• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Lift Enhancement and Oscillatory Suppression of Vortex-induced Vibration in Shear Flow by Loentz Force

    2012-07-25 06:20:54ZHANGHui張輝FANBaochun范寶春LIHongzhi李鴻志
    Defence Technology 2012年3期
    關(guān)鍵詞:張輝

    ZHANG Hui(張輝),F(xiàn)AN Bao-chun(范寶春),LI Hong-zhi(李鴻志)

    (Science and Technology on Transient Physics Laboratory,Nanjing University of Science and Technology,Nanjing 210094,Jiangsu,China)

    Introduction

    The fluid-structure interaction occurring in the motion of ordnance gives rise to the complicated vibration of structure,and even causes the structural damage.In addition,a negative lift force generated in shear flow,similar to the stall phenomenon encountered in airfoils at high attack angle,is also undesired generally from the practical point of view.Therefore,the investigation on the control of vortex-induced vibration(VIV)phenomenon in shear flow is necessary due to the practical and theoretical importance.

    VIV phenomenon of a circular cylinder in shear flow is one of the most basic and revealing problems.Much experimental work has been done to the flow over elastic structure.Griffin[1]has compiled many experiment results to demonstrate the relationship between the cross-flow vibration amplitude and the mass-damping product.Gharib[2],Khala and Williamson[3]exhibited the examples of significant flow-induced vibrations without lock-in.On the other hand,a classic lock-in was observed in the experiments[4-5].Techet and Triantafyllou[6]showed that the free-vibration tests of a uniform cylinder with low equivalent structural damping yield the amplitude response curve as a function of the nominal reduced velocity which is in agreement with previous results[7].

    Numerical work has been also done.With the use of a spectral element spatial discretization,Blackburn and Henderson[8]investigated the vortex-induced vibration problem by solving the two-dimensional Navier-Stokes equations in an accelerating frame of reference attached to the cylinder for the Reynolds number valueRe=250.Zhou,So and Lam[9]studied a two-dimensional flow passed through an elastic circular cylinder using the VIC(vortex-in-cell) discrete vortex method to investigate the responses of the cylinder,the induced forces on the cylinder and the vortex structure in the wake.Anagnostopoulos[10]discussed the relationship between the oscillation frequency of cylinder and the natural shedding frequency.The variations of flow field and hydrodynamic force under the different conditions are also discussed.

    The control of the blunt-body wake by means of Lorentz force is considered as one of the most practical methods developed,in which the Lorentz force is generated by the electro-magnetic actuators[11-14].The electro-magnetic wake control of a fixed or VIV cylinder in uniform flow has been performed experimentally and numerically in our research group,in which the closed-loop control and optimal control methods were developed to improve its control efficiency[15-17].However,no work has been done for the Lorentz force control of VIV in shear flow.

    In this paper,the Lorentz force control of VIV in shear flow is investigated numerically for lift enhancement and oscillatory suppression.The problems discussed are described by the stream function-vorticity equations in coordinates attached on the moving cylinder,coupled with the cylinder motion equation.The hydrodynamic forces on the cylinder surface are directly derived mathematically from the governing equations.In order to show our understanding of the fluidstructure interaction of VIV in the shear flow,the effects of the instantaneous wake geometries and the corresponding cylinder motion on the pressure forces distributed on the cylinder surface are described in one entire period of vortex shed.Moreover,the mechanism of the vibration cylinder control and the increase in lift by Lorentz force in the shear flow are examined,where the Lorentz force is classified into the field Lorentz force and the wall Lorentz force[18].

    1 Governing Equations

    1.1 Stream Function-Vorticity Equations

    The sketch of shear flow with a linear velocity profileU=U∞+Gyover a cylinder in two-dimensional approach is shown in Fig.1,whereu∞is the freestream velocity at the center-lineθ=0,yis the coordinate in the lateral direction withy=0 at the center of cylinder,andGis the lateral velocity gradient.

    Fig.1 Sketch of shear flow over circular cylinder

    The shear rateKis defined asK=2Ga/U∞,ais the cylinder radius.Only the case of a positive shear rate(K>0)is discussed in the paper,which implies that the flow velocity on the upper side is faster than that on the lower side.

    The coordinates are attached on the moving cylinder,then the stream function-vorticity equations in the exponential-polar coordinates system(ξ,η),r=e2πξ,θ=2πη,for the incompressible electrically conducting fluid becomes

    The Lorentz forceFis defined as[11-12]

    where the valueαdescribes the electromagnetic penetration into the fluid.

    1.2 Initial and Boundary Conditions

    The flow is considered to be inviscid initially.If the cylinder is constrained to move only in cross flow direction,the initial flow field in the moving frame of reference can be described by

    and

    Att> 0,in the far fieldξ→∞,regarded as an inviscid flow,e2πξ→2sh(2πξ),then we have

    which are dependent on the shear rateKand the cylinder vibration,and

    On the cylinder surfaceξ=0,the no-slip boundary condition is used instead of the slip boundary condition,then

    1.3 Cylinder Response

    The effective mass including the cylinder mass plus the added mass due to the acceleration of the cylinder in the moving frame of reference should be considered,and thus the cylinder motion is governed by the equation

    1.4 Hydrodynamic Force

    The Lorentz force is divided into the field Lorentz forceFθ|ξ>0and the wall Lorentz forceFθ|ξ=0.The field Lorentz force affects the flow field in the boundary layer and in turn changes the hydrodynamic force on the cylinder surface.Whereas,the wall Lorentz force does not have any relationships with the flow field in spite of the increase in pressure due to its action on the cylinder surface.Hence pressureconsists ofinduced by the field Lorentz force,induced by the wall Lorentz force andinduced by the inertial force.

    where

    The calculation has been performed numerically.The equation of vorticity transport is solved by using the alternative-direction implicit(ADI)algorithm,and the equation of stream function is integrated by means of a fast fourier transform(FFT)algorithm.The cylinder motion is calculated by solving Eq.(10)using the Runge-Kutta method.The numerical results in the paper were obtained forRe=150 with the computational step size Δξ=0.004,Δη=0.002 and Δt=0.005.More details about the numerical method,grid consistency and validation of the code can be found in Ref.[15-18].

    2 Results and Discussions

    2.1 VIV of Circular Cylinder in Shear Flow

    A sequence of calculated VIV cylinder wake forK=0.2 in a shedding cycle are exhibited by the shaded vorticity contours in Fig.2,where the upper side refers to the negative vortex,and lower side to positive.The cross-hairs mark the equilibrium cylinder position.Since the vortex is shed at a different positions related to the cylinder,the vortex street formed is composed of two parallel rows with an opposite sign of the vortices.The vortex street inclines toward the lower side and the strength of upper vortex is larger than that of lower vortex due to the background vorticity.

    In order to further understand the effect of the flow pattern over the cylinder on the hydrodynamic force,it is essential to know exactly the pressure distribution on the cylinder surface since the pressure is an order of magnitude larger than the shear stress[19-20].The distribution of pressure coefficient on the cylinder surface at different typical timesA-Dare shown in Fig.3,which is composed ofandbased on Eq.(11)whereis generated by the flow field,andis related with the inertial force.The cylinder displacement will strengthen the shear layer on the side where the fluid is pushed by the cylinder and weaken the shear layer on the other side.Hence the pressure on the strengthened side decreases,whereas the pressure on the weakened side increases.Subsequently,the lift directing to the strengthened side is generated,which is in contrast with that due to the effect of the vortex shedding.With the background vorticity,the shift of the stagnation point causes the shift of the positive pressure area to the same side,and the maximum vibrating amplitude of cylinder at timeBis larger than that at the timeD.

    Fig.2 A sequence of snapshots of vortex-induced vibration at typical times for K=0.2

    Fig.3 Distribution of pressure coefficientalong the surface of the vibrating cylinder at the typical times for K=0.2

    The inertial force due to the acceleration of the cylinder also affects the distribution of pressure on the vibrating cylinder,denoted as.Fig.4 shows thedistributions at different stages of one cycle.At the timesAandC,the accelerationis equal to zero,and then increases to reach the values at the timeBandDwhere the value at the timeBis larger than that at the timeD.It is obvious that the lift increases with the increase in the inertial force in the accelerating direction,whereas the drag is independent of the inertial force.

    Fig.4 Distribution of pressure coefficientalong the surface of the vibrating cylinder at the typical times for K=0.2

    The variation of lift force coefficientClwith timetwithout Lorentz force control att<650 is shown in Fig.5,which vibrates periodically with the effect of vortexes shedding and the mean value is negative due to the background vorticity.

    Fig.5 Variation of lift coefficient Cl with time t before and after asymmetric Lorentz force control for K=0.2

    2.2 Control of VIV in Shear Flow by Asymmetric Lorentz Force

    The vibration amplitude has a strong relationship with Lorentz force.The variation of amplitude of controlled VIV with the interaction parameterNforK=0.2 is shown in Fig.6.The limiting amplitude decreases with the increase inN,and the cylinder is fixed finally,ifNis large enough.

    Fig.6 Limiting amplitude of oscillating cylinder displacement after control versus the interaction parameter N for K=0.2

    With the application of Lorentz force(N=3 on the upper side andN=2 on the lower side)att=650,the vibration of lift is suppressed gradually and the value of lift tends to 0 att>650,as shown in Fig.5.Att=760,the lift is stable and the value is 0 which corresponding flow field is shown in Fig.7.

    Fig.7 Snapshot of vortex-induced vibration controlled with asymmetric Lorentz force(N=3 on the upper side and N=2 on the lower side)for K=0.2

    The distribution of pressure coefficientgenerated by wall Lorentz force is shown in Fig.8.The curve is positive and the pressure on the lower side is larger than that on the upper side with the application of asymmetric Lorentz force.Therefore,the lift is increased by wall Lorentz force.

    Fig.8 Distribution of pressure coefficientwith asymmetric Lorentz force control(N=3 on the upper side and N=2 on the lower side)for K=0.2

    Fig.9 Distribution of pressure coefficient with asymmetric Lorentz force control(N=3 on the upper side and N=2 on the lower side)for K=0.2

    The displacement time history of the vibrating cylinderwith the shear incoming flow before and after control of asymmetric Lorentz force(N=3 on the upper side andN=2 on the lower side)is shown in Fig.10.The vibration amplitude of the cylinder decreases considerably,and the displacement tends to 0 gradually.Att=760,the displacement is stable.

    3 Conclusions

    The electro-magnetic control of vortex-induced vibration of a circular cylinder in shear flow has been investigated numerically.To solve the coupled system,the coordinates are attached on the moving cylinder.

    Fig.10 Displacement of VIV cylinder before and after control(N=3 on the upper side and N=2 on the lower side)for K=0.2

    The initial and boundary conditions and the pressure distribution are deduced on the exponential-polar coordinates system.The conclusions drawn are summarized below.

    1)For VIV cylinder in shear flow,the vortex street is composed of two parallel rows with an opposite sign of the vortices which inclines toward the lower side and the strength of upper vortex is larger than that of lower vortex.The lift force vibrates periodically with the effect of vortexes shedding and the mean value is negative due to the background vorticity.

    2)The Lorentz force for controlling the VIV cylinder is classified into the field Lorentz force and the wall Lorentz force.The field Lorentz force can be applied to suppress the oscillation of lift,and in turn to suppress VIV.Moreover,the asymmetric wall Lorentz forces can be applied to increase the lift.Therefore,the lift amplification and oscillatory suppression can be obtained by suitable asymmetric Lorentz forces.

    [1]Griffin J H.The mechanics of the formation region of vortices behind bluff bodies[J].Journal of Fluid Mechanics,1966,25:401 -413.

    [2]Gharib M R.Vortex-induced vibration absence of lock-in and fluid force deduction[D].Pasadena,CA:California Institute of Technology,1999.

    [3]Khalak A,Williamson C H K.Fluid forces and dynamics of a hydroelastic structure with very low mass and damping[J].Journal of Fluids Structure,1997,11:973 -982.

    [4]Brika D,Laneville A.Vortex-induced vibration of a long flexible circular cylinder[J].Journalof Fluid Mechanics,1993,250:481-508.

    [5]Hover F S,Miller S N,Triantafyllou M S.Vortex-induced vibration of marine cables:experiments using force feedback[J].Journal of Fluids Structure,1997,11:307-326.

    [6]Techet A H,Triantafyllou M S.The evolution of a‘Hybrid’shedding mode[C]//Proceedings of the 1998 ASME Fluids Engineering Division Summer Meeting,Washington DC:1998,21-23.

    [7]Williamson C H K,Roshko A.Vortex formation in the wake of an oscillating cylinder[J].Journal of Fluids Structure,1988,2:355-381.

    [8]Blackburn H,Henderson R.Lock-in behavior in simulated vortex-induced vibration[J].Experimental Thermal and Fluid Science,1996,12:184 -189.

    [9]Zhou C Y,So R M C,Lam K.Vortex-induced vibrations of an elastic circular cylinder[J].Journal of Fluid Structure,1999,13:165 -189.

    [10]Anagnostopoulos P.Numerical study of the flow past a cylinder excited transversely to the incident stream Part 2[J].Journal of Fluid Structure,2000,14:853-882.

    [11]Weier T,Gerbeth G,Mutschke G,et al.Experiments on cylinder wake stabilization in an electrolyte solution by means of electromagnetic forces localized on the cylinder surface[J].Experimental Thermal and Fluid Science,1998,16:84-91.

    [12]Posdziech O,Grundmann R.Electromagnetic control of seawater flow around circular cylinders[J].Eur J Mech B-Fluids,2001,20(2):255 -274.

    [13]Mutschke G,Gerbeth G,Albrecht T,et al.Separation control at hydrofoils using Lorentz forces[J].Eur J Mech B-Fluids,2006,25(2):137-152.

    [14]Braun E M,Lu F K,Wilson D R.Experimental research in aerodynamic control with electric and electromagnetic fields[J].Progress in Aerospace Sciences,2009,45(1):30-49.

    [15]ZHANG Hui,F(xiàn)AN Bao-chun,CHEN Zhi-hua.Computations of optimal cylinder flow control in weakly conductive fluids[J].Computers and Fluids,2010,39(8):1261 -1266.

    [16]ZHANG Hui,F(xiàn)AN Bao-chun,LI Hong-zhi.Suppression of vortex-induced vibration of a circular cylinder by Lorentz force[J].Science China Physics Mechanics and Astronomy,2011,54(12),2248-2259.

    [17]ZHANG Hui,F(xiàn)AN Bao-chun,CHEN Zhi-hua.Optimal control of cylinder wake by electromagnetic force based on the adjoint flow field[J].European Journal of Mechanics B/Fluids,2010,29(1),53-60.

    [18]ZHANG Hui,F(xiàn)AN Bao-chun,CHEN Zhi-hua,et al.Effect of the Lorentz force on cylinder drag reduction and its optimal location[J].Fluid Dynamics Research,2011,43(1):015506.

    [19]Fey U,Konig M,Eckelmann H.A new Strouhal-Reynolds-number relationship for circular cylinder in the range47< Re <2 ×105[J].Phys Fluids,1998,10:1547-1549.

    [20]Mittal S,Kumar B.Flow past a rotating cylinder[J].Journal of Fluid Mechanics,2003,476:303-334.

    猜你喜歡
    張輝
    讓學(xué)生的科學(xué)素養(yǎng)在學(xué)科的交叉滲透教學(xué)中得到提高
    張輝名師工作室
    Estimation of biophysical properties of cell exposed to electric field
    張輝作品選
    張輝
    Lamb waves topological imaging combining with Green's function retrieval theory to detect near filed defects in isotropic plates?
    張輝
    張輝版畫(huà)作品
    吃醋
    金山(2016年9期)2016-10-12 14:14:48
    實(shí)對(duì)稱(chēng)矩陣正交相似對(duì)角化的探討
    一级毛片aaaaaa免费看小| 丰满乱子伦码专区| 亚洲精品国产av成人精品 | 91在线观看av| 亚洲一区二区三区色噜噜| 亚洲精品成人久久久久久| 天堂√8在线中文| 日韩欧美免费精品| 国产亚洲欧美98| 在线播放国产精品三级| 狂野欧美白嫩少妇大欣赏| 1000部很黄的大片| 99视频精品全部免费 在线| 国产亚洲精品综合一区在线观看| 亚洲精华国产精华液的使用体验 | 一级黄片播放器| 韩国av在线不卡| 少妇熟女欧美另类| 精品无人区乱码1区二区| aaaaa片日本免费| 久久精品国产亚洲网站| 99在线视频只有这里精品首页| 干丝袜人妻中文字幕| 国产精品一区www在线观看| 亚洲欧美日韩高清专用| 99热全是精品| 国产v大片淫在线免费观看| 97超级碰碰碰精品色视频在线观看| 免费在线观看成人毛片| 中文字幕久久专区| 国产免费一级a男人的天堂| eeuss影院久久| a级毛片a级免费在线| videossex国产| 极品教师在线视频| 精品少妇黑人巨大在线播放 | 国产高清不卡午夜福利| 亚洲欧美成人综合另类久久久 | 九色成人免费人妻av| 亚洲va在线va天堂va国产| 亚洲欧美清纯卡通| 国产黄色小视频在线观看| 国产精品亚洲一级av第二区| 国产精品福利在线免费观看| 国产欧美日韩精品亚洲av| 亚洲七黄色美女视频| 国模一区二区三区四区视频| 久久精品国产99精品国产亚洲性色| 女人被狂操c到高潮| 别揉我奶头 嗯啊视频| 看片在线看免费视频| 变态另类成人亚洲欧美熟女| 不卡一级毛片| 欧美日韩精品成人综合77777| 变态另类丝袜制服| 综合色丁香网| 日韩av在线大香蕉| 麻豆成人午夜福利视频| 亚洲一区高清亚洲精品| 又爽又黄a免费视频| 在线国产一区二区在线| 国产极品精品免费视频能看的| 欧美日韩在线观看h| 亚洲国产欧洲综合997久久,| 国产精品精品国产色婷婷| 深爱激情五月婷婷| 精品久久久久久久末码| 亚洲精品久久国产高清桃花| 国内精品宾馆在线| 亚洲中文日韩欧美视频| 久久久久久九九精品二区国产| 日韩三级伦理在线观看| 日韩高清综合在线| 淫妇啪啪啪对白视频| av天堂中文字幕网| 亚洲国产欧洲综合997久久,| 国内精品宾馆在线| 亚洲中文日韩欧美视频| 精品人妻视频免费看| 欧美一区二区亚洲| 国产精品久久电影中文字幕| 熟女电影av网| 国产精品爽爽va在线观看网站| 少妇人妻精品综合一区二区 | 国产综合懂色| 三级经典国产精品| 黑人高潮一二区| 99久久精品国产国产毛片| 日本在线视频免费播放| 不卡一级毛片| 乱人视频在线观看| 亚洲人成网站在线播| 国产白丝娇喘喷水9色精品| 国产精品av视频在线免费观看| 亚洲精品影视一区二区三区av| 国产熟女欧美一区二区| 欧美bdsm另类| 亚洲五月天丁香| 亚洲美女搞黄在线观看 | 性色avwww在线观看| 亚洲不卡免费看| 在线观看66精品国产| av免费在线看不卡| 在线免费十八禁| a级一级毛片免费在线观看| 日日啪夜夜撸| 69av精品久久久久久| 亚洲人成网站在线播| 国产精品一区二区三区四区免费观看 | 男女下面进入的视频免费午夜| 欧美zozozo另类| 亚洲av电影不卡..在线观看| 婷婷精品国产亚洲av| www.色视频.com| 亚洲欧美清纯卡通| 国产精品野战在线观看| 欧美日韩在线观看h| 69av精品久久久久久| 欧美成人精品欧美一级黄| 色综合色国产| 五月伊人婷婷丁香| 观看美女的网站| 亚州av有码| 国产又黄又爽又无遮挡在线| 亚洲不卡免费看| 99久国产av精品| 一本精品99久久精品77| 又黄又爽又刺激的免费视频.| 亚洲丝袜综合中文字幕| 成人永久免费在线观看视频| 久久久久国产精品人妻aⅴ院| 国产视频一区二区在线看| 此物有八面人人有两片| 国产男靠女视频免费网站| avwww免费| 国产伦精品一区二区三区视频9| 亚洲自偷自拍三级| 亚洲精品国产av成人精品 | av国产免费在线观看| 69人妻影院| 晚上一个人看的免费电影| 亚洲av五月六月丁香网| 亚州av有码| 国产人妻一区二区三区在| 免费一级毛片在线播放高清视频| 午夜影院日韩av| 亚洲七黄色美女视频| 亚洲美女搞黄在线观看 | 卡戴珊不雅视频在线播放| 久久精品国产亚洲av天美| 变态另类成人亚洲欧美熟女| 欧美精品国产亚洲| aaaaa片日本免费| 国产精品不卡视频一区二区| 黄片wwwwww| 欧美激情在线99| 成年av动漫网址| 伦理电影大哥的女人| 国产高清激情床上av| 国产成人影院久久av| 国产综合懂色| 久久久久久九九精品二区国产| 欧美性猛交黑人性爽| 非洲黑人性xxxx精品又粗又长| 国产精品不卡视频一区二区| 久久婷婷人人爽人人干人人爱| 午夜福利视频1000在线观看| 国产成人a区在线观看| 欧美日韩一区二区视频在线观看视频在线 | 我的老师免费观看完整版| 日韩强制内射视频| 午夜久久久久精精品| 亚洲中文字幕日韩| 久久精品综合一区二区三区| 麻豆精品久久久久久蜜桃| 伦理电影大哥的女人| 国产av不卡久久| 非洲黑人性xxxx精品又粗又长| 看免费成人av毛片| 国产精品日韩av在线免费观看| 日本黄色片子视频| 亚洲一区二区三区色噜噜| 最近视频中文字幕2019在线8| 欧美高清性xxxxhd video| 寂寞人妻少妇视频99o| 偷拍熟女少妇极品色| 亚洲天堂国产精品一区在线| 亚洲国产精品sss在线观看| 午夜免费激情av| 欧美高清成人免费视频www| 久久精品久久久久久噜噜老黄 | а√天堂www在线а√下载| 国产色爽女视频免费观看| 久久久午夜欧美精品| 久久韩国三级中文字幕| 国产亚洲精品综合一区在线观看| 亚洲自偷自拍三级| 女的被弄到高潮叫床怎么办| 我的老师免费观看完整版| 亚洲av第一区精品v没综合| 国产高清三级在线| 美女大奶头视频| 国产成人影院久久av| 久久亚洲国产成人精品v| 久久精品夜夜夜夜夜久久蜜豆| 国产片特级美女逼逼视频| 两性午夜刺激爽爽歪歪视频在线观看| 国产一区二区激情短视频| 亚洲欧美精品综合久久99| 身体一侧抽搐| videossex国产| 日韩一区二区视频免费看| 午夜福利高清视频| 少妇被粗大猛烈的视频| 欧美日韩国产亚洲二区| 亚洲一区二区三区色噜噜| 97超视频在线观看视频| 亚洲五月天丁香| 亚洲精品乱码久久久v下载方式| 午夜视频国产福利| 男女啪啪激烈高潮av片| 搡老妇女老女人老熟妇| 亚洲一区高清亚洲精品| 日本三级黄在线观看| 99riav亚洲国产免费| 久久草成人影院| 亚洲国产日韩欧美精品在线观看| 免费看a级黄色片| 国产欧美日韩精品亚洲av| 欧美成人a在线观看| 老师上课跳d突然被开到最大视频| 精品不卡国产一区二区三区| 亚洲电影在线观看av| 麻豆成人午夜福利视频| 亚洲天堂国产精品一区在线| 国产精品一区二区三区四区免费观看 | 亚洲内射少妇av| 性插视频无遮挡在线免费观看| 久久99热6这里只有精品| 欧美日韩国产亚洲二区| 高清日韩中文字幕在线| 人妻少妇偷人精品九色| 久久久久久久久久成人| 国产精品国产高清国产av| 午夜a级毛片| 少妇猛男粗大的猛烈进出视频 | 久久6这里有精品| 内地一区二区视频在线| 成年版毛片免费区| 少妇的逼好多水| 中文字幕精品亚洲无线码一区| 日日摸夜夜添夜夜添av毛片| 日本色播在线视频| 久久午夜福利片| 欧美一级a爱片免费观看看| 男女啪啪激烈高潮av片| 一个人免费在线观看电影| 国产精品永久免费网站| 国产老妇女一区| 少妇的逼好多水| 国产亚洲欧美98| 久久久久国产网址| 免费电影在线观看免费观看| 毛片女人毛片| 真人做人爱边吃奶动态| 精品人妻视频免费看| 午夜免费激情av| 黄色欧美视频在线观看| 嫩草影视91久久| 少妇猛男粗大的猛烈进出视频 | 久久久久性生活片| 1000部很黄的大片| 午夜福利18| 久久天躁狠狠躁夜夜2o2o| 国产精品美女特级片免费视频播放器| 亚洲人成网站在线观看播放| av中文乱码字幕在线| 国产精品女同一区二区软件| 内地一区二区视频在线| 狂野欧美白嫩少妇大欣赏| 国产色爽女视频免费观看| 免费在线观看影片大全网站| 亚洲性夜色夜夜综合| 97超视频在线观看视频| 韩国av在线不卡| 亚洲经典国产精华液单| 久久精品国产清高在天天线| 久久韩国三级中文字幕| 色av中文字幕| 久久久久国产网址| 黄片wwwwww| 国产高清有码在线观看视频| 晚上一个人看的免费电影| 大香蕉久久网| 久久国产乱子免费精品| 日日干狠狠操夜夜爽| 在线播放国产精品三级| 亚洲色图av天堂| 亚洲av美国av| 男人的好看免费观看在线视频| 日韩大尺度精品在线看网址| 成人av一区二区三区在线看| 国产av不卡久久| 免费看av在线观看网站| 亚洲av五月六月丁香网| 女人十人毛片免费观看3o分钟| av专区在线播放| 亚洲18禁久久av| 在线播放国产精品三级| www.色视频.com| 中文字幕免费在线视频6| 亚洲欧美日韩无卡精品| 欧美3d第一页| 亚洲美女黄片视频| 欧美丝袜亚洲另类| 久久热精品热| 日韩 亚洲 欧美在线| 不卡一级毛片| 麻豆国产av国片精品| 女同久久另类99精品国产91| 一区二区三区免费毛片| 在线观看免费视频日本深夜| 在线观看午夜福利视频| 网址你懂的国产日韩在线| 国产黄色小视频在线观看| 亚洲无线观看免费| 亚洲av一区综合| 亚洲中文日韩欧美视频| 嫩草影院精品99| 免费一级毛片在线播放高清视频| 97在线视频观看| av专区在线播放| 长腿黑丝高跟| 国产激情偷乱视频一区二区| 久久久精品94久久精品| 97超碰精品成人国产| 久久久久久国产a免费观看| 精品国内亚洲2022精品成人| 亚洲精品粉嫩美女一区| 联通29元200g的流量卡| 变态另类丝袜制服| 天堂av国产一区二区熟女人妻| 国产亚洲91精品色在线| 日日摸夜夜添夜夜添小说| 国产男人的电影天堂91| 青春草视频在线免费观看| 99热只有精品国产| 中文字幕久久专区| 国产精品一区二区三区四区久久| 啦啦啦观看免费观看视频高清| 国产一区亚洲一区在线观看| 午夜精品一区二区三区免费看| 亚洲av免费在线观看| 中文在线观看免费www的网站| 九九久久精品国产亚洲av麻豆| 欧美高清性xxxxhd video| 日韩精品有码人妻一区| 国产乱人偷精品视频| www.色视频.com| 尤物成人国产欧美一区二区三区| 在线免费观看的www视频| 日韩欧美国产在线观看| 亚洲精品色激情综合| 久久人妻av系列| 99热只有精品国产| 成人一区二区视频在线观看| 丰满乱子伦码专区| 在线播放无遮挡| or卡值多少钱| 欧美另类亚洲清纯唯美| 久久精品夜夜夜夜夜久久蜜豆| 女的被弄到高潮叫床怎么办| 男女做爰动态图高潮gif福利片| 久久精品国产亚洲av天美| 在线观看一区二区三区| 国产在视频线在精品| 我的女老师完整版在线观看| 亚洲av成人精品一区久久| 99热只有精品国产| 国内精品久久久久精免费| 免费高清视频大片| 午夜视频国产福利| 日韩欧美免费精品| 亚洲国产精品合色在线| 欧美成人a在线观看| 变态另类成人亚洲欧美熟女| 给我免费播放毛片高清在线观看| 一进一出抽搐gif免费好疼| 国产美女午夜福利| 午夜福利18| 中出人妻视频一区二区| 国产高清激情床上av| 国产av一区在线观看免费| 日日撸夜夜添| 精品国内亚洲2022精品成人| 久久久精品欧美日韩精品| 亚洲中文日韩欧美视频| 日本免费a在线| 人妻制服诱惑在线中文字幕| 99久久无色码亚洲精品果冻| 欧美区成人在线视频| 国产亚洲精品久久久com| 免费在线观看影片大全网站| 99热全是精品| 黄片wwwwww| 国内久久婷婷六月综合欲色啪| 丰满人妻一区二区三区视频av| 国产色爽女视频免费观看| 国产欧美日韩精品亚洲av| 国产精品野战在线观看| 超碰av人人做人人爽久久| 内射极品少妇av片p| 欧美zozozo另类| 在线观看66精品国产| 禁无遮挡网站| 日韩av不卡免费在线播放| 亚洲成a人片在线一区二区| 无遮挡黄片免费观看| 蜜桃亚洲精品一区二区三区| 国产成人91sexporn| 老师上课跳d突然被开到最大视频| 国产成年人精品一区二区| 欧美潮喷喷水| 亚洲av一区综合| 99久久九九国产精品国产免费| 国产精品久久视频播放| 1000部很黄的大片| 国产亚洲欧美98| 黄片wwwwww| 日韩欧美国产在线观看| 麻豆国产97在线/欧美| 看黄色毛片网站| 一个人免费在线观看电影| 成年版毛片免费区| 久久久色成人| av在线观看视频网站免费| 女的被弄到高潮叫床怎么办| 亚洲一级一片aⅴ在线观看| 啦啦啦韩国在线观看视频| a级毛片a级免费在线| 特级一级黄色大片| 在线观看午夜福利视频| ponron亚洲| 日本撒尿小便嘘嘘汇集6| 3wmmmm亚洲av在线观看| 国产精品一区二区免费欧美| 狂野欧美激情性xxxx在线观看| 欧美绝顶高潮抽搐喷水| 99riav亚洲国产免费| 国产高清视频在线播放一区| 久久精品国产99精品国产亚洲性色| 亚洲欧美成人综合另类久久久 | 国产人妻一区二区三区在| 亚洲精品一区av在线观看| 人妻久久中文字幕网| 我的女老师完整版在线观看| 赤兔流量卡办理| 嫩草影院新地址| 欧美日韩综合久久久久久| 好男人在线观看高清免费视频| 97碰自拍视频| 成年av动漫网址| 色吧在线观看| 国产亚洲精品综合一区在线观看| 免费搜索国产男女视频| 成年女人看的毛片在线观看| 日本撒尿小便嘘嘘汇集6| 日韩精品有码人妻一区| 大又大粗又爽又黄少妇毛片口| 国产精品精品国产色婷婷| 亚洲色图av天堂| 国产精品嫩草影院av在线观看| 国产精品久久久久久亚洲av鲁大| 人妻久久中文字幕网| 97超视频在线观看视频| 黄色配什么色好看| 校园人妻丝袜中文字幕| 女同久久另类99精品国产91| 午夜激情福利司机影院| 久久亚洲精品不卡| 青春草视频在线免费观看| 偷拍熟女少妇极品色| 变态另类成人亚洲欧美熟女| 一进一出抽搐动态| 最新中文字幕久久久久| 精品国内亚洲2022精品成人| 69人妻影院| 久久精品91蜜桃| 久久精品国产亚洲网站| 国产蜜桃级精品一区二区三区| 一级毛片aaaaaa免费看小| 男女之事视频高清在线观看| 久久精品91蜜桃| 麻豆精品久久久久久蜜桃| 国产伦精品一区二区三区视频9| 联通29元200g的流量卡| а√天堂www在线а√下载| 精品熟女少妇av免费看| 97超级碰碰碰精品色视频在线观看| 久久精品国产自在天天线| 精品久久久噜噜| 亚洲av一区综合| 国产熟女欧美一区二区| 99热这里只有是精品在线观看| 久久亚洲精品不卡| 看片在线看免费视频| 日日摸夜夜添夜夜爱| 免费在线观看影片大全网站| 欧美成人免费av一区二区三区| 99热只有精品国产| 伦精品一区二区三区| 久久久久九九精品影院| 22中文网久久字幕| 蜜桃久久精品国产亚洲av| 少妇的逼好多水| 久久鲁丝午夜福利片| 久久久色成人| av国产免费在线观看| 午夜精品一区二区三区免费看| 观看美女的网站| 精品一区二区三区视频在线观看免费| 免费看av在线观看网站| 亚洲精品色激情综合| 熟妇人妻久久中文字幕3abv| 久久午夜亚洲精品久久| av国产免费在线观看| 啦啦啦观看免费观看视频高清| 日本a在线网址| 三级国产精品欧美在线观看| 女的被弄到高潮叫床怎么办| 亚洲内射少妇av| 国产精品国产高清国产av| 在线免费十八禁| 男人舔女人下体高潮全视频| 欧美潮喷喷水| 国产精品久久久久久av不卡| 亚洲av中文av极速乱| 亚洲第一电影网av| 淫秽高清视频在线观看| 女同久久另类99精品国产91| 国产亚洲欧美98| 免费不卡的大黄色大毛片视频在线观看 | 18禁黄网站禁片免费观看直播| 国产高清三级在线| 校园人妻丝袜中文字幕| 国产女主播在线喷水免费视频网站 | 精品人妻偷拍中文字幕| 日本三级黄在线观看| 国产精品爽爽va在线观看网站| 国产高清不卡午夜福利| 国产精品一二三区在线看| 精品乱码久久久久久99久播| 搡老熟女国产l中国老女人| 免费观看的影片在线观看| 美女大奶头视频| 亚洲欧美日韩高清在线视频| а√天堂www在线а√下载| 悠悠久久av| 欧洲精品卡2卡3卡4卡5卡区| 亚洲最大成人av| 夜夜看夜夜爽夜夜摸| 亚洲精品456在线播放app| 国产亚洲91精品色在线| 成年版毛片免费区| 秋霞在线观看毛片| 97超视频在线观看视频| 日韩高清综合在线| 免费看a级黄色片| 淫妇啪啪啪对白视频| 亚洲av熟女| 日韩一本色道免费dvd| 亚洲图色成人| 久久综合国产亚洲精品| 免费在线观看影片大全网站| 国产精品久久电影中文字幕| 露出奶头的视频| 亚洲人成网站在线播放欧美日韩| 午夜激情欧美在线| 亚洲综合色惰| 国产伦一二天堂av在线观看| 麻豆国产av国片精品| 搡女人真爽免费视频火全软件 | АⅤ资源中文在线天堂| 大香蕉久久网| 免费在线观看成人毛片| 亚洲av免费在线观看| 国产精品国产高清国产av| 99热6这里只有精品| 亚洲av免费在线观看| 国产精品一区二区三区四区免费观看 | 女同久久另类99精品国产91| 久久久国产成人精品二区| 免费电影在线观看免费观看| 亚洲最大成人中文| 三级毛片av免费| 国产精品国产三级国产av玫瑰| 看免费成人av毛片| 非洲黑人性xxxx精品又粗又长| 久久久久久久久久黄片| 日韩精品中文字幕看吧| 久久久久性生活片| 欧美精品国产亚洲| 免费av不卡在线播放| 色视频www国产| 国产黄a三级三级三级人| 亚洲精品一卡2卡三卡4卡5卡| 最新在线观看一区二区三区| 国产黄a三级三级三级人| 女同久久另类99精品国产91| 99久国产av精品| 国产精品爽爽va在线观看网站| 国产极品精品免费视频能看的| 高清毛片免费看| 我要搜黄色片| 大型黄色视频在线免费观看|