• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lift Enhancement and Oscillatory Suppression of Vortex-induced Vibration in Shear Flow by Loentz Force

    2012-07-25 06:20:54ZHANGHui張輝FANBaochun范寶春LIHongzhi李鴻志
    Defence Technology 2012年3期
    關(guān)鍵詞:張輝

    ZHANG Hui(張輝),F(xiàn)AN Bao-chun(范寶春),LI Hong-zhi(李鴻志)

    (Science and Technology on Transient Physics Laboratory,Nanjing University of Science and Technology,Nanjing 210094,Jiangsu,China)

    Introduction

    The fluid-structure interaction occurring in the motion of ordnance gives rise to the complicated vibration of structure,and even causes the structural damage.In addition,a negative lift force generated in shear flow,similar to the stall phenomenon encountered in airfoils at high attack angle,is also undesired generally from the practical point of view.Therefore,the investigation on the control of vortex-induced vibration(VIV)phenomenon in shear flow is necessary due to the practical and theoretical importance.

    VIV phenomenon of a circular cylinder in shear flow is one of the most basic and revealing problems.Much experimental work has been done to the flow over elastic structure.Griffin[1]has compiled many experiment results to demonstrate the relationship between the cross-flow vibration amplitude and the mass-damping product.Gharib[2],Khala and Williamson[3]exhibited the examples of significant flow-induced vibrations without lock-in.On the other hand,a classic lock-in was observed in the experiments[4-5].Techet and Triantafyllou[6]showed that the free-vibration tests of a uniform cylinder with low equivalent structural damping yield the amplitude response curve as a function of the nominal reduced velocity which is in agreement with previous results[7].

    Numerical work has been also done.With the use of a spectral element spatial discretization,Blackburn and Henderson[8]investigated the vortex-induced vibration problem by solving the two-dimensional Navier-Stokes equations in an accelerating frame of reference attached to the cylinder for the Reynolds number valueRe=250.Zhou,So and Lam[9]studied a two-dimensional flow passed through an elastic circular cylinder using the VIC(vortex-in-cell) discrete vortex method to investigate the responses of the cylinder,the induced forces on the cylinder and the vortex structure in the wake.Anagnostopoulos[10]discussed the relationship between the oscillation frequency of cylinder and the natural shedding frequency.The variations of flow field and hydrodynamic force under the different conditions are also discussed.

    The control of the blunt-body wake by means of Lorentz force is considered as one of the most practical methods developed,in which the Lorentz force is generated by the electro-magnetic actuators[11-14].The electro-magnetic wake control of a fixed or VIV cylinder in uniform flow has been performed experimentally and numerically in our research group,in which the closed-loop control and optimal control methods were developed to improve its control efficiency[15-17].However,no work has been done for the Lorentz force control of VIV in shear flow.

    In this paper,the Lorentz force control of VIV in shear flow is investigated numerically for lift enhancement and oscillatory suppression.The problems discussed are described by the stream function-vorticity equations in coordinates attached on the moving cylinder,coupled with the cylinder motion equation.The hydrodynamic forces on the cylinder surface are directly derived mathematically from the governing equations.In order to show our understanding of the fluidstructure interaction of VIV in the shear flow,the effects of the instantaneous wake geometries and the corresponding cylinder motion on the pressure forces distributed on the cylinder surface are described in one entire period of vortex shed.Moreover,the mechanism of the vibration cylinder control and the increase in lift by Lorentz force in the shear flow are examined,where the Lorentz force is classified into the field Lorentz force and the wall Lorentz force[18].

    1 Governing Equations

    1.1 Stream Function-Vorticity Equations

    The sketch of shear flow with a linear velocity profileU=U∞+Gyover a cylinder in two-dimensional approach is shown in Fig.1,whereu∞is the freestream velocity at the center-lineθ=0,yis the coordinate in the lateral direction withy=0 at the center of cylinder,andGis the lateral velocity gradient.

    Fig.1 Sketch of shear flow over circular cylinder

    The shear rateKis defined asK=2Ga/U∞,ais the cylinder radius.Only the case of a positive shear rate(K>0)is discussed in the paper,which implies that the flow velocity on the upper side is faster than that on the lower side.

    The coordinates are attached on the moving cylinder,then the stream function-vorticity equations in the exponential-polar coordinates system(ξ,η),r=e2πξ,θ=2πη,for the incompressible electrically conducting fluid becomes

    The Lorentz forceFis defined as[11-12]

    where the valueαdescribes the electromagnetic penetration into the fluid.

    1.2 Initial and Boundary Conditions

    The flow is considered to be inviscid initially.If the cylinder is constrained to move only in cross flow direction,the initial flow field in the moving frame of reference can be described by

    and

    Att> 0,in the far fieldξ→∞,regarded as an inviscid flow,e2πξ→2sh(2πξ),then we have

    which are dependent on the shear rateKand the cylinder vibration,and

    On the cylinder surfaceξ=0,the no-slip boundary condition is used instead of the slip boundary condition,then

    1.3 Cylinder Response

    The effective mass including the cylinder mass plus the added mass due to the acceleration of the cylinder in the moving frame of reference should be considered,and thus the cylinder motion is governed by the equation

    1.4 Hydrodynamic Force

    The Lorentz force is divided into the field Lorentz forceFθ|ξ>0and the wall Lorentz forceFθ|ξ=0.The field Lorentz force affects the flow field in the boundary layer and in turn changes the hydrodynamic force on the cylinder surface.Whereas,the wall Lorentz force does not have any relationships with the flow field in spite of the increase in pressure due to its action on the cylinder surface.Hence pressureconsists ofinduced by the field Lorentz force,induced by the wall Lorentz force andinduced by the inertial force.

    where

    The calculation has been performed numerically.The equation of vorticity transport is solved by using the alternative-direction implicit(ADI)algorithm,and the equation of stream function is integrated by means of a fast fourier transform(FFT)algorithm.The cylinder motion is calculated by solving Eq.(10)using the Runge-Kutta method.The numerical results in the paper were obtained forRe=150 with the computational step size Δξ=0.004,Δη=0.002 and Δt=0.005.More details about the numerical method,grid consistency and validation of the code can be found in Ref.[15-18].

    2 Results and Discussions

    2.1 VIV of Circular Cylinder in Shear Flow

    A sequence of calculated VIV cylinder wake forK=0.2 in a shedding cycle are exhibited by the shaded vorticity contours in Fig.2,where the upper side refers to the negative vortex,and lower side to positive.The cross-hairs mark the equilibrium cylinder position.Since the vortex is shed at a different positions related to the cylinder,the vortex street formed is composed of two parallel rows with an opposite sign of the vortices.The vortex street inclines toward the lower side and the strength of upper vortex is larger than that of lower vortex due to the background vorticity.

    In order to further understand the effect of the flow pattern over the cylinder on the hydrodynamic force,it is essential to know exactly the pressure distribution on the cylinder surface since the pressure is an order of magnitude larger than the shear stress[19-20].The distribution of pressure coefficient on the cylinder surface at different typical timesA-Dare shown in Fig.3,which is composed ofandbased on Eq.(11)whereis generated by the flow field,andis related with the inertial force.The cylinder displacement will strengthen the shear layer on the side where the fluid is pushed by the cylinder and weaken the shear layer on the other side.Hence the pressure on the strengthened side decreases,whereas the pressure on the weakened side increases.Subsequently,the lift directing to the strengthened side is generated,which is in contrast with that due to the effect of the vortex shedding.With the background vorticity,the shift of the stagnation point causes the shift of the positive pressure area to the same side,and the maximum vibrating amplitude of cylinder at timeBis larger than that at the timeD.

    Fig.2 A sequence of snapshots of vortex-induced vibration at typical times for K=0.2

    Fig.3 Distribution of pressure coefficientalong the surface of the vibrating cylinder at the typical times for K=0.2

    The inertial force due to the acceleration of the cylinder also affects the distribution of pressure on the vibrating cylinder,denoted as.Fig.4 shows thedistributions at different stages of one cycle.At the timesAandC,the accelerationis equal to zero,and then increases to reach the values at the timeBandDwhere the value at the timeBis larger than that at the timeD.It is obvious that the lift increases with the increase in the inertial force in the accelerating direction,whereas the drag is independent of the inertial force.

    Fig.4 Distribution of pressure coefficientalong the surface of the vibrating cylinder at the typical times for K=0.2

    The variation of lift force coefficientClwith timetwithout Lorentz force control att<650 is shown in Fig.5,which vibrates periodically with the effect of vortexes shedding and the mean value is negative due to the background vorticity.

    Fig.5 Variation of lift coefficient Cl with time t before and after asymmetric Lorentz force control for K=0.2

    2.2 Control of VIV in Shear Flow by Asymmetric Lorentz Force

    The vibration amplitude has a strong relationship with Lorentz force.The variation of amplitude of controlled VIV with the interaction parameterNforK=0.2 is shown in Fig.6.The limiting amplitude decreases with the increase inN,and the cylinder is fixed finally,ifNis large enough.

    Fig.6 Limiting amplitude of oscillating cylinder displacement after control versus the interaction parameter N for K=0.2

    With the application of Lorentz force(N=3 on the upper side andN=2 on the lower side)att=650,the vibration of lift is suppressed gradually and the value of lift tends to 0 att>650,as shown in Fig.5.Att=760,the lift is stable and the value is 0 which corresponding flow field is shown in Fig.7.

    Fig.7 Snapshot of vortex-induced vibration controlled with asymmetric Lorentz force(N=3 on the upper side and N=2 on the lower side)for K=0.2

    The distribution of pressure coefficientgenerated by wall Lorentz force is shown in Fig.8.The curve is positive and the pressure on the lower side is larger than that on the upper side with the application of asymmetric Lorentz force.Therefore,the lift is increased by wall Lorentz force.

    Fig.8 Distribution of pressure coefficientwith asymmetric Lorentz force control(N=3 on the upper side and N=2 on the lower side)for K=0.2

    Fig.9 Distribution of pressure coefficient with asymmetric Lorentz force control(N=3 on the upper side and N=2 on the lower side)for K=0.2

    The displacement time history of the vibrating cylinderwith the shear incoming flow before and after control of asymmetric Lorentz force(N=3 on the upper side andN=2 on the lower side)is shown in Fig.10.The vibration amplitude of the cylinder decreases considerably,and the displacement tends to 0 gradually.Att=760,the displacement is stable.

    3 Conclusions

    The electro-magnetic control of vortex-induced vibration of a circular cylinder in shear flow has been investigated numerically.To solve the coupled system,the coordinates are attached on the moving cylinder.

    Fig.10 Displacement of VIV cylinder before and after control(N=3 on the upper side and N=2 on the lower side)for K=0.2

    The initial and boundary conditions and the pressure distribution are deduced on the exponential-polar coordinates system.The conclusions drawn are summarized below.

    1)For VIV cylinder in shear flow,the vortex street is composed of two parallel rows with an opposite sign of the vortices which inclines toward the lower side and the strength of upper vortex is larger than that of lower vortex.The lift force vibrates periodically with the effect of vortexes shedding and the mean value is negative due to the background vorticity.

    2)The Lorentz force for controlling the VIV cylinder is classified into the field Lorentz force and the wall Lorentz force.The field Lorentz force can be applied to suppress the oscillation of lift,and in turn to suppress VIV.Moreover,the asymmetric wall Lorentz forces can be applied to increase the lift.Therefore,the lift amplification and oscillatory suppression can be obtained by suitable asymmetric Lorentz forces.

    [1]Griffin J H.The mechanics of the formation region of vortices behind bluff bodies[J].Journal of Fluid Mechanics,1966,25:401 -413.

    [2]Gharib M R.Vortex-induced vibration absence of lock-in and fluid force deduction[D].Pasadena,CA:California Institute of Technology,1999.

    [3]Khalak A,Williamson C H K.Fluid forces and dynamics of a hydroelastic structure with very low mass and damping[J].Journal of Fluids Structure,1997,11:973 -982.

    [4]Brika D,Laneville A.Vortex-induced vibration of a long flexible circular cylinder[J].Journalof Fluid Mechanics,1993,250:481-508.

    [5]Hover F S,Miller S N,Triantafyllou M S.Vortex-induced vibration of marine cables:experiments using force feedback[J].Journal of Fluids Structure,1997,11:307-326.

    [6]Techet A H,Triantafyllou M S.The evolution of a‘Hybrid’shedding mode[C]//Proceedings of the 1998 ASME Fluids Engineering Division Summer Meeting,Washington DC:1998,21-23.

    [7]Williamson C H K,Roshko A.Vortex formation in the wake of an oscillating cylinder[J].Journal of Fluids Structure,1988,2:355-381.

    [8]Blackburn H,Henderson R.Lock-in behavior in simulated vortex-induced vibration[J].Experimental Thermal and Fluid Science,1996,12:184 -189.

    [9]Zhou C Y,So R M C,Lam K.Vortex-induced vibrations of an elastic circular cylinder[J].Journal of Fluid Structure,1999,13:165 -189.

    [10]Anagnostopoulos P.Numerical study of the flow past a cylinder excited transversely to the incident stream Part 2[J].Journal of Fluid Structure,2000,14:853-882.

    [11]Weier T,Gerbeth G,Mutschke G,et al.Experiments on cylinder wake stabilization in an electrolyte solution by means of electromagnetic forces localized on the cylinder surface[J].Experimental Thermal and Fluid Science,1998,16:84-91.

    [12]Posdziech O,Grundmann R.Electromagnetic control of seawater flow around circular cylinders[J].Eur J Mech B-Fluids,2001,20(2):255 -274.

    [13]Mutschke G,Gerbeth G,Albrecht T,et al.Separation control at hydrofoils using Lorentz forces[J].Eur J Mech B-Fluids,2006,25(2):137-152.

    [14]Braun E M,Lu F K,Wilson D R.Experimental research in aerodynamic control with electric and electromagnetic fields[J].Progress in Aerospace Sciences,2009,45(1):30-49.

    [15]ZHANG Hui,F(xiàn)AN Bao-chun,CHEN Zhi-hua.Computations of optimal cylinder flow control in weakly conductive fluids[J].Computers and Fluids,2010,39(8):1261 -1266.

    [16]ZHANG Hui,F(xiàn)AN Bao-chun,LI Hong-zhi.Suppression of vortex-induced vibration of a circular cylinder by Lorentz force[J].Science China Physics Mechanics and Astronomy,2011,54(12),2248-2259.

    [17]ZHANG Hui,F(xiàn)AN Bao-chun,CHEN Zhi-hua.Optimal control of cylinder wake by electromagnetic force based on the adjoint flow field[J].European Journal of Mechanics B/Fluids,2010,29(1),53-60.

    [18]ZHANG Hui,F(xiàn)AN Bao-chun,CHEN Zhi-hua,et al.Effect of the Lorentz force on cylinder drag reduction and its optimal location[J].Fluid Dynamics Research,2011,43(1):015506.

    [19]Fey U,Konig M,Eckelmann H.A new Strouhal-Reynolds-number relationship for circular cylinder in the range47< Re <2 ×105[J].Phys Fluids,1998,10:1547-1549.

    [20]Mittal S,Kumar B.Flow past a rotating cylinder[J].Journal of Fluid Mechanics,2003,476:303-334.

    猜你喜歡
    張輝
    讓學(xué)生的科學(xué)素養(yǎng)在學(xué)科的交叉滲透教學(xué)中得到提高
    張輝名師工作室
    Estimation of biophysical properties of cell exposed to electric field
    張輝作品選
    張輝
    Lamb waves topological imaging combining with Green's function retrieval theory to detect near filed defects in isotropic plates?
    張輝
    張輝版畫(huà)作品
    吃醋
    金山(2016年9期)2016-10-12 14:14:48
    實(shí)對(duì)稱(chēng)矩陣正交相似對(duì)角化的探討
    成人亚洲精品av一区二区| 悠悠久久av| 免费在线观看成人毛片| 亚洲欧美清纯卡通| 校园人妻丝袜中文字幕| 亚洲熟妇熟女久久| 国产亚洲av嫩草精品影院| 五月伊人婷婷丁香| 日本a在线网址| 欧美日韩乱码在线| 一夜夜www| 一个人观看的视频www高清免费观看| 亚洲高清免费不卡视频| 最近在线观看免费完整版| 午夜久久久久精精品| 99久久九九国产精品国产免费| 国产高潮美女av| 精品乱码久久久久久99久播| 国产成人影院久久av| 嫩草影院入口| 亚洲久久久久久中文字幕| 日本熟妇午夜| 91av网一区二区| 美女xxoo啪啪120秒动态图| 简卡轻食公司| 赤兔流量卡办理| 悠悠久久av| 波多野结衣高清作品| 男插女下体视频免费在线播放| 亚洲欧美精品综合久久99| 国产精品不卡视频一区二区| 婷婷精品国产亚洲av在线| 国产一区二区在线av高清观看| 性色avwww在线观看| 亚洲美女搞黄在线观看 | 久久久久久国产a免费观看| 午夜免费激情av| 国内久久婷婷六月综合欲色啪| 两性午夜刺激爽爽歪歪视频在线观看| 村上凉子中文字幕在线| а√天堂www在线а√下载| 日本黄色片子视频| 久久久久国产网址| 日本 av在线| 免费人成视频x8x8入口观看| 国产av一区在线观看免费| 国产黄片美女视频| 亚洲欧美成人综合另类久久久 | 长腿黑丝高跟| 国产片特级美女逼逼视频| 精品久久久噜噜| 亚洲中文字幕日韩| 波多野结衣高清作品| 亚洲欧美日韩高清专用| 亚洲欧美日韩高清在线视频| 国产乱人视频| 亚洲国产欧美人成| 美女高潮的动态| 91在线观看av| av天堂在线播放| 亚洲无线在线观看| 国内久久婷婷六月综合欲色啪| 亚洲av中文字字幕乱码综合| 日产精品乱码卡一卡2卡三| a级毛片免费高清观看在线播放| 99久久精品国产国产毛片| 亚洲在线自拍视频| 男人舔奶头视频| 欧美性猛交黑人性爽| 欧美xxxx性猛交bbbb| 小蜜桃在线观看免费完整版高清| 亚洲精品在线观看二区| 最近中文字幕高清免费大全6| 久久精品国产亚洲网站| 亚洲国产精品合色在线| 日韩制服骚丝袜av| 最近手机中文字幕大全| 午夜免费男女啪啪视频观看 | 国产成人aa在线观看| 成人一区二区视频在线观看| 自拍偷自拍亚洲精品老妇| 最近视频中文字幕2019在线8| 国产淫片久久久久久久久| 青春草视频在线免费观看| 成人av一区二区三区在线看| 18禁在线播放成人免费| 九九爱精品视频在线观看| 波野结衣二区三区在线| 丰满人妻一区二区三区视频av| 午夜福利在线观看吧| 日韩欧美国产在线观看| 天天一区二区日本电影三级| 国产私拍福利视频在线观看| 一进一出抽搐动态| 国产伦一二天堂av在线观看| 亚洲精品日韩av片在线观看| 亚洲精品国产av成人精品 | 国产一区二区激情短视频| 亚洲欧美中文字幕日韩二区| 特级一级黄色大片| 我的女老师完整版在线观看| 好男人在线观看高清免费视频| 99热这里只有是精品50| 国产精品福利在线免费观看| 免费搜索国产男女视频| 精品欧美国产一区二区三| 中文字幕精品亚洲无线码一区| 女人被狂操c到高潮| 精品久久久久久久久久久久久| 亚洲三级黄色毛片| 国产成人一区二区在线| 国产极品精品免费视频能看的| 蜜臀久久99精品久久宅男| 丰满的人妻完整版| 淫秽高清视频在线观看| 国产精品嫩草影院av在线观看| 国产精品一二三区在线看| 日韩大尺度精品在线看网址| 亚洲av五月六月丁香网| 一进一出抽搐gif免费好疼| 久久精品久久久久久噜噜老黄 | 亚洲成人中文字幕在线播放| 午夜老司机福利剧场| 成人美女网站在线观看视频| av在线观看视频网站免费| 91在线精品国自产拍蜜月| 国产av一区在线观看免费| 国产一级毛片七仙女欲春2| 亚洲国产欧美人成| 亚洲不卡免费看| 熟女电影av网| 国产精品精品国产色婷婷| 老司机午夜福利在线观看视频| 在线国产一区二区在线| 色在线成人网| 最近手机中文字幕大全| 亚洲性久久影院| 欧美日韩精品成人综合77777| 两个人视频免费观看高清| 乱码一卡2卡4卡精品| 国产精品综合久久久久久久免费| 亚洲性夜色夜夜综合| 成年女人毛片免费观看观看9| 日韩,欧美,国产一区二区三区 | 蜜臀久久99精品久久宅男| 校园人妻丝袜中文字幕| 成人综合一区亚洲| 久久精品久久久久久噜噜老黄 | 国产精品爽爽va在线观看网站| 国产中年淑女户外野战色| 欧美人与善性xxx| 99久久精品热视频| 男人和女人高潮做爰伦理| 亚洲人成网站在线观看播放| 精华霜和精华液先用哪个| 日韩高清综合在线| 91在线观看av| 亚州av有码| 麻豆精品久久久久久蜜桃| 成年版毛片免费区| 有码 亚洲区| 啦啦啦啦在线视频资源| 熟女电影av网| 欧美日韩乱码在线| 99精品在免费线老司机午夜| 少妇被粗大猛烈的视频| 久99久视频精品免费| 亚洲,欧美,日韩| 免费av毛片视频| 久99久视频精品免费| 久久精品国产亚洲av涩爱 | 一个人观看的视频www高清免费观看| 精品久久久久久久久久久久久| 国产一级毛片七仙女欲春2| 黄色视频,在线免费观看| 特大巨黑吊av在线直播| 我的老师免费观看完整版| 国产精品女同一区二区软件| 日本一本二区三区精品| 少妇丰满av| 精品一区二区三区视频在线| 黄色日韩在线| 偷拍熟女少妇极品色| 欧美国产日韩亚洲一区| 自拍偷自拍亚洲精品老妇| 国模一区二区三区四区视频| 久久久久久久久久成人| 国产成年人精品一区二区| 99热这里只有是精品在线观看| 看免费成人av毛片| 九九热线精品视视频播放| 成人亚洲精品av一区二区| 三级国产精品欧美在线观看| 欧美成人a在线观看| 天堂av国产一区二区熟女人妻| 亚洲乱码一区二区免费版| av免费在线看不卡| 国产精品一区www在线观看| 国产伦一二天堂av在线观看| 国产国拍精品亚洲av在线观看| 国产麻豆成人av免费视频| 久久久久国产精品人妻aⅴ院| 日日撸夜夜添| 精品日产1卡2卡| 国产午夜福利久久久久久| 少妇裸体淫交视频免费看高清| 午夜精品国产一区二区电影 | 亚洲av中文av极速乱| 综合色丁香网| 可以在线观看毛片的网站| 搡老岳熟女国产| 亚洲最大成人手机在线| 日韩精品中文字幕看吧| 欧美性猛交╳xxx乱大交人| 在线播放国产精品三级| 日韩中字成人| 国产日本99.免费观看| 一级黄色大片毛片| 国产黄色小视频在线观看| 99热这里只有是精品50| 国产蜜桃级精品一区二区三区| 男女视频在线观看网站免费| 午夜视频国产福利| 日韩欧美三级三区| 女的被弄到高潮叫床怎么办| 国产精品久久久久久亚洲av鲁大| 国产精华一区二区三区| 老熟妇乱子伦视频在线观看| 最近视频中文字幕2019在线8| 国产久久久一区二区三区| 大型黄色视频在线免费观看| 一边摸一边抽搐一进一小说| 国产成人freesex在线 | 内射极品少妇av片p| 日本精品一区二区三区蜜桃| 内地一区二区视频在线| 亚洲自拍偷在线| 亚洲最大成人手机在线| 欧美激情久久久久久爽电影| 欧美性感艳星| 日日摸夜夜添夜夜添小说| 一区福利在线观看| 国产真实乱freesex| .国产精品久久| 美女xxoo啪啪120秒动态图| 午夜精品一区二区三区免费看| 一区二区三区高清视频在线| 亚洲精品粉嫩美女一区| 亚洲欧美清纯卡通| 在线播放国产精品三级| 伦理电影大哥的女人| 久久亚洲精品不卡| 免费在线观看成人毛片| 在线观看av片永久免费下载| 99riav亚洲国产免费| 成人永久免费在线观看视频| 日韩强制内射视频| 日韩一区二区视频免费看| 国产蜜桃级精品一区二区三区| 亚洲人与动物交配视频| 免费在线观看影片大全网站| 最近手机中文字幕大全| 国产毛片a区久久久久| 成人特级av手机在线观看| 天堂影院成人在线观看| 亚洲欧美日韩无卡精品| 一级黄片播放器| 中文亚洲av片在线观看爽| 嫩草影院新地址| 看片在线看免费视频| 一进一出好大好爽视频| 蜜桃久久精品国产亚洲av| 日本五十路高清| 久久久色成人| 国产精品久久久久久久电影| 欧美成人一区二区免费高清观看| 特级一级黄色大片| 丰满乱子伦码专区| 国产色婷婷99| 亚州av有码| 欧美高清性xxxxhd video| 日日啪夜夜撸| 一进一出抽搐动态| 国产精品综合久久久久久久免费| 亚洲欧美清纯卡通| 熟女电影av网| 高清毛片免费观看视频网站| 日本成人三级电影网站| 夜夜爽天天搞| 免费无遮挡裸体视频| 日韩欧美免费精品| 久久久久免费精品人妻一区二区| 亚洲精品粉嫩美女一区| 联通29元200g的流量卡| 国产一区亚洲一区在线观看| 男女那种视频在线观看| 亚洲av.av天堂| 亚洲av电影不卡..在线观看| 97人妻精品一区二区三区麻豆| 国产真实乱freesex| 日本黄色视频三级网站网址| 欧美xxxx黑人xx丫x性爽| 欧美+日韩+精品| 欧美性猛交黑人性爽| 亚洲欧美日韩高清在线视频| 亚洲国产欧洲综合997久久,| 天堂网av新在线| 国产精品一及| 中文在线观看免费www的网站| 国产一区二区三区av在线 | 天堂网av新在线| 色综合亚洲欧美另类图片| 老司机福利观看| 村上凉子中文字幕在线| 久久久国产成人精品二区| 日韩一本色道免费dvd| 在现免费观看毛片| 亚洲成人久久性| 禁无遮挡网站| 女同久久另类99精品国产91| 国产精品久久视频播放| 国产高清不卡午夜福利| 中国美女看黄片| 欧美不卡视频在线免费观看| 亚洲av熟女| 两性午夜刺激爽爽歪歪视频在线观看| 成人漫画全彩无遮挡| 可以在线观看毛片的网站| 国产精品人妻久久久影院| 又爽又黄a免费视频| 日本 av在线| 成熟少妇高潮喷水视频| 日本 av在线| 欧美极品一区二区三区四区| 少妇被粗大猛烈的视频| 亚洲人成网站在线播| 美女免费视频网站| 精品99又大又爽又粗少妇毛片| 日产精品乱码卡一卡2卡三| 国产黄色视频一区二区在线观看 | 国产精品一区二区三区四区免费观看 | 熟女人妻精品中文字幕| 在线观看av片永久免费下载| 久久精品夜色国产| 亚洲真实伦在线观看| 久久人人爽人人片av| 嫩草影视91久久| 麻豆国产av国片精品| 国产一级毛片七仙女欲春2| 国产精华一区二区三区| 亚洲一区二区三区色噜噜| 日本一二三区视频观看| 日本黄大片高清| 亚洲四区av| 国产亚洲精品久久久久久毛片| 欧美激情在线99| 国产毛片a区久久久久| 成人午夜高清在线视频| 亚洲av二区三区四区| 免费人成视频x8x8入口观看| 黄色日韩在线| 午夜免费激情av| 亚洲中文字幕日韩| 最近在线观看免费完整版| 三级国产精品欧美在线观看| 可以在线观看的亚洲视频| 日韩欧美 国产精品| 少妇猛男粗大的猛烈进出视频 | av在线蜜桃| 禁无遮挡网站| 悠悠久久av| 男插女下体视频免费在线播放| 国产黄片美女视频| 久久久久九九精品影院| 身体一侧抽搐| 狂野欧美白嫩少妇大欣赏| 日韩一本色道免费dvd| 最近的中文字幕免费完整| 男女啪啪激烈高潮av片| 亚洲成a人片在线一区二区| av天堂在线播放| 色视频www国产| 最好的美女福利视频网| 如何舔出高潮| 搡女人真爽免费视频火全软件 | 亚洲真实伦在线观看| a级毛色黄片| 亚洲自拍偷在线| 男人狂女人下面高潮的视频| 久久亚洲精品不卡| 国产色爽女视频免费观看| 国产精品国产三级国产av玫瑰| 亚洲图色成人| 久久久久久久久久黄片| 亚洲丝袜综合中文字幕| 欧美性猛交╳xxx乱大交人| 伦精品一区二区三区| 日本a在线网址| 少妇高潮的动态图| 国产精品久久视频播放| 午夜福利在线观看免费完整高清在 | 国产淫片久久久久久久久| 国产精品综合久久久久久久免费| 熟女人妻精品中文字幕| 欧美日本亚洲视频在线播放| 人妻久久中文字幕网| 少妇丰满av| 在线播放国产精品三级| 国产亚洲91精品色在线| 国产精品人妻久久久久久| 偷拍熟女少妇极品色| 两性午夜刺激爽爽歪歪视频在线观看| av视频在线观看入口| 国语自产精品视频在线第100页| 免费人成视频x8x8入口观看| 国产亚洲精品久久久久久毛片| 一级毛片我不卡| 亚洲电影在线观看av| 欧美色视频一区免费| 国产女主播在线喷水免费视频网站 | 黄色配什么色好看| 久久6这里有精品| 又黄又爽又免费观看的视频| 午夜老司机福利剧场| 身体一侧抽搐| a级毛色黄片| 18禁黄网站禁片免费观看直播| 精品一区二区三区视频在线| 小说图片视频综合网站| 午夜亚洲福利在线播放| 日本一本二区三区精品| 久久精品国产亚洲av香蕉五月| 亚洲四区av| h日本视频在线播放| 校园人妻丝袜中文字幕| 亚洲人成网站在线观看播放| 亚州av有码| 99久久成人亚洲精品观看| 亚洲精品成人久久久久久| 麻豆乱淫一区二区| 免费在线观看影片大全网站| 中国美女看黄片| 亚洲av五月六月丁香网| 男女之事视频高清在线观看| 日韩在线高清观看一区二区三区| 在线免费观看的www视频| 精品久久久久久成人av| 色在线成人网| 在线看三级毛片| 日韩人妻高清精品专区| 日本免费a在线| 人人妻人人看人人澡| 日本爱情动作片www.在线观看 | 精品久久久久久久末码| 免费在线观看影片大全网站| 夜夜夜夜夜久久久久| 色噜噜av男人的天堂激情| 久久精品国产鲁丝片午夜精品| 久久婷婷人人爽人人干人人爱| 亚洲精品乱码久久久v下载方式| 国产伦精品一区二区三区视频9| 级片在线观看| 久久久久久国产a免费观看| 国产精品99久久久久久久久| 中国美女看黄片| 亚洲成人久久性| 色视频www国产| 国产伦精品一区二区三区视频9| 老女人水多毛片| 床上黄色一级片| 亚洲,欧美,日韩| 久久午夜福利片| 两个人的视频大全免费| 麻豆av噜噜一区二区三区| 国产一区二区在线观看日韩| 男女那种视频在线观看| 听说在线观看完整版免费高清| 91狼人影院| 一区二区三区免费毛片| 日韩一本色道免费dvd| 极品教师在线视频| 国产成年人精品一区二区| 日韩在线高清观看一区二区三区| а√天堂www在线а√下载| 国产精品亚洲一级av第二区| 国产精品美女特级片免费视频播放器| 亚洲成人精品中文字幕电影| 乱码一卡2卡4卡精品| 久久久精品94久久精品| 国产精品一区二区三区四区免费观看 | 97超碰精品成人国产| 欧美zozozo另类| 亚洲中文字幕一区二区三区有码在线看| 好男人在线观看高清免费视频| 久久精品人妻少妇| 内地一区二区视频在线| 女生性感内裤真人,穿戴方法视频| 国产亚洲精品综合一区在线观看| 日日干狠狠操夜夜爽| 亚洲国产高清在线一区二区三| 国产精品一区www在线观看| 日本色播在线视频| 国产aⅴ精品一区二区三区波| 国产精品一区二区三区四区久久| 小蜜桃在线观看免费完整版高清| 校园人妻丝袜中文字幕| 国产极品精品免费视频能看的| 日韩 亚洲 欧美在线| 黄片wwwwww| 黄色欧美视频在线观看| 亚洲av一区综合| 熟女电影av网| 麻豆av噜噜一区二区三区| 高清日韩中文字幕在线| 亚洲成av人片在线播放无| 一区二区三区免费毛片| 日日啪夜夜撸| 日韩欧美国产在线观看| 中国国产av一级| .国产精品久久| 最近的中文字幕免费完整| 久久精品夜夜夜夜夜久久蜜豆| 久久人妻av系列| 99九九线精品视频在线观看视频| 99久久九九国产精品国产免费| 美女cb高潮喷水在线观看| 日产精品乱码卡一卡2卡三| av黄色大香蕉| 亚洲性夜色夜夜综合| 一级黄色大片毛片| 麻豆精品久久久久久蜜桃| 香蕉av资源在线| 久久亚洲国产成人精品v| 一边摸一边抽搐一进一小说| av天堂在线播放| 天堂影院成人在线观看| 美女xxoo啪啪120秒动态图| 国产精品久久久久久久电影| 女人被狂操c到高潮| 五月玫瑰六月丁香| 国内精品一区二区在线观看| 能在线免费观看的黄片| 亚洲精品日韩av片在线观看| 联通29元200g的流量卡| 卡戴珊不雅视频在线播放| 天天躁夜夜躁狠狠久久av| 高清毛片免费看| 91久久精品国产一区二区三区| 99久久九九国产精品国产免费| 一本一本综合久久| eeuss影院久久| 成人欧美大片| 国产精品久久视频播放| 人人妻,人人澡人人爽秒播| 国产大屁股一区二区在线视频| 日韩强制内射视频| 高清午夜精品一区二区三区 | 国产午夜精品论理片| 高清毛片免费观看视频网站| 国产 一区精品| 国产色婷婷99| 一个人观看的视频www高清免费观看| 国产精品一区二区性色av| 特大巨黑吊av在线直播| 久久久久久国产a免费观看| 变态另类成人亚洲欧美熟女| 麻豆乱淫一区二区| h日本视频在线播放| 最近的中文字幕免费完整| 99热网站在线观看| 成人永久免费在线观看视频| 久久午夜亚洲精品久久| 国产不卡一卡二| 日日摸夜夜添夜夜添小说| 中国美女看黄片| 久久人人精品亚洲av| 人妻丰满熟妇av一区二区三区| 一夜夜www| 一区二区三区高清视频在线| 色尼玛亚洲综合影院| 欧美性猛交╳xxx乱大交人| 国产极品精品免费视频能看的| 性欧美人与动物交配| 亚洲av成人av| h日本视频在线播放| 99热这里只有是精品在线观看| 久久精品国产清高在天天线| 国产精品99久久久久久久久| 成人av在线播放网站| 色综合亚洲欧美另类图片| 欧美人与善性xxx| 成人性生交大片免费视频hd| 日韩欧美一区二区三区在线观看| 在线国产一区二区在线| 春色校园在线视频观看| 少妇被粗大猛烈的视频| 免费av观看视频| 国产亚洲精品久久久com| 一a级毛片在线观看| 日韩在线高清观看一区二区三区| 性色avwww在线观看| 亚洲成人中文字幕在线播放| 成人精品一区二区免费| 99riav亚洲国产免费| 五月伊人婷婷丁香| 日韩欧美在线乱码| 午夜精品在线福利| 久久精品久久久久久噜噜老黄 | 亚洲av成人精品一区久久| 91久久精品国产一区二区成人| 午夜福利高清视频| 国产 一区 欧美 日韩| 亚洲aⅴ乱码一区二区在线播放| 国产精品综合久久久久久久免费| 国产91av在线免费观看|