and microvoids surrounding the particles form and grow,then,the fibrils rupture and micro-voids coalesce,finally leading to the fracture of composite propellant.

    Fig.8 Von Mises stress in matrix at strain of 7%

    3.3 Simulation on Microscopic Damage Evolution

    Fig.9 Stress-strain curve of four-particle model

    In fact,the high volume fractions in real composite propellant are achieved by using a wide distribution of particle sizes.The Mises stress contour for random packing propellant is shown in Fig.10.The damage starts mainly around the large particles and local particle-intensive zone,and accelerates the local damage process.The direction of interface opening displacement coincides with the loading direction.Fig.11 shows the macroscopic stress-strain law based on microstructure model.The particle/matrix interface damage is still the key factor to the propellant mechanical properties.The dewetting leads to the nonlinear stressstrain and a stress platform,also makes the macroscopic modulus decrease.The volume expansion happens in propellant,so Poisson's ratio will decrease.

    Fig.10 Mises stress distribution at tension strain of 8%

    Fig.11 Stress-strain curve of random particle packing model

    However,there is difference between the simulation and experiment,and a real microstructure model,exact interface parameters are needed and the fracture behavior of matrix has to be considered.

    4 Conclusions

    In this paper,a microstructure model under uniaxial tension to simulate the damage evolution of composite propellant subjected to finite deformation is established.The damage nucleation,propagation mechanisms and non-uniform distribution of microstructural stress-strain fields,particularly,the effect of interface properties and particle sizes on the mechanical response,are obtained.

    1)The finite element simulation method based on the microstructure model can effectively predict the trend of macroscopic mechanical behavior and particle/matrix damage evolution process.It can be used for the damage simulation and failure assessment.The micromechanical failure process of composite propellant can be divided into four stages,i.e.elastic deformation,damage evolution of particle/matrix interface,large deformation of matrix and matrix tearing and fracture.

    2)The damage starts around the larger particles and is closely related to the particle interaction and particle sizes.The stress concentration appears at the stress bridging zone and cohesive zone tip of large particles.The dewetting significantly leads to a decline of macroscopic elastic modulus,the nonlinear stressstrain curves and also the damage of propellant.

    3)The improvement of interface strength and fracture energy can achieve a greater tensile strength and elongation of composite propellant.

    [1]Matous K,Geubelle P H.Finite element formulation for modeling particle debonding in reinforced elastomers subjected to finite deformations[J].Computer Methods in Applied Mechanics and Engineering,2006,196:620 -633.

    [2]LIU Zhu-qing,LI Gao-chun,XING Yao-guo,et al.Numerical simulation and SEM study on the microstructural damage of composite solid propellants[J].Journal of Propulsion Technology,2011,32(3):412-416.(in Chinese)

    [3]YUAN Song,TANG Wei-hong,LI Gao-chun.Analysis on micro-mechanical failure mechanisms of composite propellant[J].Journal of Solid Rocket Technology,2006,29(1):48-51.(in Chinese)

    [4]Zhong A X,Knauss W G.Analysis of interfacial failure in particle-filled elastomers[J].Journal of Engineering Materials and Technology,1997,119:198-204.

    [5]Matous K,Inglis H M,Gu X,et al.Multiscale modeling of solid propellants:from particle packing to failure[J].Composites Science and Technology,2007,67:1694 -1708.

    [6]Inglis H M,Geubelle P H,Matous K.Cohesive modeling of dewetting in particulate composites:micromechanics vs.multiscale finite element analysis[J].Mechanics of Materials,2007,39:580 -595.

    [7]HAN Bo,JU Yu-tao,XU Jin-sheng,et al.Numerical simulation of crack propagation in solid propellant based on cohesive zone model[J].Journal of Ballistics,2012,24(1):63-68.(in Chinese)

    [8]CHANG Wu-jun,JU Yu-tao,WANG Peng-bo.Research on correlation between dewetting and mechanical property of HTPB propellant[J].Acta Armamentarii,2012,33(3):261-266.(in Chinese)

    [9]Segurado J,Llorca J.A numerical approximation to the elastic properties of sphere-reinforced composites[J].Journal of the Mechanics and Physics of Solids,2002,50:2107-2121.

    [10]Ghassemieh E.Micro-mechanical analysis of bonding failure in a particle-filled composite[J].Composites Science and Technology,2002,62:67-82.

    [11]Segurado J,LLorca J.A computational micromechanics study of the effect of interface decohesion on the mechanical behavior of composites[J].Acta Materialia,2005,53:4931-4942.

    [12]Tan H,Liu C,Huang Y,et al.The cohesive law for the particle/matrix interfaces in high explosives[J].Journal of the Mechanics and Physics of Solids,2005,53:1892-1917.

    猜你喜歡
    抗溫噻唑示蹤劑
    鉆井液用納米復(fù)合封堵劑的研制
    基于苯并噻唑用作分析物檢測(cè)的小分子熒光探針
    云南化工(2021年7期)2021-12-21 07:27:22
    南海東部深水油田水平井產(chǎn)出剖面 示蹤劑監(jiān)測(cè)技術(shù)及應(yīng)用
    井間示蹤劑監(jiān)測(cè)在復(fù)雜斷塊油藏描述中的應(yīng)用
    錄井工程(2017年1期)2017-07-31 17:44:42
    抗溫耐鹽聚合物凍膠的低溫合成及性能
    多示蹤劑成像技術(shù)在腫瘤診斷方面的應(yīng)用研究
    高效液相色譜法同時(shí)測(cè)定反應(yīng)液中的苯并噻唑和2-巰基苯并噻唑
    溴化鉀型示蹤劑檢測(cè)的改進(jìn)方法
    一種抗溫抗鹽交聯(lián)聚合物堵水劑的合成及性能評(píng)價(jià)
    抗溫180℃水包油鉆井液研究及應(yīng)用
    斷塊油氣田(2013年2期)2013-03-11 15:32:53
    亚洲自偷自拍三级| av在线亚洲专区| 国产大屁股一区二区在线视频| 日本黄色片子视频| 国产视频内射| 99热全是精品| 日韩亚洲欧美综合| 一级毛片 在线播放| 久久国产乱子免费精品| 一区二区三区精品91| 亚洲精品乱码久久久久久按摩| 精品人妻偷拍中文字幕| 寂寞人妻少妇视频99o| 欧美日韩综合久久久久久| 人体艺术视频欧美日本| 少妇高潮的动态图| 老司机影院毛片| 国产精品一区二区在线观看99| 久久鲁丝午夜福利片| 日韩国内少妇激情av| 日韩,欧美,国产一区二区三区| 国产午夜精品一二区理论片| 欧美97在线视频| 99热这里只有是精品50| 观看免费一级毛片| 最近最新中文字幕大全电影3| 国产大屁股一区二区在线视频| av在线老鸭窝| 高清在线视频一区二区三区| av线在线观看网站| 在线观看人妻少妇| 99久久人妻综合| 在线亚洲精品国产二区图片欧美 | 又大又黄又爽视频免费| 欧美日韩精品成人综合77777| 少妇人妻 视频| 日韩伦理黄色片| 26uuu在线亚洲综合色| 97人妻精品一区二区三区麻豆| 精华霜和精华液先用哪个| 99热国产这里只有精品6| 精品午夜福利在线看| 亚洲精品国产成人久久av| av在线天堂中文字幕| 日日摸夜夜添夜夜爱| 欧美成人a在线观看| 亚洲欧美清纯卡通| 久久国内精品自在自线图片| 2021少妇久久久久久久久久久| 熟女人妻精品中文字幕| 97精品久久久久久久久久精品| 亚洲精品第二区| 亚洲精品国产av蜜桃| 亚洲在线观看片| 日韩一区二区视频免费看| 在线播放无遮挡| 亚洲精华国产精华液的使用体验| 欧美日本视频| 亚洲在久久综合| 女人久久www免费人成看片| 久久久久国产网址| 少妇高潮的动态图| 亚洲成人av在线免费| 国产av码专区亚洲av| 亚洲av日韩在线播放| 免费观看在线日韩| 久久久久久九九精品二区国产| 99久久九九国产精品国产免费| 国产成人精品福利久久| 看免费成人av毛片| 99精国产麻豆久久婷婷| 99视频精品全部免费 在线| 你懂的网址亚洲精品在线观看| 波野结衣二区三区在线| 三级经典国产精品| 夜夜看夜夜爽夜夜摸| 亚洲一区二区三区欧美精品 | 亚洲,一卡二卡三卡| 91久久精品国产一区二区成人| 天天躁日日操中文字幕| 91精品伊人久久大香线蕉| 99久久精品国产国产毛片| 久久久久精品性色| 国产精品一二三区在线看| 亚洲成人久久爱视频| 建设人人有责人人尽责人人享有的 | 又爽又黄无遮挡网站| 亚洲精品456在线播放app| 免费黄网站久久成人精品| 国产综合懂色| 日韩欧美一区视频在线观看 | 国产视频首页在线观看| 在线观看美女被高潮喷水网站| 国产成人免费无遮挡视频| 亚洲精品影视一区二区三区av| 成人无遮挡网站| 婷婷色综合www| 最近2019中文字幕mv第一页| 最近的中文字幕免费完整| av黄色大香蕉| 国产色婷婷99| 精品久久久噜噜| 国产一区有黄有色的免费视频| 久久久精品免费免费高清| 成人高潮视频无遮挡免费网站| 精品酒店卫生间| 永久网站在线| 日日啪夜夜撸| 亚洲欧美成人综合另类久久久| 我的女老师完整版在线观看| xxx大片免费视频| 日韩成人av中文字幕在线观看| 男男h啪啪无遮挡| 欧美xxxx性猛交bbbb| 免费黄网站久久成人精品| 80岁老熟妇乱子伦牲交| 成年版毛片免费区| 成人亚洲欧美一区二区av| av.在线天堂| 22中文网久久字幕| 亚洲成人中文字幕在线播放| 国产精品一及| 成人漫画全彩无遮挡| 国产在视频线精品| 午夜爱爱视频在线播放| 欧美成人精品欧美一级黄| videos熟女内射| 精品久久久噜噜| 不卡视频在线观看欧美| 国产精品一区二区在线观看99| 91午夜精品亚洲一区二区三区| 只有这里有精品99| 在线观看三级黄色| 王馨瑶露胸无遮挡在线观看| 久久精品夜色国产| 国产欧美日韩一区二区三区在线 | 亚洲丝袜综合中文字幕| 网址你懂的国产日韩在线| av在线蜜桃| 欧美bdsm另类| 欧美少妇被猛烈插入视频| 亚洲国产最新在线播放| 性色av一级| 成年女人在线观看亚洲视频 | 欧美性猛交╳xxx乱大交人| 欧美成人一区二区免费高清观看| 国产淫片久久久久久久久| 国产精品伦人一区二区| 大又大粗又爽又黄少妇毛片口| 国产精品99久久久久久久久| 天堂中文最新版在线下载 | 精品少妇久久久久久888优播| 国产老妇伦熟女老妇高清| 亚洲精品国产av蜜桃| a级一级毛片免费在线观看| 三级经典国产精品| 亚洲自拍偷在线| 免费不卡的大黄色大毛片视频在线观看| 一级毛片久久久久久久久女| 国产老妇伦熟女老妇高清| 女的被弄到高潮叫床怎么办| 在线观看一区二区三区激情| 看十八女毛片水多多多| 寂寞人妻少妇视频99o| 九九久久精品国产亚洲av麻豆| 国产综合精华液| 久久精品夜色国产| 在线观看人妻少妇| 国产精品一区二区三区四区免费观看| 男女啪啪激烈高潮av片| 免费不卡的大黄色大毛片视频在线观看| 青青草视频在线视频观看| 国产亚洲av嫩草精品影院| 美女视频免费永久观看网站| 国产伦精品一区二区三区四那| 少妇高潮的动态图| 日日啪夜夜撸| 九色成人免费人妻av| 少妇猛男粗大的猛烈进出视频 | 五月开心婷婷网| 久久久久国产网址| 国产爱豆传媒在线观看| 各种免费的搞黄视频| 深爱激情五月婷婷| 亚洲欧美中文字幕日韩二区| 97在线人人人人妻| 黄色一级大片看看| freevideosex欧美| 一级片'在线观看视频| 好男人视频免费观看在线| 国产v大片淫在线免费观看| 国产又色又爽无遮挡免| 国产精品一区二区性色av| 国产一区二区在线观看日韩| 国产男女内射视频| 王馨瑶露胸无遮挡在线观看| 免费看日本二区| 女的被弄到高潮叫床怎么办| 国产久久久一区二区三区| 欧美日本视频| 高清午夜精品一区二区三区| 精品国产一区二区三区久久久樱花 | 婷婷色综合大香蕉| 舔av片在线| 在现免费观看毛片| 精品少妇黑人巨大在线播放| 国产精品一区二区性色av| 97超视频在线观看视频| 亚洲欧美日韩卡通动漫| 日本与韩国留学比较| 国产 精品1| 亚洲性久久影院| 99九九线精品视频在线观看视频| 少妇人妻久久综合中文| 欧美日韩精品成人综合77777| 欧美精品人与动牲交sv欧美| 一个人看的www免费观看视频| 成人毛片60女人毛片免费| 欧美日韩在线观看h| av播播在线观看一区| 国产精品福利在线免费观看| 天天躁夜夜躁狠狠久久av| 亚洲,欧美,日韩| 亚洲无线观看免费| 99精国产麻豆久久婷婷| 午夜福利在线在线| 美女国产视频在线观看| 边亲边吃奶的免费视频| 1000部很黄的大片| 九九在线视频观看精品| 大话2 男鬼变身卡| 亚洲欧美一区二区三区黑人 | 禁无遮挡网站| 欧美zozozo另类| 麻豆成人午夜福利视频| 99久久精品国产国产毛片| 国产精品熟女久久久久浪| 香蕉精品网在线| 成人欧美大片| 中文字幕av成人在线电影| 久久久成人免费电影| 国产成人a∨麻豆精品| 国产精品一二三区在线看| 熟女人妻精品中文字幕| 又爽又黄a免费视频| 18+在线观看网站| 久久久久久九九精品二区国产| 日韩三级伦理在线观看| 午夜福利视频1000在线观看| 国产乱人偷精品视频| 一个人看的www免费观看视频| 精品国产三级普通话版| 日本爱情动作片www.在线观看| 午夜激情福利司机影院| 亚洲av中文字字幕乱码综合| 男的添女的下面高潮视频| 国产av不卡久久| 下体分泌物呈黄色| 国产色婷婷99| 制服丝袜香蕉在线| 99久久中文字幕三级久久日本| 国模一区二区三区四区视频| 只有这里有精品99| 777米奇影视久久| 久久国内精品自在自线图片| 欧美一级a爱片免费观看看| 制服丝袜香蕉在线| 一级毛片电影观看| 热re99久久精品国产66热6| 在线精品无人区一区二区三 | 久久人人爽av亚洲精品天堂 | 男人和女人高潮做爰伦理| av在线老鸭窝| 天天一区二区日本电影三级| 99久久九九国产精品国产免费| 亚洲成人精品中文字幕电影| 精品一区在线观看国产| 22中文网久久字幕| www.色视频.com| 一区二区三区乱码不卡18| 精品99又大又爽又粗少妇毛片| 国产高清不卡午夜福利| 亚洲av男天堂| 亚洲av免费高清在线观看| av在线老鸭窝| 22中文网久久字幕| 美女xxoo啪啪120秒动态图| 亚洲国产成人一精品久久久| 大陆偷拍与自拍| 爱豆传媒免费全集在线观看| 在线免费十八禁| 人妻 亚洲 视频| 夜夜看夜夜爽夜夜摸| 嫩草影院新地址| 美女被艹到高潮喷水动态| 精品一区二区免费观看| 国产91av在线免费观看| 欧美日韩视频精品一区| 日韩一区二区三区影片| 午夜福利在线在线| 久久精品国产亚洲网站| 国产黄色免费在线视频| 熟女人妻精品中文字幕| 午夜福利高清视频| 成年人午夜在线观看视频| 波野结衣二区三区在线| 国产成人免费无遮挡视频| 国产精品人妻久久久久久| 午夜激情久久久久久久| 国产精品麻豆人妻色哟哟久久| 日韩伦理黄色片| 久久久久性生活片| 亚洲av中文av极速乱| 亚洲最大成人手机在线| 亚洲经典国产精华液单| 丝袜美腿在线中文| 成年版毛片免费区| 综合色丁香网| 18+在线观看网站| 九色成人免费人妻av| 日本一本二区三区精品| 我的女老师完整版在线观看| 国产91av在线免费观看| 日本色播在线视频| 久久精品久久久久久久性| 边亲边吃奶的免费视频| 国产淫片久久久久久久久| 在线a可以看的网站| 日本av手机在线免费观看| 午夜免费观看性视频| 亚洲精品色激情综合| 熟妇人妻不卡中文字幕| 婷婷色综合大香蕉| 亚洲精品中文字幕在线视频 | 国产欧美日韩精品一区二区| 九色成人免费人妻av| 男女那种视频在线观看| 一级毛片 在线播放| 晚上一个人看的免费电影| 男女啪啪激烈高潮av片| 最近的中文字幕免费完整| 日本-黄色视频高清免费观看| videossex国产| 内射极品少妇av片p| 亚洲精品国产成人久久av| 成人一区二区视频在线观看| 亚洲av免费在线观看| 中文字幕制服av| 国产精品福利在线免费观看| 女人被狂操c到高潮| 男女啪啪激烈高潮av片| 亚洲精品成人av观看孕妇| 久久久久久九九精品二区国产| 久久久色成人| 免费观看在线日韩| 在线 av 中文字幕| 国内精品美女久久久久久| 高清欧美精品videossex| 亚洲成人av在线免费| 欧美激情在线99| 乱系列少妇在线播放| 人妻 亚洲 视频| 国产免费一级a男人的天堂| 网址你懂的国产日韩在线| 91aial.com中文字幕在线观看| 亚洲,一卡二卡三卡| 美女视频免费永久观看网站| 在线a可以看的网站| 精品午夜福利在线看| 极品教师在线视频| 亚洲无线观看免费| av播播在线观看一区| 69av精品久久久久久| 久久精品国产鲁丝片午夜精品| 久久女婷五月综合色啪小说 | 精品人妻视频免费看| 久久综合国产亚洲精品| 中文在线观看免费www的网站| 日产精品乱码卡一卡2卡三| 一区二区三区乱码不卡18| 人人妻人人爽人人添夜夜欢视频 | 蜜桃久久精品国产亚洲av| 亚洲av日韩在线播放| 我要看日韩黄色一级片| 亚洲久久久久久中文字幕| 国内少妇人妻偷人精品xxx网站| 精品少妇久久久久久888优播| 真实男女啪啪啪动态图| 精品人妻视频免费看| 精品一区二区三区视频在线| 久久精品国产亚洲av涩爱| 啦啦啦在线观看免费高清www| 91精品国产九色| 国产乱人视频| 国产在视频线精品| 亚洲在久久综合| 亚洲精品乱久久久久久| 国产v大片淫在线免费观看| 国产免费一级a男人的天堂| 亚洲av男天堂| 色视频在线一区二区三区| 在线观看人妻少妇| av在线观看视频网站免费| 视频中文字幕在线观看| 欧美潮喷喷水| 亚洲国产av新网站| 女人被狂操c到高潮| 欧美三级亚洲精品| 天天躁日日操中文字幕| 国产探花极品一区二区| 综合色av麻豆| 国产 精品1| 日本-黄色视频高清免费观看| 一区二区三区免费毛片| 久久久久久久久久成人| 又粗又硬又长又爽又黄的视频| 国产在线一区二区三区精| 日本午夜av视频| 简卡轻食公司| 欧美三级亚洲精品| 一本久久精品| 亚洲色图av天堂| 91在线精品国自产拍蜜月| 在线播放无遮挡| 亚洲国产欧美人成| 一级爰片在线观看| 欧美日韩视频精品一区| 三级国产精品片| 成人毛片60女人毛片免费| 亚洲欧洲日产国产| 欧美极品一区二区三区四区| 亚洲自拍偷在线| 亚洲综合精品二区| 五月开心婷婷网| 九九在线视频观看精品| 又粗又硬又长又爽又黄的视频| 中文在线观看免费www的网站| 国产一区二区在线观看日韩| 三级国产精品片| 一区二区三区精品91| 亚洲精品第二区| 亚洲精品日韩在线中文字幕| 日韩欧美精品免费久久| 人妻制服诱惑在线中文字幕| 中国国产av一级| 日韩欧美精品免费久久| av在线app专区| 国产一区二区三区av在线| 国产亚洲精品久久久com| 国产精品一区二区在线观看99| 青春草亚洲视频在线观看| 亚洲国产欧美在线一区| 最近最新中文字幕大全电影3| 国产精品秋霞免费鲁丝片| 欧美日韩亚洲高清精品| 国产极品天堂在线| 精品一区二区三区视频在线| 国产精品久久久久久久电影| 亚洲色图综合在线观看| 特级一级黄色大片| 亚洲精品国产成人久久av| 联通29元200g的流量卡| 亚洲四区av| 又爽又黄无遮挡网站| 精品熟女少妇av免费看| 丝袜美腿在线中文| 久久这里有精品视频免费| 日本wwww免费看| 国产一级毛片在线| 在线观看av片永久免费下载| 国模一区二区三区四区视频| 日韩,欧美,国产一区二区三区| 欧美国产精品一级二级三级 | 成人毛片60女人毛片免费| 在线观看免费高清a一片| kizo精华| 少妇的逼好多水| 免费黄频网站在线观看国产| 亚洲av成人精品一二三区| 久久久久久久国产电影| 九九在线视频观看精品| 91精品伊人久久大香线蕉| 免费av观看视频| 日韩av免费高清视频| 日本三级黄在线观看| 成人国产麻豆网| 成人亚洲精品av一区二区| 亚洲成人中文字幕在线播放| 久久久久国产精品人妻一区二区| 亚洲欧美精品自产自拍| av卡一久久| 久久久久国产网址| 久久影院123| 亚洲国产精品999| 国产一区二区在线观看日韩| 亚洲av不卡在线观看| 亚洲成人精品中文字幕电影| 成人鲁丝片一二三区免费| 国产黄色免费在线视频| 亚洲欧美中文字幕日韩二区| 美女脱内裤让男人舔精品视频| 午夜老司机福利剧场| 成人亚洲欧美一区二区av| 能在线免费看毛片的网站| 黄色日韩在线| 六月丁香七月| 日本熟妇午夜| 91久久精品国产一区二区成人| 欧美人与善性xxx| 青青草视频在线视频观看| 中文资源天堂在线| 舔av片在线| 亚洲无线观看免费| 校园人妻丝袜中文字幕| 亚洲国产日韩一区二区| 国产av国产精品国产| 亚洲色图av天堂| 一区二区三区免费毛片| 国产有黄有色有爽视频| 亚洲四区av| 两个人的视频大全免费| 熟女人妻精品中文字幕| 亚洲精品乱码久久久久久按摩| 少妇熟女欧美另类| 亚洲精品视频女| 亚洲欧美日韩另类电影网站 | 国产成人精品福利久久| 国精品久久久久久国模美| 在线精品无人区一区二区三 | 欧美日韩视频高清一区二区三区二| 尾随美女入室| 91久久精品国产一区二区三区| 国产日韩欧美亚洲二区| 一本色道久久久久久精品综合| 国产一区有黄有色的免费视频| 一级毛片 在线播放| 午夜精品一区二区三区免费看| 国产成人福利小说| 欧美一级a爱片免费观看看| 亚洲av福利一区| 乱码一卡2卡4卡精品| 欧美+日韩+精品| 嫩草影院精品99| 麻豆成人av视频| 激情五月婷婷亚洲| 亚洲丝袜综合中文字幕| 777米奇影视久久| 人妻 亚洲 视频| 国产精品爽爽va在线观看网站| 80岁老熟妇乱子伦牲交| 久久久久久久午夜电影| a级一级毛片免费在线观看| 激情 狠狠 欧美| 国产成人一区二区在线| 久久人人爽av亚洲精品天堂 | 日韩电影二区| 国产精品爽爽va在线观看网站| 人妻一区二区av| 激情 狠狠 欧美| 亚洲国产日韩一区二区| av在线播放精品| 国产欧美亚洲国产| 中国国产av一级| 日日摸夜夜添夜夜添av毛片| 久久ye,这里只有精品| 99久久精品一区二区三区| 一级毛片电影观看| 高清视频免费观看一区二区| 久久影院123| 小蜜桃在线观看免费完整版高清| 国国产精品蜜臀av免费| 午夜免费男女啪啪视频观看| 少妇裸体淫交视频免费看高清| 精品视频人人做人人爽| 激情 狠狠 欧美| 岛国毛片在线播放| 一区二区三区乱码不卡18| 永久免费av网站大全| 国产中年淑女户外野战色| av国产免费在线观看| 日本三级黄在线观看| 欧美丝袜亚洲另类| 亚洲精品,欧美精品| 成人亚洲精品av一区二区| www.色视频.com| 亚洲三级黄色毛片| 精品久久国产蜜桃| 在线播放无遮挡| 六月丁香七月| 亚洲精品aⅴ在线观看| 干丝袜人妻中文字幕| 99热国产这里只有精品6| 亚洲天堂国产精品一区在线| 亚洲精品国产色婷婷电影| www.av在线官网国产| 日本一二三区视频观看| av网站免费在线观看视频| 在线免费观看不下载黄p国产| 2022亚洲国产成人精品| 免费黄网站久久成人精品| 久久影院123| 亚洲av日韩在线播放| 日本三级黄在线观看| 一级毛片久久久久久久久女| 国产精品一区二区性色av| 久热久热在线精品观看| 日本wwww免费看| 成年女人在线观看亚洲视频 | 国产精品一区www在线观看| 久久精品久久久久久久性| eeuss影院久久| 久久精品国产亚洲av天美| 日本猛色少妇xxxxx猛交久久| 赤兔流量卡办理| 久久97久久精品|