• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    無旋波近似下的二能級開放系統(tǒng)非馬爾科夫動力學

    2012-06-07 10:00:46徐甜甜鄭艷萍曾浩生
    關鍵詞:可夫艷萍馬爾科夫

    徐甜甜 , 唐 寧, 鄭艷萍, 曾浩生

    (湖南師范大學 物理系, 教育部低維量子結構與調控重點實驗室, 湖南 長沙, 410081)

    無旋波近似下的二能級開放系統(tǒng)非馬爾科夫動力學

    徐甜甜 , 唐 寧, 鄭艷萍, 曾浩生

    (湖南師范大學 物理系, 教育部低維量子結構與調控重點實驗室, 湖南 長沙, 410081)

    在無旋波近似下, 研究了一個二能級系統(tǒng)與零溫結構庫的相互作用. 當系統(tǒng)與環(huán)境為弱耦合時, 推導出描述系統(tǒng)狀態(tài)演化的主方程. 解析與數(shù)值結果均表明, 反旋轉波項對系統(tǒng)的非馬可夫動力學起著重要作用. 同時也分析了最近提出的兩種非馬可夫度量之間的差別.

    開放量子系統(tǒng); 旋波近似; 非馬爾科夫性

    1 Introduction

    Realistic quantum systems cannot avoid interactions with their environments, thus the study of open quantum systems is very important. It is not only relevant for better understanding of quantum theory, but also fundamental for various modern applications of quantum mechanics, especially for quantum communication, cryptography and computation[1]. The early study of dynamics of open quantum systems usually consists in the application of an appropriate Born-Markov approximation, that is, neglects all the memory effects, leading to a master equation which can be cast in the so-called Lindblad form[2]. Masterequations in Lindblad form can be characterized by the fact that the dynamics of the system satisfies both the semi-group property and the complete positivity, thus ensuring the preservation of positivity of the density matrix during the time evolution. We usually attribute the dynamical processes with these evolutional properties to the well-known Markovian ones.

    However, people recently find that many relevant physical systems, such as quantum optical system[3], quantum dot[4], superconductor system[5], could not be described simply by Markovian dynamics. Similarly, quantum chemistry[6]and excitation transfer of biological system[7]also need to be treated as non-Markovian processes. Quantum non-Markovian processes can lead to distinctly different effects on decoherence and disentanglement[8-9]of open systems compared to Markovian processes. These dynamical traits are important for the enriching of the basic theory of quantum mechanics, as well as for quantum information processing. Because of these distinct properties and extensive applications, more and more attention and interest have been devoted to the study of non-Markovian processes of open systems, including the measures of non-Markovianity[10-16], the positivity[17-18], and some other dynamical properties[19-23]and approaches[24-25]of non-Markovian processes. Experimentally, the simulation[26-27]of non-Markovian environment has been realized.

    The measure of non-Markovianity of quantum evolution is a fundamental problem which aims to detect whether a quantum process is non-Markovian and how much degrees it deviates from a Markovian one. Although several measures of non-Markovianity have been presented already, it is noted that these measures do not agree exactly. Therefore, the problem for measuring the non-Markovianity of quantum processes still remains elusive and, in some sense, controversial. Based on the distinguishability of quantum states, Breuer, Laine and Piilo (BLP)[10]proposed a measure to detect the non-Markovianity of quantum processes which is linked to the flow of information between system and environment. Alternatively, Rivas, Huelga and Plenio (RHP)[11]also presented a measure of non-Markovianity by exploiting the dynamical divisibility of a trace-preserving completely positive map. It is clear that the BLP measure is based on the physical features of the system-reservoir interactions, while the RHP definition is based on the mathematical property of the dynamical maps. It has been found that these two measures do not agree actually[28]. In this paper, we will use both the two measures to describe the non-Markovianity of the dynamics of the system of interest and find that there exists distinct difference between the two kinds of measuring results.

    The study of the dynamics of non-Markovian open quantum systems is typically very involved and often requires some approximations. Almost all the previous treatments are based on the rotating wave approximation, that is, neglect the counter-rotating terms in the microscopic system-reservoir interaction Hamiltonian. However, the counter-rotating terms which are responsible for the virtual exchanges of energy between the system and the environment not always can be neglected. For example, when the effective frequency-band of the reservoir spectra is wide enough or when the main value of the frequency-spectrum distribution of the structured environment is detuned large enough from the transition of the system, the rotating wave approximation is invalid. The main motivation of this paper is to demonstrate the limitations of the commonly-used rotating wave approximation and to see how the counter-rotating terms affect the non-Markovian dynamics of the open quantum system.

    The article is organized as follows. In Sec. 2 we introduce the microscopic Hamiltonian model and derive the non-Markovian time-local master equation for a two-level system weakly coupled to a vacuum reservoir, without rotating-wave approximation. In Sec. 3, we calculate the non-Markovianity of the system dynamics in terms of both the RHP and BLP measures, and show their difference visibly in measuring the non-Markovianity. And in sec. 4, we choose the Lorentzian spectra reservoir as an exemplary example, giving the analytic expressions of the time-dependant transition rate and demonstrating quantitatively theeffect of the counter-rotating wave terms on the non-Markovian dynamics. Finally, the conclusion is arranged in Sec.5.

    2 The microscopic model

    Consider a two-level atom with Bohr frequency ω0interacting with a zero-temperature bosonic reservoir modeled by an infinite chain of quantum harmonic oscillators. The total Hamiltonian for this system in the Schrodinger picture is given by

    where σzand σ±are the Pauli and inversion operators of the atom, ωk, bkand bk+are respectively the frequency, annihilation and creation operators for the k-th harmonic oscillator of the reservoir. The coupling strength gkis assumed to be real for simplicity. The distinct feature of this Hamiltonian is the reservation of the counter-rotating wave terms, σ+bk+and σ-bk.

    The time-convolutionless (TCL) projection operator technique is most effective in dealing with the dynamics of open quantum systems. In the limit of weak coupling between the system and the environment, by expanding the TCL generator to the second order with respect to coupling strength, the non-Markovian master equation describing the evolution of the reduced system, in the interaction picture, can be written as

    where

    is the Lamb shift Hamiltonian which describes a small shift in the energy of the eigenstates of the two-level atom. This term has no qualitative effect on the dynamics of the system and therefore is neglected usually. The dissipator D[ρ(t)] that describes the secular motion of the system has the form

    where the first term describes the dissipation of the atom to the vacuum environment with time-dependent decay rate γ-(t), and the second term denotes the heating of the atom in the vacuum environment with time-dependent heating rate γ+(t). This heating is related to the dissipation, for a ground-state atom in a zero-temperature environment, there is no heating effect. Note that the heating term completely originates from the counter-rotating terms present in the system-reservoir interaction Hamiltonian, as it would not exist under rotating wave approximation[3]. In the following, we will show that this heating term in some cases may play an important role, in particular to the non-Markovian behaviors of the system's dynamics. The dissipater D′[ρ(t)], which also originates from the counter-rotating terms in the coupling Hamiltonian, represents the contribution of the so-called nonsecular terms, that is, terms oscillating rapidly with atomic transition frequency ω0,

    here h.c. denotes the Hermitian conjugation. In what follows, we will neglect the effect of these nonsecular terms, that is, perform the so-called secular approximation. Just as pointed out in reference [29], this kind of secular approximation that used after tracing over the bath degrees of freedom is different from the rotating wave approximation before the tracing. It is a more precise approximation that consists in an average over rapidly oscillating terms, but does not wash out the effect of the counter-rotating terms present in the coupling Hamiltonian. The time-dependent coefficients in the above equations are respectively

    where the spectral density function is defined as.

    3 Measures of Non-Markovianity

    In this section, we employ two measures to describe the non-Markovianity of the dynamics of the considered system so as to explicitly show the difference of the two measures. The first measure was proposed by RHP[11]which is based on the divisibility of the dynamical map: a trace-preserving completely positive map ε(t2, 0) that describes the evolution from times zero to t2is divisible if it satisfies composition law,

    with ε(t2, t1) being completely positive for any t2≥ t1≥ 0 RHP defined all the divisible maps to be Markovian exactly. Therefore, the indivisibility of a map advocates its dynamical non-Markovianity. It was shown that all the evolutions governed by Lindblad-type master equation with positive transition rates (timeindependent or time-dependent) are divisible and thus Markovian[30]. RHP further proved that the indivisibility of map ε(t, 0) is equivalent to the positivity of the quantity,

    According RHP measure, for Markovian processes, g(t) = 0 at any time t; and if g(t) > 0 for some times, the dynamical evolution takes on non-Markovianity. The distinct advantage of this non-Markovian measure is that its calculation can be processed only by knowledge of time-local master equation, not requiring the exact form of the map ε(t, 0).

    For the open two-level system considered in this paper, suppose that, a straightforward deduction combined with equations (2) and (12) gives

    where γ±(t) are given by Eq.(7). In the deduction, we neglect the contribution of the nonsecular term D′[ρ(t)], but the consideration of the Lamb shift HLS(t) does not alter the result of g(t), i.e., Lamb shift does not affect the divisibility of the system's dynamics. Eq.(13) shows that γ+(t) not only affects, but in the same way as γ-(t), affects the non-Markovianity of the system's dynamics. As long as one of them is negative, g(t) > 0 and the evolution takes on non-Markovianity.

    The second measure of non-Markovianity for quantum processes of open systems we employ is proposed by BLP[10]which is based on the consideration in purely physics. Note that Markovian processes always tend to continuously reduce the trace distance between any two states of a quantum system, thus anincrease of the trace distance during any time intervals implies the emergence of non-Markovianity. The authors further linked the changes of the trace distance to the flow of information between system and its environment, and concluded that the back flow of information from environment to the system is the key feature of a non-Markovian dynamics. In quantum information science, the trace distance for quantum states ρ1and ρ2is defined as[1]

    where ρ1,2(t) are the dynamical states of the system corresponding to the initial states ρ1,2(0). For Markovian processes, the monotonically reduction of the trace-distance implies σ(t, ρ1,2(0)) ≤ 0 for any initial states ρ1,2(0) and at any timet. If there exists a pair of initial states of the system such that for some evolutional time t the trace-distance increases, that is, σ(t, ρ1,2(0)) > 0, the process must be non-Markovian.

    In order to calculate BLP measure, we must solve the dynamics of the system. Thus, we write the alternative Bloch equation corresponding to Eq.(2) as

    where we neglect the Lamb shift HLS(t) and the nonsecular term D′[ρ(t)], and the Bloch vector is defined as bj(t) = tr[ρ(t)σj]. This set of decoupled equations can be easily solved which gives

    where the positive function G(t) is defined as G(t) = e-Λ(t)/2{Δt + [Δbz(0)]2e-Λ(t)/Δ(t)} > 0, Δ(t) = {[Δbx(0)]2+ [Δby(0)]2+ [Δbz(0)]2e-Λ(t)}1/2and Δbj(0) = b1j(0) - b2j(0) with j = x, y, z are the difference of the initial Bloch components. This result implies that the RHP and BLP criteria of non-Markovianity have distinct differences: According to BLP criterion, the condition for the system's dynamics to reveal non-Markovianity is γ-(t) + γ+(t) < 0; While RHP criterion only requires γ-(t) < 0 or γ+(t) < 0. Eqs.(13) and (20) also shows that when one of the transition rates, γ-(t) or γ+(t), is zero, then the two criteria agree qualitatively. This further approves the previous conclusion: For Lindblad-form master equation with single time-dependant transition rate, the RHP and BLP criteria are equivalent to each other[31]. But for Lindblad-form master equation with multiple time-dependant transition rates, the two measures are in general not in agreement according to above results.

    4 Non-M arkovian dynamics for Lorentzian spectrum

    In order to demonstrate quantitatively the effects of counter-rotating wave terms, we specify our study to a particular reservoir spectra, Lorentzian spectra,

    which describes the interaction of an atom with an imperfect cavity and is widely used in literatures. Where ω0denotes the transition frequency of the atom, Δ = ω0-ωcis the frequency detuning between the atom and the cavity mode. λ is the width of Lorentzian distribution and is connected to the reservoir correlation time TR= λ-1. The parameter γ0can be regarded as the decay rate for the excited atom in the Markovian limit of flat spectrum which is related to the relaxation time TS= γ0-1. For the Lorentzian spectra, the time-dependent transition rates γ±(t) can be analytically written as

    with Δ-= Δ = ω0-ωcand Δ+= 2ω0- Δ = ω0+ ωc. The other time-dependent coefficients S±(t), α(t) and β(t) related to Lamb shift and nonsecular terms also can be calculated analytically, but we have neglected them already. For different spectral widths and different frequency detunings between the atom and the cavity mode, we plot the rescaled transition rates γ±(t)/γ0as functions of dimensionless time γ0t in Figs.1 and 2. Where we choose the atomic transition frequency to be ω0= 100γ0.

    Fig.1 shows that with the increasing of Δ, the relative amplitude (relative to γ-(t)) for the oscillation of γ+(t) increases, implying that the role of γ+(t) increases. Thus for large frequency detuning between the atom and the cavity mode, the rotating wave approximation would be incorrect. In addition, according to RHP criterion, γ+(t) plays an important role to the non-Markovian dynamics of the system. For small detunig (see Fig.1 (a)), γ-(t) has no oscillation and always positive, thus the non-Markovianity completely arises by γ+(t). However, when the detuning augments (see Fig.1 (b) and (c)), γ-(t) oscillates and appears negative values for some time intervals, leading that both γ±(t) have contributions to the non-Markovianity of the system's dynamics.

    Fig.1 The time-dependent tr ansition r ates(t)/γ0(dot line ) and γ+(t)/γ0(solid lin e ) as functions of dimensionless time γ0t. Where ω0= 100γ0, λ = 2γ0and Δ = γ0, 10γ0, 30γ0for (a), (b), (c) respectively.

    Fig.2 The time-dependent transition rates γ-(t)/γ0(dot line ) and γ+(t)/γ0(solid line ) as fun ctions of dimensionless time γ0t. Where ω0= 100γ0, Δ = 10γ0, and λ = 5γ0, 50γ0, 200γ0for (a), (b), (c) respectively.

    From Fig.2, we see that, firstly, with the increasing of the spectral width, the value of γ+(t) becomeslarger, implying that the role of γ+(t) becomes more and more important. In particular when λ→∞, it has γ+(t) = γ-(t) = γ0, leading to the same degrees of significance of γ±(t). Thus for a broad and smooth spectral distribution, the rotating wave approximation is invalid. Next, when the width λ of the reservoir spectra is narrower (Fig.2 (a)), the memory time of the reservoir is longer, thus γ+(t) oscillates for a relatively longer time. But with the increasing of the spectral width, the oscillation time of γ+(t) becomes shorter (see Fig.2 (b) and (c)), implying that the non-Markovian time scale imposed by γ+(t) becomes shorter.

    In Fig.3, we plot the time evolution of the rescaled RHP non-Markovian measure g(t)/γ0where the parameters are chosen to be in agreement with that in Fig.1. From this figure, we can see clearly the contributions of γ±(t) to the non-Markovianity of the system's dynamics. In Fig.3 (a), all the positive-value intervals of g(t) stem from the negative values of γ+(t) shown in Fig.1. While in Fig.3 (b) and (c), only the series of minor positive-value intervals of g(t) stem from the negative values of γ+(t), and the major positive-value intervals stem from mainly the contributions of the negative values of γ-(t). Clearly, according to RHP measure, the dynamics that corresponds to all the three situations of (a), (b) and (c) is non-Markovian.

    Fig.3 The rescaled RHP non-Markovian measure g(t)/γ0as function of dimensionless time γ0t, Where ω0= 100γ0, λ = 2γ0and Δ = γ0, 10γ0, 30γ0for (a), (b), (c) respectively.

    Fig.4 The z component of t he Bloch ve ctor a s a function of dimensionless time γ0t for initial value of bz(0) = 1. Where ω0= 100γ0, λ = 2γ0and Δ = γ0, 10γ0, 30γ0for (a), (b), (c) respectively.

    However, the BLP measure gives inconsistent results. According to the expression of Eq.(20) combined with the evolution of γ±(t) in Fig.1, one can easily conclude that only the dynamics corresponding to the situations of Fig.1 (b) and (c) is non-Markovian, while the dynamics related to Fig.1 (a) is Markovian. In order to further demonstrate the physical features of BLP measure, we plot under the same parameters as in Fig.1 the time evolution of the Bloch component bz(t) as in Fig.4, for the initial state (bx(0), by(0), bz(0)) = (0, 0, 1). We see that in case (a) it decreases monotonically, implying that there is no visible exchange of energy or information between the system and the environment. While in cases of (b) and (c), the oscillations of bz(t) occurring in times of the order of the reservoir memory time advocates the exchange of energy or information, which is the indication of non-Markovian dynamics according BLP measure.

    5 Conclusion

    In conclusion, we have studied the non-Markovianity for a two-level system interacting with a zero-temperature structured environment without rotating wave approximation. In the limit of weak coupling between the system and the reservoir, we have derived the time-local non-Markovian master equation for the reduced state of the system. For the case of Lorentzian reservoir, the analytic expressions for the time-dependent coefficients were obtained. It was found that when the width of the reservoir spectra is large enough or when the cavity frequency is detuned large enough from the transition of the system, the rotating wave approximation is invalid. We have investigated the non-Markovian dynamical behavior of the system in terms of both the RHP and BLP measures. It was found on the one hand that the counter-rotating wave terms have important contributions to the non-Markovianity of the system's dynamics. And on the other hand there is explicit difference for the two measures to describe the non-Markovianity of the system: when the Lindblad-form master equation has only a single time-dependant transition rate, the RHP and BLP measures are equivalent to each other. While for the case of the master equation with multiple time-dependant transition rates, the two measures are in general not agreement. This difference alerts people that the research on the essence of non-Markovian dynamics for open quantum systems is still necessary.

    [1] Nielsen M A, Chuang I L. Quantum computation and quantum information [M]. Cambridge: Cambridge University Press, 2000.

    [2] Lindblad G. On the generator of quantum dynamical semigroups [J]. Commun. Math. Phys, 1976, 48: 119-130.

    [3] Breuer H P,Petruccione F. The theory of open quantum systems [M]. Oxford: Oxford University Press, 2007.

    [4] Kubota Y, Nobusada K. Applicability of site-basis time-evolution equation for thermalization of exciton states in a quantum dot array [J]. J. Phys. Soc. Jpn, 2009, 78: 114603.

    [5] Ji Y H, Hu J J. Entanglement and decoherence of coupled superconductor qubits in a non-Markovian environment [J]. Chin. Phys. B, 2010, 19: 060304.

    [6] Shao J. Decoupling quantum dissipation interaction via stochastic fields [J]. J. Chem. Phys. 2004, 120: 5053-5056.

    [7] Chin A W, Datta A, Caruso F, et al. Noise-assisted energy transfer in quantum networks and light-harvesting complexes [J]. New J. Phys. 2010, 12: 065002.

    [8] Dijkstra A G, Tanimura Y. Non-Markovian entanglement dynamics in the presence of system-bath coherence [J]. Phys. Rev. Lett, 2010, 104: 250401.

    [9] Huang L Y, Fang M F. Protecting entanglement by detuning: in Markovian environments vs in non-Markovian environments [J]. Chin. Phys. B, 2010, 19: 090318.

    [10] Breuer H P, Laine E M,Piilo J. Measure for the degree of non-Markovian behavior of quantum processes in open systems [J]. Phys. Rev. Lett., 2009, 103: 210401.

    [11] Rivas ?, Huelga S F, Plenio M B. Entanglement and non-Markovianity of quantum evolutions [J]. Phys. Rev. Lett., 2010, 105: 050403.

    [12] Usha Devi A R, Rajagopal A K, Sudha. Open-system quantum dynamics with correlated initial states, not completely positive maps, and non-Markovianity [J]. Phys. Rev. A, 2011, 83: 022109.

    [13] Lu X M, Wang X G, Sun C P. Quantum Fisher information flow and non-Markovian processes of open systems [J]. Phys. Rev. A, 2010, 82: 042103.

    [14] Hou S C, Yi X X, Yu S X, et al. Alternative non-Markovianity measure by divisibility of dynamical maps [J]. Phys. Rev. A, 2011, 83: 062115.

    [15] Xu Z Y, Yang W L, Feng M. Proposed method for direct measurement of non-Markovian character of the qubitscoupled to bosonic reservoirs [J]. Phys. Rev. A, 2010, 81: 044105.

    [16] He Z, Zou J, Li L et al. Effective method of calculating the non-Markovianity N for single-channel open systems [J]. Phys. Rev. A, 2011, 83: 012108.

    [17] Shabani A, Lidar D A. Vanishing quantum discord is necessary and sufficient for completely positive maps [J]. Phys. Rev. Lett., 2009, 102: 100402.

    [18] Breuer H P, Vacchini B. Structure of completely positive quantum master equations with memory kernel [J]. Phys. Rev. E, 2009, 79: 041147.

    [19] Haikka P, Maniscalco S. Non-Markovian dynamics of a damped driven two-state system [J]. Phys. Rev. A, 2010, 81:052103.

    [20] Chang K W, Law C K. Non-Markovian master equation for a damped oscillator with time-varying parameters [J], Phys. Rev. A, 2010, 81: 052105.

    [21] Chru?ciński D, Kossakowski A, Pascazio S. Long-time memory in non-Markovian evolutions [J]. Phys. Rev. A, 2010, 81: 032101.

    [22] Haikka P, Cresser J D, Maniscalco S. Comparing different non-Markovianity measures in a driven qubit system [J]. Phys. Rev. A, 2011, 83: 012112.

    [23] Ding B F, Wang X Y, Tang Y F, et al. Non-Markovian dynamics of a qubit in a reservoir: different solutions of non-Markovian master equation [J]. Chin. Phys. B, 2011, 20: 060304.

    [24] Jing J, Yu T. Non-Markovian relaxation of a three-level system: Quantum trajectory approach [J]. Phys. Rev. Lett., 2010, 105: 240403.

    [25] Wu C, Li Y, Zhu M, et al. Non-Markovian dynamics without using a quantum trajectory [J]. Phys. Rev. A, 2011, 83:052116.

    [26] Xu J S, Li C F, Gong M, et al. Experimental demonstration of photonic entanglement collapse and revival [J]. Phys. Rev. Lett., 2010, 104: 100502.

    [27] Xu J S, Li C F, Zhang C J, et al. Experimental investigation of the non-Markovian dynamics of classical and quantum correlations [J]. Phys. Rev. A, 2010, 82: 042328.

    [28] Chru?ciński D, Kossakowski A, Rivas ?. Measures of non-Markovianity: Divisibility versus backflow of information [J]. Phys. Rev. A, 2011, 83: 052128.

    [29] Maniscalco S, Piilo J, Intravaia F, et al. Lindblad- and non-Lindblad-type dynamics of a quantum Brownian particle[J]. Phys. Rev. A, 2004, 70: 032113.

    [30] Alicki R, Lendi K. Quantum dynamical semigroups and applications [M]. Berlin Heidelberg: Springer, 2007.

    [31] Zeng H S, Tang Ning, Zheng Y P, et al. Equivalence of the measures of non-Markovianity for open two-level systems [J]. Phys. Rev. A, 2011, 84: 032118.

    (責任編校: 江 河)

    Non-Markovian dynamics for an open two-level system without rotating wave approximation

    XU Tian-tian, TANG Ning, ZHENG Yan-ping, ZENG Hao-Sheng
    (Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Department of Physics, Hunan Normal University, Changsha 410081, china)

    The non-Markovianity for a two-level system interacting is studied with a zero-temperature structured environment without rotating wave approximation. In the limit of weak coupling between the system and the reservoir, the time-local non-Markovian master equation for the reduced state of the system is derived. Both the analytic and numerical results show that the counter-rotating wave terms play an important role for the non-Markovian dynamics of the system. And the difference of the two non-Markovian measures is proposed recently.

    open quantum system; rotating wave approximation; non-Markovianity

    O 431.2

    1672-6146(2012)02-0012-09

    10.3969/j.issn.1672-6146.2012.02.005

    2012-05-06

    Project supported by the National Natural Science Foundation of China (Grant No.11075050), the National Fundamental Research Program of China (Grant No.2007CB925204), and the Construct Program of the National Key Discipline.

    徐甜甜(1986-), 女, 碩士研究生, 研究方向為量子光學. E-mail: liweitian930924@163.com

    曾浩生(1965-), 男, 教授, 博士生導師, 主要研究方向為量子光學與量子信息.

    E-mail: hszeng@hunnu.edu.cn

    猜你喜歡
    可夫艷萍馬爾科夫
    一維馬爾可夫鏈研究
    A SPECTRAL METHOD FOR A WEAKLY SINGULAR VOLTERRA INTEGRO-DIFFERENTIAL EQUATION WITH PANTOGRAPH DELAY*
    基于疊加馬爾科夫鏈的邊坡位移預測研究
    基于改進的灰色-馬爾科夫模型在風機沉降中的應用
    NUMERICAL ANALYSIS FOR VOLTERRA INTEGRAL EQUATION WITH TWO KINDS OF DELAY?
    馬爾科夫鏈在教學評價中的應用
    學吹泡泡
    把秘密帶回家
    基于馬爾科夫法的土地格局變化趨勢研究
    河南科技(2014年11期)2014-02-27 14:10:11
    把秘密帶回家
    亚洲av成人不卡在线观看播放网| 亚洲精品久久国产高清桃花| 最新在线观看一区二区三区| 欧美乱码精品一区二区三区| 日本免费一区二区三区高清不卡| 欧美黄色片欧美黄色片| 精品久久久久久久末码| 午夜福利成人在线免费观看| 欧美日韩国产亚洲二区| 国产三级中文精品| 亚洲熟妇中文字幕五十中出| 嫁个100分男人电影在线观看| 欧美日韩亚洲国产一区二区在线观看| 国产精品国产高清国产av| 久久人人精品亚洲av| 国产精品三级大全| 中文字幕精品亚洲无线码一区| 国产精品野战在线观看| 在线观看66精品国产| 欧美日本亚洲视频在线播放| 90打野战视频偷拍视频| 国产真实乱freesex| 国内久久婷婷六月综合欲色啪| 久久久久久久亚洲中文字幕 | 天堂av国产一区二区熟女人妻| 亚洲 欧美 日韩 在线 免费| 国产欧美日韩一区二区三| 久久久久久久精品吃奶| 国产单亲对白刺激| 日韩国内少妇激情av| 2021天堂中文幕一二区在线观| 综合色av麻豆| 成年免费大片在线观看| 免费看光身美女| 无遮挡黄片免费观看| 嫩草影院精品99| 午夜激情欧美在线| 一本综合久久免费| 日本与韩国留学比较| 亚洲狠狠婷婷综合久久图片| xxxwww97欧美| 伊人久久精品亚洲午夜| 日韩欧美精品v在线| 欧美性感艳星| 色av中文字幕| 国产精品99久久99久久久不卡| 国产一区二区在线观看日韩 | 免费在线观看日本一区| 大型黄色视频在线免费观看| 欧美性感艳星| 99热这里只有精品一区| 国产老妇女一区| www.色视频.com| 亚洲精华国产精华精| 亚洲不卡免费看| 国产精品国产高清国产av| 欧美bdsm另类| 日韩欧美精品免费久久 | 欧美日韩精品网址| 亚洲 欧美 日韩 在线 免费| 亚洲国产精品sss在线观看| 久久99热这里只有精品18| 老汉色av国产亚洲站长工具| 狠狠狠狠99中文字幕| 男人的好看免费观看在线视频| 国产中年淑女户外野战色| 亚洲精品乱码久久久v下载方式 | 有码 亚洲区| av视频在线观看入口| 日韩亚洲欧美综合| 欧美中文日本在线观看视频| 久久久久久久亚洲中文字幕 | 精品国产超薄肉色丝袜足j| 男女午夜视频在线观看| 五月玫瑰六月丁香| 18禁美女被吸乳视频| 一区二区三区免费毛片| 精品熟女少妇八av免费久了| svipshipincom国产片| 久久久久精品国产欧美久久久| 国产精品野战在线观看| 黄色日韩在线| 日韩精品青青久久久久久| 91麻豆精品激情在线观看国产| a级毛片a级免费在线| 国模一区二区三区四区视频| 久99久视频精品免费| 亚洲人成网站在线播| 少妇的逼水好多| 黄色成人免费大全| 午夜福利18| 变态另类丝袜制服| 日韩高清综合在线| 欧美最黄视频在线播放免费| 男人舔奶头视频| 欧美一区二区亚洲| 成人亚洲精品av一区二区| 国语自产精品视频在线第100页| 草草在线视频免费看| 久久天躁狠狠躁夜夜2o2o| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 成年女人看的毛片在线观看| 88av欧美| xxxwww97欧美| 国产精品乱码一区二三区的特点| 国产主播在线观看一区二区| 精品一区二区三区视频在线 | 欧美在线一区亚洲| 久久久久久久亚洲中文字幕 | 综合色av麻豆| 成人鲁丝片一二三区免费| 亚洲国产精品合色在线| 美女高潮喷水抽搐中文字幕| 老司机午夜十八禁免费视频| 亚洲色图av天堂| 欧美午夜高清在线| 亚洲最大成人手机在线| 在线观看舔阴道视频| 在线视频色国产色| 高清毛片免费观看视频网站| 国产色婷婷99| av国产免费在线观看| 日韩av在线大香蕉| 国产探花在线观看一区二区| 色在线成人网| 嫁个100分男人电影在线观看| 脱女人内裤的视频| 亚洲美女黄片视频| 色播亚洲综合网| 精品久久久久久久久久久久久| 成人特级黄色片久久久久久久| 国产国拍精品亚洲av在线观看 | 999久久久精品免费观看国产| 少妇的逼好多水| 一进一出抽搐动态| 国语自产精品视频在线第100页| 欧美黄色片欧美黄色片| 国产精品亚洲av一区麻豆| 国产黄片美女视频| 久久香蕉国产精品| 久久草成人影院| 国产精品98久久久久久宅男小说| 国产一区二区在线av高清观看| 国产亚洲欧美98| 网址你懂的国产日韩在线| 高清日韩中文字幕在线| 最新在线观看一区二区三区| 国产极品精品免费视频能看的| 亚洲无线在线观看| 国产久久久一区二区三区| 国产精品久久久久久久电影 | 欧美精品啪啪一区二区三区| 亚洲内射少妇av| 首页视频小说图片口味搜索| 国产极品精品免费视频能看的| 九九热线精品视视频播放| 婷婷丁香在线五月| 国内少妇人妻偷人精品xxx网站| 香蕉丝袜av| 欧美中文综合在线视频| 国产三级中文精品| 欧美成人一区二区免费高清观看| 欧美乱码精品一区二区三区| 久久99热这里只有精品18| 麻豆国产av国片精品| 91九色精品人成在线观看| 草草在线视频免费看| 亚洲欧美日韩高清专用| 国产成+人综合+亚洲专区| 九九久久精品国产亚洲av麻豆| 最近在线观看免费完整版| 日韩欧美在线乱码| 免费av毛片视频| 无人区码免费观看不卡| 国产精品亚洲一级av第二区| 少妇裸体淫交视频免费看高清| 国内久久婷婷六月综合欲色啪| 久久久久久人人人人人| 国产一级毛片七仙女欲春2| 国产精品av视频在线免费观看| 国产精品熟女久久久久浪| 亚洲无线观看免费| av又黄又爽大尺度在线免费看| 少妇熟女欧美另类| 九九在线视频观看精品| 欧美一区二区亚洲| 亚洲在线观看片| 91aial.com中文字幕在线观看| 中文精品一卡2卡3卡4更新| 久久精品国产亚洲网站| 一级毛片黄色毛片免费观看视频| 亚洲最大成人av| 色尼玛亚洲综合影院| 天天躁夜夜躁狠狠久久av| 日韩成人av中文字幕在线观看| 欧美高清性xxxxhd video| 欧美精品一区二区大全| 免费大片18禁| 99久久精品一区二区三区| 日韩伦理黄色片| 男人爽女人下面视频在线观看| 天天一区二区日本电影三级| 色综合站精品国产| 国产 一区 欧美 日韩| 久久久午夜欧美精品| 欧美xxxx黑人xx丫x性爽| 可以在线观看毛片的网站| 精品久久久久久久久亚洲| 久久久久网色| 大陆偷拍与自拍| 嫩草影院精品99| 亚洲av在线观看美女高潮| 久久热精品热| 午夜老司机福利剧场| 亚洲精品一二三| 男女下面进入的视频免费午夜| 成人性生交大片免费视频hd| 国产av码专区亚洲av| 搡老乐熟女国产| av黄色大香蕉| 男人舔女人下体高潮全视频| 欧美丝袜亚洲另类| 身体一侧抽搐| 国产精品久久视频播放| 中文资源天堂在线| 男女边吃奶边做爰视频| 亚洲精品国产av蜜桃| 亚洲精品aⅴ在线观看| 亚洲欧美日韩卡通动漫| 久久亚洲国产成人精品v| 色吧在线观看| 亚洲av电影不卡..在线观看| 亚洲真实伦在线观看| 春色校园在线视频观看| 一个人看的www免费观看视频| 国国产精品蜜臀av免费| 夜夜爽夜夜爽视频| 亚洲欧美成人综合另类久久久| 97精品久久久久久久久久精品| 夫妻性生交免费视频一级片| 最近中文字幕高清免费大全6| 免费人成在线观看视频色| 日韩伦理黄色片| 三级毛片av免费| 精品国产一区二区三区久久久樱花 | 国产 一区 欧美 日韩| 国产一区二区三区av在线| 精品一区二区三区视频在线| 欧美日韩一区二区视频在线观看视频在线 | 久久久久久伊人网av| 日本黄色片子视频| av.在线天堂| 久久6这里有精品| 亚洲av中文字字幕乱码综合| 国产 亚洲一区二区三区 | 最近的中文字幕免费完整| 大陆偷拍与自拍| 日韩成人av中文字幕在线观看| 中文字幕久久专区| 免费不卡的大黄色大毛片视频在线观看 | 日本-黄色视频高清免费观看| 老司机影院毛片| 日韩中字成人| 简卡轻食公司| 亚洲欧美一区二区三区黑人 | 国产男女超爽视频在线观看| 国产亚洲午夜精品一区二区久久 | 亚洲成色77777| 乱人视频在线观看| 成人欧美大片| 亚洲精品色激情综合| 午夜精品国产一区二区电影 | 国内揄拍国产精品人妻在线| 亚洲精品中文字幕在线视频 | 日本一二三区视频观看| .国产精品久久| 日韩成人av中文字幕在线观看| 国产欧美日韩精品一区二区| 国产亚洲91精品色在线| 丝瓜视频免费看黄片| 2021天堂中文幕一二区在线观| 麻豆成人午夜福利视频| 亚洲国产高清在线一区二区三| 一二三四中文在线观看免费高清| 国产一区二区三区综合在线观看 | 亚洲熟妇中文字幕五十中出| 丝瓜视频免费看黄片| 亚洲乱码一区二区免费版| 久久久久网色| 18禁动态无遮挡网站| 国内精品美女久久久久久| 久久韩国三级中文字幕| 看免费成人av毛片| 嫩草影院新地址| 亚洲内射少妇av| 欧美成人午夜免费资源| 欧美bdsm另类| 亚洲成人一二三区av| 亚洲精品亚洲一区二区| 久久精品夜色国产| 久久精品人妻少妇| 亚洲成人久久爱视频| 欧美xxⅹ黑人| 男人和女人高潮做爰伦理| 网址你懂的国产日韩在线| 校园人妻丝袜中文字幕| 一个人看视频在线观看www免费| 夫妻午夜视频| 欧美97在线视频| 久久久久久伊人网av| 一级av片app| 成人毛片a级毛片在线播放| 一本久久精品| h日本视频在线播放| 最近中文字幕高清免费大全6| 97超碰精品成人国产| 国产精品三级大全| 国产伦精品一区二区三区四那| 久久久久久久久久黄片| videos熟女内射| 亚洲欧洲国产日韩| 免费黄网站久久成人精品| 日韩欧美精品v在线| 久久精品国产亚洲网站| 亚洲真实伦在线观看| 日韩 亚洲 欧美在线| 1000部很黄的大片| 成人性生交大片免费视频hd| 国产永久视频网站| 欧美xxxx性猛交bbbb| 人妻夜夜爽99麻豆av| 午夜福利视频1000在线观看| 肉色欧美久久久久久久蜜桃 | 亚洲久久久久久中文字幕| 久久国产乱子免费精品| 晚上一个人看的免费电影| 亚洲成人精品中文字幕电影| 国产一级毛片在线| 日本午夜av视频| 婷婷色av中文字幕| av免费观看日本| 秋霞在线观看毛片| 蜜臀久久99精品久久宅男| 久久精品夜色国产| 日产精品乱码卡一卡2卡三| 成人性生交大片免费视频hd| 日韩av不卡免费在线播放| 五月天丁香电影| 亚洲欧美精品自产自拍| 精品一区二区三区视频在线| 久久热精品热| 久久精品国产亚洲网站| 亚洲乱码一区二区免费版| a级毛色黄片| 国产精品国产三级专区第一集| 国产人妻一区二区三区在| 亚洲av日韩在线播放| 国产精品熟女久久久久浪| 国产午夜福利久久久久久| 亚洲欧美清纯卡通| 天堂中文最新版在线下载 | 秋霞在线观看毛片| 亚洲精品,欧美精品| 青春草国产在线视频| 国产av在哪里看| 男人爽女人下面视频在线观看| 精品酒店卫生间| 美女xxoo啪啪120秒动态图| 黄色欧美视频在线观看| 亚洲av成人av| 免费少妇av软件| 亚洲国产欧美在线一区| 成年女人在线观看亚洲视频 | 国产综合精华液| 久久这里有精品视频免费| 成年女人在线观看亚洲视频 | 三级国产精品欧美在线观看| 日本与韩国留学比较| 亚洲成人久久爱视频| 肉色欧美久久久久久久蜜桃 | 国产老妇伦熟女老妇高清| 国产一区二区三区综合在线观看 | 亚洲丝袜综合中文字幕| 国内揄拍国产精品人妻在线| 国产乱来视频区| 午夜福利在线观看免费完整高清在| 最近中文字幕高清免费大全6| 欧美变态另类bdsm刘玥| 久久久久久久久久黄片| 亚洲人成网站在线播| 亚洲真实伦在线观看| 麻豆成人午夜福利视频| 九九在线视频观看精品| av在线播放精品| 国产午夜精品一二区理论片| 亚洲av免费在线观看| 欧美极品一区二区三区四区| 国产爱豆传媒在线观看| 欧美日韩国产mv在线观看视频 | 午夜激情福利司机影院| 九九在线视频观看精品| 久久精品久久精品一区二区三区| 精品国内亚洲2022精品成人| 色综合亚洲欧美另类图片| a级毛色黄片| 久久久久久九九精品二区国产| 亚洲高清免费不卡视频| 人妻一区二区av| 天堂√8在线中文| 伊人久久国产一区二区| 中文欧美无线码| 精品人妻熟女av久视频| 黄色日韩在线| 观看美女的网站| av专区在线播放| 丰满人妻一区二区三区视频av| 久久久久久久大尺度免费视频| 日韩精品青青久久久久久| 欧美日韩精品成人综合77777| 少妇裸体淫交视频免费看高清| 国产淫语在线视频| 免费av毛片视频| 久热久热在线精品观看| 日韩一本色道免费dvd| 美女cb高潮喷水在线观看| 日本熟妇午夜| av又黄又爽大尺度在线免费看| 晚上一个人看的免费电影| 亚洲av国产av综合av卡| 国产精品久久久久久精品电影小说 | 日韩大片免费观看网站| 又爽又黄无遮挡网站| 色5月婷婷丁香| 日韩三级伦理在线观看| 青春草国产在线视频| 久久鲁丝午夜福利片| 亚洲内射少妇av| 真实男女啪啪啪动态图| 国产不卡一卡二| 啦啦啦啦在线视频资源| 久久热精品热| 免费观看的影片在线观看| 一级av片app| 久久久久久久久久人人人人人人| 亚洲精品日韩在线中文字幕| 亚洲av国产av综合av卡| 99久国产av精品国产电影| 黄色一级大片看看| 99九九线精品视频在线观看视频| 欧美不卡视频在线免费观看| 噜噜噜噜噜久久久久久91| 国产日韩欧美在线精品| 国产真实伦视频高清在线观看| 水蜜桃什么品种好| 大陆偷拍与自拍| 亚洲欧美日韩卡通动漫| 97超碰精品成人国产| 日韩三级伦理在线观看| 欧美成人午夜免费资源| 国产一区二区三区av在线| 国产麻豆成人av免费视频| 人体艺术视频欧美日本| 久久97久久精品| 亚洲无线观看免费| 久久人人爽人人爽人人片va| 尤物成人国产欧美一区二区三区| 3wmmmm亚洲av在线观看| 啦啦啦啦在线视频资源| 日韩人妻高清精品专区| 99久国产av精品国产电影| 免费av不卡在线播放| 成人午夜高清在线视频| 在线播放无遮挡| 亚洲18禁久久av| 99久久人妻综合| av免费观看日本| 少妇熟女欧美另类| ponron亚洲| 禁无遮挡网站| 国产精品1区2区在线观看.| 国产av国产精品国产| 麻豆成人av视频| 亚洲国产欧美在线一区| 国产色爽女视频免费观看| 又大又黄又爽视频免费| 久久精品国产亚洲网站| 日韩一本色道免费dvd| 成年人午夜在线观看视频 | 亚洲欧美日韩无卡精品| 日韩 亚洲 欧美在线| 国内少妇人妻偷人精品xxx网站| 亚洲国产精品成人久久小说| 永久网站在线| 亚洲综合精品二区| 成人亚洲欧美一区二区av| 亚洲欧美日韩卡通动漫| 国产精品99久久久久久久久| 国产亚洲最大av| 小蜜桃在线观看免费完整版高清| 又粗又硬又长又爽又黄的视频| 日本一本二区三区精品| 我的女老师完整版在线观看| 特大巨黑吊av在线直播| 黄片无遮挡物在线观看| 99热这里只有是精品在线观看| 国内少妇人妻偷人精品xxx网站| 18禁在线无遮挡免费观看视频| 欧美激情久久久久久爽电影| 最近中文字幕高清免费大全6| 色5月婷婷丁香| 一级二级三级毛片免费看| 91精品一卡2卡3卡4卡| 99九九线精品视频在线观看视频| 亚洲无线观看免费| 18禁在线播放成人免费| 亚洲三级黄色毛片| 最新中文字幕久久久久| 麻豆乱淫一区二区| 中文字幕av成人在线电影| 能在线免费观看的黄片| 久久鲁丝午夜福利片| a级毛片免费高清观看在线播放| 久久这里有精品视频免费| 亚洲熟妇中文字幕五十中出| 黄色欧美视频在线观看| 亚洲自偷自拍三级| 一级爰片在线观看| 免费不卡的大黄色大毛片视频在线观看 | 啦啦啦啦在线视频资源| 亚洲欧美精品专区久久| 亚洲成人久久爱视频| 久久精品人妻少妇| 97精品久久久久久久久久精品| freevideosex欧美| 少妇熟女欧美另类| 亚洲真实伦在线观看| 水蜜桃什么品种好| 91午夜精品亚洲一区二区三区| 中文乱码字字幕精品一区二区三区 | 婷婷六月久久综合丁香| 直男gayav资源| 亚洲av.av天堂| 亚洲在线自拍视频| 亚洲精品乱久久久久久| 亚洲av在线观看美女高潮| 亚洲欧美成人综合另类久久久| 国产单亲对白刺激| 亚洲真实伦在线观看| 美女高潮的动态| 久久国产乱子免费精品| 午夜精品国产一区二区电影 | av在线蜜桃| 国产美女午夜福利| 亚洲精品亚洲一区二区| 99热这里只有是精品在线观看| 街头女战士在线观看网站| 久久草成人影院| 男女下面进入的视频免费午夜| 亚洲美女搞黄在线观看| 日韩大片免费观看网站| 成人综合一区亚洲| a级毛片免费高清观看在线播放| 日日摸夜夜添夜夜添av毛片| 一夜夜www| 岛国毛片在线播放| 成人无遮挡网站| 亚洲第一区二区三区不卡| av女优亚洲男人天堂| 国内少妇人妻偷人精品xxx网站| 99热全是精品| 哪个播放器可以免费观看大片| 免费黄网站久久成人精品| 日日撸夜夜添| 成人一区二区视频在线观看| 国产高清国产精品国产三级 | 简卡轻食公司| 亚洲av国产av综合av卡| 亚洲精品中文字幕在线视频 | 日本与韩国留学比较| 精品人妻熟女av久视频| 国产av在哪里看| 女的被弄到高潮叫床怎么办| 少妇丰满av| 老师上课跳d突然被开到最大视频| 2018国产大陆天天弄谢| 免费看不卡的av| 国产高清有码在线观看视频| 在线a可以看的网站| 成年人午夜在线观看视频 | 欧美日韩视频高清一区二区三区二| 内射极品少妇av片p| av卡一久久| 身体一侧抽搐| 青春草国产在线视频| 男女那种视频在线观看| 亚洲av免费在线观看| 赤兔流量卡办理| 国精品久久久久久国模美| av福利片在线观看| 久久久久精品性色| 少妇人妻一区二区三区视频| 日日啪夜夜爽| 色综合站精品国产| 亚洲最大成人中文| 一级毛片我不卡| 亚洲精品aⅴ在线观看| 久99久视频精品免费| 国产女主播在线喷水免费视频网站 | 午夜激情欧美在线| 亚洲精品久久久久久婷婷小说| 欧美极品一区二区三区四区| www.色视频.com| 欧美潮喷喷水| 99九九线精品视频在线观看视频| 人人妻人人澡人人爽人人夜夜 |