• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    HELICAL SYMMETRIC SOLUTION OF 3D NAVIER-STOKES EQUATIONS ARISING FROM GEOMETRIC SHAPE OF THE BOUNDARY?

    2018-07-23 08:43:38WeifengJIANG姜偉峰

    Weifeng JIANG(姜偉峰)

    School of Sciences,Department of Mathematics,Wuhan University of Technology,Wuhan 430070,China

    E-mail:weifengjiang@163.com

    Kaitai LI(李開泰)

    School of Mathematics and Statistics,Xi’an Jiaotong University,Xi’an 710049,China

    E-mail:ktli@xjtu.edu.cn

    Abstract In this article,we investigate three-dimensional solution with helical symmetry in a gap between two concentric rotating cylinders,inside is a helicoidal surface(screw propeller)while outside is a cylindrical surface.Establish the partial differential equations and its variational formulation satisfied by a helical solution in a helical coordinate system using tensor analysis method,we provide a computational method for the power and propulsion of the screw.The existence and uniqueness of weak helical solutions are proved.

    Key words Navier-Stokes equations;helicoidal surface;rotating helical flow

    1 Introduction

    It is well known that there are many solutions with very simple spatial symmetries for the Navier-Stoke equations,for example,axially-symmetric flows,particular in pipes of circular cross-section,in the domain between two rotating cylinders.Frequently,axially-symmetric flows first lose stability at a point of bifurcation in which the axial symmetry is broken,with the bifurcation solution lying in what one call the a class of helical solutions to the Navier-Stokes equations.

    In cylindrical coordinates(r,θ,z),the velocity u and pressure in helical flows do not depend upon θ and z independently,but only on the linear combination nθ+ αz,where n and α take assigned integer and real value,respectively.Thus,a two-parameter(n,α)family of flows is defined.This family is in some sense the next most complex class beyond axially-symmetric motions.Nevertheless,this class remains essentially two-dimensional,but it is called“2D-3C flow”.

    It is well known that for the Navier-Stokes equations in three dimensions,it is not known whether weak solution is unique or whether a strong solution exists for an arbitrary time t.For the system of Navier-Stokes equations on the plane,on the one hand,existence and uniqueness results are available(see,for example,[2,5,7,9,12,13]and references therein).On the other hand,in[11],it proved uniqueness of weak solution and these weak solutions are,in fact,regular solutions existing for arbitrary time t;the global attractor for the in finite-dimensional dynamical system generated by the corresponding semi-group of helical flows to be compact and connected;estimate the Hausdorff and fractal dimensions of the global attractor in terms of the parameter of the problem.

    In this article,our goal is to study helical flow driven by rotating boundary with helicoidal surface in a domainbounded by an inner rotating screw propeller and an outer in finite cylindrical surface with radium r1>0.

    Describing this helical flow in view of tenor analysis methods different by using other method in[8]and references therein.We also study on the weak solution and strong solution of Navier-Stokes equations in helical coordinates.

    This article is organized as follows.Describe centric helical surface and helical coordinate system in Section 2 and Section 3.Same operations are formulated in Section 4.In Section 5,we establish the Navier-Stokes Equations in helical coordinate.In Sections 6 and 7,we provide the partial differential equation governing helical symmetric solution and its variational formulations;In Section 8,we derive for mulae of the power and propulsion of the screw;In Section 9,we consider the eigenvalue problems of helical Stokes flow.In Section 10,we prove the existence and uniqueness of helical solution and give a Fourier-Finite element approximation solution.

    Figure 2 Helicoid 2

    2 Centric Helicoidal Surface

    It is well known that a positive helicoid surface ΣHis a smooth immersion ? :R2→ R3defined by

    The metric tensor aαβof positive helicoidal surface ΣHin Gaussian coordinate(ξ1,ξ2)is given by

    The contravariant components of metric tensor are

    In addition,the covariant components bαβof curvature tensor of ΣH(that is,coefficients of second fundamental form of ΣH)are

    Mean curvature and Gaussian curvature are given by

    Let(yi,i=1,2,3)denote Cartesian coordinates and introduce a helical symmetry group

    where the transformation Sσ(S stands for“screw motion”)is defined by

    which is a superposition of a simultaneous rotation around the z axis with a translation along the z axis.The symmetry lines(orbits of Gκ)are concentric helices.Invariant curves for the action of the helical group Gσare helices having z=y3axis as axis of symmetry.In particular,action of Sσon the helicoidal surface ΣHdefined by(2.1)shows

    3 Helical Coordinates

    Let us establish “helical coordinates system” {xi′}which is defined by

    where constant σ >0 is periodic step,and{x1=r,x2= θ,x3=z}is a cylindrical coordinates system.(y1,y2,y3)denote Cartesian coordinate,which can be expressed in terms of helical coordinates

    By(2.1),the equations of positive helicoidal surface ΣHin helical coordinates are given by

    where(ρ,τ)are parameter,the Gaussian coordinates on ΣH.From(3.3),we obtain equations of ΣHin helical coordinates

    This shows that the equations of ΣHin helical coordinates are given by

    In other word,x3′=0 coordinate surface in helical coordinate system is a helicoidal surface while x1′=constant corresponds cylindrical surfaces.

    Proposition 3.1In the helical coordinate(xi′,i=1,2,3),x3′=0 corresponds with a helicoidal surfacecan be chosen as Gaussian coordinates on ΣH,corresponding equations describing ΣHare given by

    The associated metric tensor aα′β′of ΣHin Gaussian coordinate(ξα′,α′=1,2)are given by

    where ξ1= ρ, ξ2= τ are defined by(2.1).The curvature tensor bα′β′of ΣHin(ξ1′.ξ2′)are given by

    where

    ProofIt is enough to prove(3.6)and(3.7).Indeed,because transformation of Gaussian coordinatessatisfy

    together with(3.4),it yields

    Hence,

    which yield(3.6)and(3.7).On the other hand,taking(3.5)into account,we obtain the following formulae:

    Then,

    These coincide with(3.6)and(3.7).Thus,the proof is complete. ?

    Coordinate transformation between helical coordinates and cylindrical coordinates can be expressed as

    Let u denote the velocity of the fluid,the contravariant components of velocity vector in helical coordinates system and cylindrical coordinates system expresses respectively

    where ei′are base vectors of helical coordinates system

    and eiare base vectors of cylindrical coordinate system

    Therefore,bases of helical coordinate system and cylindrical coordinates system are respectively

    normalized basis

    The metric tensors of Euclidean space ?3in helical coordinate system read

    and in cylindrical coordinate system,

    where

    Because contravariant components gi′j′,gijof metric tensors satisfy

    and

    Remark 3.2It is well known that according to the regularity properties of tensor transformation as coordinate system occur transformation,we claim

    Simple calculations using(1.1)show that

    which coincides with(3.10).

    4 Covariant Derivatives of Laplace-Beltrami Operator and Trace Laplace Operator in Helical Coordinates

    In engineering,one would like to find physical components of velocity in cylindrical coordinates system

    It is well known that velocity module is given by

    According to transformation regular of 1-order tensor under coordinate transformation(see[8]),it infers the relations between contravariant components of velocity in helical coordinates and physical components in cylindrical coordinate

    It is clear that if contravarinat components ui′of velocity of the fluid in helical coordinates system are found,then corresponding physical component(ur,uθ,uz)in cylindrical coordinates can be obtained by(4.2).

    Throughout this article,Greek in dices and exponents belong to the set{1,2}while Latin in dices and exponents(expect when otherwise indicated,as when they are used to index sequences)belong to the set{1,2,3},and Einstein summation convention with respect to repeated in dices and exponents is systematically used.

    Next we consider Christoffel symbolof second type in helical coordinates.It is well known[8]that second type Christoffel symbol in cylindrical coordinates are

    where

    We claim,by simple calculation using(3.10)and(3.12),that

    4.1 Covariant derivatives of the velocity in helical coordinate system

    Proposition 4.1The covariant derivatives of contravariant components of the velocity in helical coordinate are

    The divergence of the velocity in helical coordinates is

    ProofIt is easy to derive(4.4)and(4.5)from(4.2).

    Proposition 4.2The Laplace-Beltrami Operator for the scale field and the trace-Laplace operator for the tensor of first order(vector field)are given,respectively,by

    and

    which can also be expressed in terms of physical components in cylindrical coordinate

    Remark 4.3The followings is more useful

    ProofIndeed,we have

    Owing to(3.12)and(4.2),it yields

    Combining the above formulae with(3.16)yields(4.7)

    On the other hand,trace-Laplace operator act on velocity vector

    In details,we obtain

    In a similar manner,we obtain the following formulae:

    Accoding to Riesz formula in tensor analysis([8]),we have

    To sum up,it is easy to derive(4.8).Taking into account(4.2),it yields(4.9).Moreover,letting(4.82)±(4.83),using(4.2)we obtain(4.10).Thus,the proof is complete. ?

    Proposition 4.4Relative acceleration velocity and Coriolis acceleration in Helical Coordinates are given by

    In terms of physical components,we have

    while contravariant components of Coriolis acceleration 2~ω×u in helical coordinated are

    ProofUsing(4.4)and(3.14)(3.16),simple calculations show(4.11)and(4.12).

    Next,we consider Coriolis acceleration in helical coordinates.Assume that the coordinate are rotating along z-axes with angular vector~ω.The Coriolis acceleration is 2~ω×u,reading it in helical coordinate

    by virtue of(4.15),(4.16)and(3.14),(3.16),it yields(4.13)and(4.14).Thus,the proof is complete. ?

    In addition,we give the following formulae for gradient,divergence,and vorticity operators in helical coordinates

    Vorticity in Helical Coordinate System is given by covariant form

    Using(3.10)and(4.4),simple calculation show that

    Similarly,we have

    Hence,we obtain

    Expressing it in terms of(ur,uθ,uz)and noting,we assert that

    In terms of physical components in cylindrical coordinate,rotation of the velocity shows

    For the helical velocity,that is,using stream functions

    then,we obtain

    5 NSE in Helical Coordinate Systems

    We consider the Navier-Stokes equations in a domain ? between ΣHand in finite cylindrical surface r=r1with periodic step σ >0.LetIn helical coordinate,letmap intois clear that(3.1)shows that

    Then,set 2D-3C(two-dimensional,3 components)Sobolev space as

    In what follows,Latin indices and exponents:(i,j,k·)take their values in the set{1,2,3},while Greek indices and exponents(α,β,γ,···)take their values in the set{1,2}.In addition,Einstein’s summation convention with respect to repeated indices and exponents is used.

    We can therefore state the initial boundary value problem for the rotating Navier-Stokes equations in the fundamental domain

    Proposition 5.1In helical coordinate system,Navier-Stokes Equations read

    which can be expressed in terms of physical components(ur,uθ,uz)of velocity in cylindrical coordinate

    ProofLet us write(5.1)in covariant invariant form

    Taking into account Proposition 3.1,we find

    It is obvious that(5.4)is(5.2).To prove(5.3),note

    This is(5.32).In a similar manner,making subtractleads to(5.33)directly.Thus,this ends our proof.

    6 Helical Symmetric Solution of Navier-Stokes Equations

    Helical symmetry is invariance under a one-dimensional group of rigid motions generated by a simultaneous rotation around a fixed axis and translation along the same axis.The key parameter in helical symmetry is the step or pitch σ,the magnitude of the translation after rotating one full turn around the symmetry axis.

    In Cartesian coordinates(y1,y2,y3),the action of helical group of transformation Gσon?3is defined by

    that is,a superposition of a simultaneous rotation around the y3axis with translation along the y3.Gσis uniquely determined by σ,which is called the step,or pitch.Invariant curves for the action of the helical group Gσare helices having the y3axis as axis of symmetry.The cylinderis an invariant set for the action of Gσfor all σ.A change of the sign in σ corresponds to switching the orientation of the helices preserved by the group action from right-handed to left-handed.Without loss of generality,we will restrict our attention to the case of σ>0.

    Taking(3.1)into account,in the helical coordinates(xi′,i=1,2,3),the action of helical group of transformations Gσsubstituting(3.1)into(6.1)becomes

    because of

    It is well known that after transformation of the coordinate,a velocity vector u’of the fluid areaccording to the rule of transformation of the tensor under transformation of coordinates.Hence,we concludefrom(6.2)

    Lemma 6.1A solution{u,p}of Navier-Stokes equations is a helical symmetric solution,if and only if which is independent of x3′in helical coordinate,that is,

    Proposition 6.2The helical symmetric solutions(u,p)for NSE satisfy the following formulae:

    which can be expressed in terms of physical components(ur,uθ,uz)of velocity in cylindrical coordinate

    ProofIndeed,we have

    where ξ=x2′.By

    therefore

    Hence,the above second equations becomes

    Coming back,it yields(6.4).Thus,the proof is complete.

    It is clear that(6.34)or(6.43)allow us to define stream function ψ as

    Of course,(6.34)and(6.44)are trivial,

    In order to eliminate the terms containing pressure,makingleads to

    Substituting(6.5)into(6.6),then calculations show that

    On the other hand,making d(r)× (6.42)–(6.43),we claim

    Because

    simple calculations show that

    Taking the definition of stream function into account,we claim

    or

    Finally,we conclude that the stream functions(ψ,uz)satisfy the following boundary value problem.

    Proposition 6.3The stream functions(ψ,uz)for Navier-Stokes equation in domainin helical coordinate satisfy the following boundary value problem

    It is clear that this is a 2D-3C(two dimensional problem with three components of the velocity vector field of the fluid)problem.

    Associated steady state Stokes equations are given by

    7 Variational Formulations

    It is well known that invariant formulation for rotating Navier-Stokes equation(5.1)with boundary conditions and initial condition is given by

    It is well known that the domain occupied by incompressible fluids in ?3is denoted by ?,which is a gap between helicoid ΣHdefined by(2.1)and cylindrical surface

    Let us introduce Sobolev spaces as follows:

    Also,we set

    Moreover,we set

    Note that divV is invariant form at any coordinate.We observe that

    Then,we denote the inner product in H by

    Because gi′j′is a positive definite matrix,the associated norm byis easy to show that the classical Poincare inequality also valid:the inner product inis equivalent to the inner product

    associated with the Dirichlet norm denoted by k·k.

    Proposition 7.1Variational formulation associated with(7.1)is given by

    where in helical coordinates,trilinear forms and bilinear form are given by

    Each term also can be expressed in terms of physical components(ur,uθ,uz)of cylindrical coordinates for the velocity of the fluid,

    ProofIndeed, firstly let us consider nonlinear term.By virtue of(3.14)and(4.4),in helical coordinate,we have

    Because d(r)is independent of(x2′,x3′)andwe obtain

    Hence,

    To consider Coriolis force term,note that from(3.12),

    then we assert that

    Hence,

    These are(7.7).In addition,we see that

    From this,it yields the second of(7.6).

    Next,we consider bilinear form corresponding to dissipative term

    Because

    finally,we have

    Applying(4.2),we obtain

    Using physical components of velocity in cylindrical coordinate

    and taking the following equalities into account

    we obtain

    Substituting it into(7,9)leads to

    If u is a helical symmetric solution,then

    It infers(7.8).Similarly,it is not difficult to complete our proof for the proposition.

    Variational formulation for helical symmetric solutions

    In a similar manner as in Proposition 7.1,we assert

    Proposition 7.2Variational formulation for the helical symmetric solution of NSE in helical coordinates is given by

    By(5.34),we introduce the stream function defined by(6.5)and used unknown(ψ,uz).Then,from Proposition 7.2,we immediately obtain

    Proposition 7.3The stream functions(ψ,uz),defined by(6.5)

    satisfy the following variational problem

    where

    Here,to get the expression of a((ψ,uz),(ψ?,vz)),we useand

    Remark 7.4The norms of Sobolev spaces of L2(?),H1(?)in helical coordinate system are equivalent to the following norms

    while

    8 The Power and Propulsion of the Screw

    The contravariant components and covariant components of total stress tensor acting on ΣHin helical coordinate are given by

    where covariant and contravariant components of strain tensor for the fluid velocity are given by

    The normal stress vector and tangent stress vector with unit normal vector n and unit tangent vectorto ΣHare,respectively,

    where ni′are contravariant components of n in helical coordinate

    Because our assumption is the fluid to be incompressible,hence divu=0.Propulsion force T and Power rate W are

    where er,eθ,k are base vectors of cylindrical coordinate system

    It is clear that(8.3)shows that in order to find T,W,we have to give contravariant components of vector k,eθ,n.To do that,by virtue of(3.12)and(3.13),it is easy to obtain the following formulae:

    In addition,reθ=e2= ?rsinθi+rcosθj,that is,

    Next,we find ni′in helical coordinates.At the first,let S denote two dimensional manifold generated by helical coordinate lines x1′and x2′,and let TS denote the tangent plane spanning on based vector(e1′,(e2′)of helical coordinate system.The unite normal vector n to TS at point(x1′,x2′,x3′)is determinate by

    By virtue of(3.12),

    we assert that

    Therefore,we have

    On the other hand,solving(i,j,k)in terms of(ei′,i′=1′,2′,3′)from(3.12)leads to

    Taking(8.9)and(8.10)into account,it yields by simple calculations that

    In particular,consider the normal vector at helicoid surface x3′=0.Let ξ=x2′,thenWe assert

    Let us return to(8.3).At the first,we consider incompressible flow.By virtue of(8.7)and(8.13),we have

    At the first,by computing,we have

    (3.14)shows

    It yields that

    Finally,we assert

    By virtue of(3.14)and(4.4),we have

    To sum up,we assert

    Next,taking(8.14)into account,we get

    Calculations show that

    From this,it yields

    Therefore,

    Hence,we find

    So,owing to J(u)=?J0p+μJm(u),we have

    Thus,we obtain

    Finally,we conclude

    Proposition 8.1For the helical flow,the power T and propulsion W defined by(8.3)can be computed by the following formulae

    where I(u,p)and J(u,p)are given by

    If the flows are helical,then

    which can be expressed in terms of stream functions,

    9 Stokes Operator and its Eigenvalue Problem in Helical Coordinates

    We consider the following Stokes equations with mixed boundary conditions,that is,periodic in the z-direction and homogeneous Dirichlet on the surfacesof the cylinder and the helicoid.It is well known that Stokes equations are an invariant form in any curvilinear coordinate system.For the homogeneous Dirichlet boundary conditions on whole boundary??,what follows that we set

    where(y1,y2,y3)are Cartesian coordinate.

    In[2]Constantin and Foias established existence,uniqueness and regularity results,and proved that Stokes operator is self-adjoint and positive definite and there exists a compact inverse operator of the Stokes operator.Therefore,there are complete orthogonal system of eigenfunctions for the Hilbert space H.On the other hand,there is a diffeomorphism mapping from ?σ0into a solid torus T in R3in which Stokes equations can be expressed as

    where gijare contravariant components of the metric tensor of R3in a certain coordinate,?iare covariant derivative operator.Because of positive definition of metric tensor gij,equations(9.2)are an elliptic partial equations.Therefore,there are similar results for(9.2)(see[1]and[4]).In(9.2),u is required to satisfy only the homogenous boundary conditions sine the C∞-diffeomorphism,which provides the equivalence between(9.1)and(9.2),identifies the top and the bottom of,that is,identifies the disk{gap of(with the disk{gap ofBy virtue of results in[2],we could establish existence,uniqueness,and regularity(see[11]).

    Theorem 9.1LetThen,there exists a uniqueandsatisfying Stokes system(9.1).Moreover,

    where cσis a constant which depends only on σ.

    Moreover,the abstract Stokes operator can be defined by A=?P△,which is symmetric and self-adjoint and has a compact inverse operator A?1,and there exists a sequence of positive eigenvalues 0< λ1≤ λ2···≤ λj≤ λj+1≤ ···and a sequence of corresponding eigenfunctions uk,k=1,2,···,Auk= λkuk.

    Next,let us consider eigenvalue problem of Stokes equations with mixed boundary conditions in helical coordinates.By virtue of(6.4)and(6.9),we obtain eigenvalue problem for(u,p)and stream functions

    Proposition 9.2The stream functions(ψ,uz),defined by(6.5),that is,and,satisfy the eigenvalue problem associated with(9.3),

    (9.4)can be rewritten as

    wher e

    Associated variational formulations is given by

    wher e

    There are in finite eigenvalues 0< λ1≤ λ2≤ ···of eigenvalue problem(9.3),therefore for(9.7),we have corresponding helical eigenfunctions uk∈ H and(ψ,uz)∈ V.Because vector u=(ur,uθ,uz),pressure p,and(ψ,uz)∈ V are periodic functions with periods 2σ with respect to variable ξ,we assume that

    Substituting(9.10)into(9.8),taking orthogonality of Fourier functions and noting

    we obtain

    and

    Combining(9.8),(9.11)and(9.12),we find

    Simple calculations show that

    Because Fourier functions are independent and complete in Sobolev spaces,taking(9.11)and(9.14)into account,we obtain

    Because

    from(9.16),we assert

    免费高清在线观看视频在线观看| 亚洲欧美成人综合另类久久久| 777米奇影视久久| 人人澡人人妻人| 欧美国产精品va在线观看不卡| 久久久精品区二区三区| 免费看不卡的av| 欧美精品一区二区大全| 国产一区亚洲一区在线观看| 丰满少妇做爰视频| 男人爽女人下面视频在线观看| 中文字幕最新亚洲高清| 深夜精品福利| kizo精华| 精品人妻在线不人妻| 熟女av电影| 国产一区二区激情短视频 | 乱人伦中国视频| 男女床上黄色一级片免费看| 亚洲天堂av无毛| 久久热在线av| 久久精品久久久久久久性| 热99久久久久精品小说推荐| 一级,二级,三级黄色视频| 中文精品一卡2卡3卡4更新| 欧美乱码精品一区二区三区| 亚洲第一av免费看| 亚洲第一区二区三区不卡| 亚洲av国产av综合av卡| 哪个播放器可以免费观看大片| 午夜激情久久久久久久| 啦啦啦中文免费视频观看日本| 97人妻天天添夜夜摸| 秋霞在线观看毛片| 人人妻,人人澡人人爽秒播 | 高清视频免费观看一区二区| 精品酒店卫生间| 亚洲精品视频女| 日日撸夜夜添| 午夜激情久久久久久久| av电影中文网址| 欧美亚洲日本最大视频资源| 国产精品麻豆人妻色哟哟久久| 日韩一区二区视频免费看| 欧美激情极品国产一区二区三区| 亚洲av欧美aⅴ国产| 操出白浆在线播放| 亚洲国产欧美在线一区| 成人国产av品久久久| 国产亚洲最大av| 综合色丁香网| 黄色视频在线播放观看不卡| 亚洲专区中文字幕在线 | 精品一区在线观看国产| 欧美日本中文国产一区发布| 一区二区日韩欧美中文字幕| 熟女av电影| 18禁国产床啪视频网站| 午夜福利一区二区在线看| 九草在线视频观看| 久久av网站| 99re6热这里在线精品视频| 午夜日本视频在线| 国产亚洲欧美精品永久| 丰满迷人的少妇在线观看| 国产成人a∨麻豆精品| 九色亚洲精品在线播放| 高清在线视频一区二区三区| 99国产精品免费福利视频| 国产免费福利视频在线观看| 男女边摸边吃奶| 亚洲av国产av综合av卡| 久久久精品国产亚洲av高清涩受| 亚洲精品乱久久久久久| 男人爽女人下面视频在线观看| 精品一品国产午夜福利视频| 久久性视频一级片| 国产1区2区3区精品| 最近的中文字幕免费完整| 性色av一级| 丰满乱子伦码专区| 自拍欧美九色日韩亚洲蝌蚪91| 婷婷成人精品国产| 亚洲精品国产av蜜桃| 性少妇av在线| 久久韩国三级中文字幕| 久久人人爽人人片av| 青春草视频在线免费观看| 亚洲第一区二区三区不卡| 国产成人91sexporn| 亚洲精品国产色婷婷电影| 在现免费观看毛片| 久热这里只有精品99| 男女下面插进去视频免费观看| 久久精品人人爽人人爽视色| 欧美黄色片欧美黄色片| 国产av一区二区精品久久| 美女午夜性视频免费| 美女国产高潮福利片在线看| 国产成人a∨麻豆精品| 丁香六月欧美| 热re99久久国产66热| 日韩成人av中文字幕在线观看| 久久午夜综合久久蜜桃| 青青草视频在线视频观看| 国产精品一区二区在线不卡| 欧美另类一区| 国产精品免费大片| 亚洲av电影在线观看一区二区三区| av一本久久久久| e午夜精品久久久久久久| 欧美人与性动交α欧美精品济南到| 亚洲成色77777| 中文字幕另类日韩欧美亚洲嫩草| 天堂中文最新版在线下载| 菩萨蛮人人尽说江南好唐韦庄| 国产免费一区二区三区四区乱码| 日韩视频在线欧美| 只有这里有精品99| 日本爱情动作片www.在线观看| 欧美亚洲日本最大视频资源| 天天添夜夜摸| 成人三级做爰电影| 麻豆乱淫一区二区| av有码第一页| 如日韩欧美国产精品一区二区三区| 99国产综合亚洲精品| 久久精品人人爽人人爽视色| 成年动漫av网址| 成年动漫av网址| 亚洲国产精品999| 午夜免费男女啪啪视频观看| 黄色视频不卡| 精品国产乱码久久久久久男人| 交换朋友夫妻互换小说| 久久精品亚洲av国产电影网| 亚洲欧美成人综合另类久久久| 免费不卡黄色视频| 自拍欧美九色日韩亚洲蝌蚪91| 中文字幕最新亚洲高清| 亚洲色图综合在线观看| 91精品伊人久久大香线蕉| 大片免费播放器 马上看| 免费在线观看视频国产中文字幕亚洲 | 最近最新中文字幕免费大全7| 国产熟女午夜一区二区三区| 在线观看免费日韩欧美大片| 在线观看免费日韩欧美大片| 国产色婷婷99| 欧美亚洲日本最大视频资源| 晚上一个人看的免费电影| 天天躁日日躁夜夜躁夜夜| av国产精品久久久久影院| 国产成人免费无遮挡视频| 欧美人与性动交α欧美软件| 日本欧美国产在线视频| 国产精品国产三级国产专区5o| 亚洲精品中文字幕在线视频| 亚洲专区中文字幕在线 | 国产精品秋霞免费鲁丝片| 桃花免费在线播放| 国产精品欧美亚洲77777| xxxhd国产人妻xxx| 夜夜骑夜夜射夜夜干| 精品国产超薄肉色丝袜足j| www.自偷自拍.com| 日韩视频在线欧美| 美女主播在线视频| 国产老妇伦熟女老妇高清| 国产午夜精品一二区理论片| 99香蕉大伊视频| 99九九在线精品视频| 国产免费又黄又爽又色| 男人操女人黄网站| 男人爽女人下面视频在线观看| 18禁国产床啪视频网站| 狂野欧美激情性xxxx| 97人妻天天添夜夜摸| 国产午夜精品一二区理论片| 女人精品久久久久毛片| 另类精品久久| 精品福利永久在线观看| 亚洲精品av麻豆狂野| 日本91视频免费播放| 纵有疾风起免费观看全集完整版| 91精品国产国语对白视频| 嫩草影视91久久| 制服丝袜香蕉在线| 免费观看性生交大片5| 晚上一个人看的免费电影| 99国产精品免费福利视频| 街头女战士在线观看网站| 电影成人av| 99香蕉大伊视频| 亚洲情色 制服丝袜| 亚洲综合精品二区| 丰满饥渴人妻一区二区三| 搡老岳熟女国产| 波野结衣二区三区在线| 黄片无遮挡物在线观看| 一本色道久久久久久精品综合| 久久99热这里只频精品6学生| 侵犯人妻中文字幕一二三四区| 国产亚洲精品第一综合不卡| 岛国毛片在线播放| 精品国产乱码久久久久久小说| 2018国产大陆天天弄谢| 少妇猛男粗大的猛烈进出视频| 悠悠久久av| 国产有黄有色有爽视频| 国产av国产精品国产| 天天影视国产精品| 日韩精品有码人妻一区| 一级黄片播放器| 亚洲av电影在线进入| 国产成人啪精品午夜网站| 悠悠久久av| 国产成人精品久久二区二区91 | 日韩一区二区视频免费看| 中文天堂在线官网| 亚洲国产欧美在线一区| 制服人妻中文乱码| a级毛片黄视频| 欧美在线黄色| 国产av码专区亚洲av| 男女床上黄色一级片免费看| 欧美xxⅹ黑人| 成年女人毛片免费观看观看9 | 91aial.com中文字幕在线观看| 欧美中文综合在线视频| 国产 精品1| 一区福利在线观看| 欧美日韩一区二区视频在线观看视频在线| 看免费av毛片| 宅男免费午夜| 欧美日韩亚洲国产一区二区在线观看 | 日韩免费高清中文字幕av| 尾随美女入室| 欧美国产精品一级二级三级| 在线观看一区二区三区激情| 久久久精品国产亚洲av高清涩受| 精品国产超薄肉色丝袜足j| 亚洲欧美一区二区三区黑人| 男男h啪啪无遮挡| 国产成人午夜福利电影在线观看| 中文精品一卡2卡3卡4更新| 国产亚洲一区二区精品| 久久久久久久久久久久大奶| 热99国产精品久久久久久7| 久久天堂一区二区三区四区| 亚洲天堂av无毛| 高清av免费在线| 丰满迷人的少妇在线观看| 狂野欧美激情性bbbbbb| 亚洲人成网站在线观看播放| 亚洲欧美精品自产自拍| 国产成人啪精品午夜网站| 一级a爱视频在线免费观看| 热99久久久久精品小说推荐| 一区二区三区精品91| 高清av免费在线| 超碰成人久久| 国产在线一区二区三区精| 捣出白浆h1v1| av在线观看视频网站免费| 丰满乱子伦码专区| 国产精品99久久99久久久不卡 | 精品久久久久久电影网| 99久久综合免费| 国产成人欧美| 日韩一本色道免费dvd| 国产1区2区3区精品| 自线自在国产av| 天天添夜夜摸| 免费在线观看黄色视频的| 男女国产视频网站| 99九九在线精品视频| 国产爽快片一区二区三区| 人妻一区二区av| 男女边摸边吃奶| 高清av免费在线| 欧美精品亚洲一区二区| 另类精品久久| 人人妻人人爽人人添夜夜欢视频| 最新的欧美精品一区二区| 国产精品免费大片| 老司机在亚洲福利影院| 久久精品aⅴ一区二区三区四区| 欧美激情 高清一区二区三区| 亚洲国产欧美一区二区综合| 国产成人啪精品午夜网站| 无限看片的www在线观看| 国产免费又黄又爽又色| 人成视频在线观看免费观看| 国产成人啪精品午夜网站| 99久国产av精品国产电影| 一区福利在线观看| 国产女主播在线喷水免费视频网站| 免费av中文字幕在线| 成年人午夜在线观看视频| 久久狼人影院| 欧美人与善性xxx| 观看av在线不卡| 卡戴珊不雅视频在线播放| 王馨瑶露胸无遮挡在线观看| 91国产中文字幕| 可以免费在线观看a视频的电影网站 | 国产97色在线日韩免费| 大片免费播放器 马上看| 国产精品香港三级国产av潘金莲 | 中文字幕人妻丝袜一区二区 | 国产av国产精品国产| 18禁观看日本| 久久精品国产亚洲av涩爱| 亚洲国产av新网站| www日本在线高清视频| 亚洲一区中文字幕在线| 久久精品aⅴ一区二区三区四区| 纵有疾风起免费观看全集完整版| 最黄视频免费看| 中文字幕高清在线视频| 国产在线一区二区三区精| 国产精品 国内视频| 亚洲色图综合在线观看| 国产日韩欧美亚洲二区| 久久免费观看电影| 天天躁日日躁夜夜躁夜夜| 欧美激情 高清一区二区三区| 亚洲美女视频黄频| 黄色视频在线播放观看不卡| 99国产精品免费福利视频| 日韩大片免费观看网站| 国产亚洲av高清不卡| 老司机影院毛片| 国产视频首页在线观看| 亚洲av成人不卡在线观看播放网 | 乱人伦中国视频| 男女边摸边吃奶| 大片免费播放器 马上看| 熟女av电影| 一本色道久久久久久精品综合| 成人国语在线视频| 看免费成人av毛片| 看非洲黑人一级黄片| 日日摸夜夜添夜夜爱| 日韩制服丝袜自拍偷拍| 欧美在线一区亚洲| 男女国产视频网站| 久久久久久久国产电影| 欧美精品人与动牲交sv欧美| 亚洲精品av麻豆狂野| 国产无遮挡羞羞视频在线观看| 国产av码专区亚洲av| 国产精品三级大全| 欧美 日韩 精品 国产| 亚洲第一区二区三区不卡| 国精品久久久久久国模美| 久久毛片免费看一区二区三区| 日本wwww免费看| 国产 精品1| 久久久久久免费高清国产稀缺| 好男人视频免费观看在线| 十八禁高潮呻吟视频| 老司机影院毛片| 亚洲精品日韩在线中文字幕| 人妻人人澡人人爽人人| 亚洲欧美成人精品一区二区| 欧美日韩视频精品一区| 一本久久精品| 18禁观看日本| 亚洲欧美一区二区三区黑人| 日韩人妻精品一区2区三区| 大香蕉久久网| 久久久久国产一级毛片高清牌| 建设人人有责人人尽责人人享有的| 久久人妻熟女aⅴ| 国产成人av激情在线播放| 午夜影院在线不卡| 久久精品久久久久久噜噜老黄| 国产 精品1| 色网站视频免费| 国产亚洲最大av| 少妇精品久久久久久久| 黄片无遮挡物在线观看| a级毛片黄视频| 国产男女超爽视频在线观看| 精品一区二区三区av网在线观看 | 青春草国产在线视频| 男女之事视频高清在线观看 | 啦啦啦在线观看免费高清www| 天天躁夜夜躁狠狠躁躁| 又大又爽又粗| 高清欧美精品videossex| 欧美人与善性xxx| 欧美少妇被猛烈插入视频| 国产野战对白在线观看| 亚洲一级一片aⅴ在线观看| 搡老岳熟女国产| 亚洲精品国产一区二区精华液| h视频一区二区三区| 激情五月婷婷亚洲| 亚洲,欧美精品.| 久久久久久久精品精品| 欧美最新免费一区二区三区| 免费在线观看视频国产中文字幕亚洲 | 丁香六月天网| 一本色道久久久久久精品综合| 天天影视国产精品| av一本久久久久| 深夜精品福利| 最新的欧美精品一区二区| 韩国av在线不卡| 久久性视频一级片| 自线自在国产av| 七月丁香在线播放| 男女无遮挡免费网站观看| 一级毛片电影观看| 久久久久精品人妻al黑| 嫩草影院入口| 久久99一区二区三区| 亚洲欧美精品综合一区二区三区| 在线观看免费日韩欧美大片| 久久久久久人妻| 日日撸夜夜添| 日韩精品免费视频一区二区三区| 精品第一国产精品| 国产在线视频一区二区| av国产久精品久网站免费入址| 黄频高清免费视频| 国产精品免费视频内射| 国产熟女午夜一区二区三区| 极品少妇高潮喷水抽搐| 午夜激情久久久久久久| 宅男免费午夜| 91精品伊人久久大香线蕉| 香蕉丝袜av| 亚洲一区中文字幕在线| 中文欧美无线码| 999精品在线视频| 精品国产一区二区久久| 日韩 欧美 亚洲 中文字幕| 伦理电影免费视频| 大香蕉久久网| 国产精品熟女久久久久浪| 久久免费观看电影| 悠悠久久av| 99热网站在线观看| 久久精品aⅴ一区二区三区四区| 9色porny在线观看| 夫妻性生交免费视频一级片| 曰老女人黄片| 日本av免费视频播放| 亚洲av成人不卡在线观看播放网 | 久久精品久久久久久噜噜老黄| 涩涩av久久男人的天堂| svipshipincom国产片| 99国产精品免费福利视频| 色视频在线一区二区三区| 亚洲,欧美,日韩| 欧美精品av麻豆av| 人人妻,人人澡人人爽秒播 | 亚洲精品国产区一区二| 老司机影院毛片| 女性被躁到高潮视频| 视频在线观看一区二区三区| 女的被弄到高潮叫床怎么办| 桃花免费在线播放| 久久毛片免费看一区二区三区| 日本av手机在线免费观看| 色网站视频免费| 老司机在亚洲福利影院| av免费观看日本| 亚洲少妇的诱惑av| 黑人猛操日本美女一级片| 在线精品无人区一区二区三| 亚洲综合精品二区| 18在线观看网站| 天天躁夜夜躁狠狠躁躁| 国产亚洲欧美精品永久| 亚洲,欧美精品.| 嫩草影院入口| 亚洲国产欧美一区二区综合| 欧美 日韩 精品 国产| 中国三级夫妇交换| 18禁国产床啪视频网站| 国产1区2区3区精品| 亚洲七黄色美女视频| 欧美精品亚洲一区二区| 在线观看免费午夜福利视频| 欧美在线黄色| 校园人妻丝袜中文字幕| 亚洲欧洲精品一区二区精品久久久 | 日本欧美视频一区| 亚洲精品视频女| 日本wwww免费看| 黄网站色视频无遮挡免费观看| 纵有疾风起免费观看全集完整版| 咕卡用的链子| 亚洲国产精品999| 欧美精品av麻豆av| 午夜福利乱码中文字幕| 亚洲成国产人片在线观看| 黄色 视频免费看| 亚洲人成电影观看| 色播在线永久视频| 午夜福利,免费看| 精品国产一区二区久久| 妹子高潮喷水视频| 国产成人精品久久二区二区91 | netflix在线观看网站| 亚洲欧美成人精品一区二区| 99热网站在线观看| 亚洲成人免费av在线播放| 国产精品秋霞免费鲁丝片| 另类精品久久| 日本av免费视频播放| 少妇 在线观看| 视频在线观看一区二区三区| 一区二区三区乱码不卡18| 日韩一区二区视频免费看| 国产国语露脸激情在线看| 97精品久久久久久久久久精品| 日韩av在线免费看完整版不卡| 好男人视频免费观看在线| 宅男免费午夜| 成人漫画全彩无遮挡| 1024香蕉在线观看| 精品一区在线观看国产| 美女中出高潮动态图| 大片电影免费在线观看免费| 日本欧美视频一区| 一边亲一边摸免费视频| 男女无遮挡免费网站观看| √禁漫天堂资源中文www| 少妇被粗大的猛进出69影院| 搡老乐熟女国产| 国产伦理片在线播放av一区| 久久久精品94久久精品| 国产av一区二区精品久久| 免费观看性生交大片5| 天堂中文最新版在线下载| 999精品在线视频| 国产男人的电影天堂91| 在线天堂中文资源库| 国产精品久久久久久精品电影小说| 看非洲黑人一级黄片| 欧美黑人精品巨大| 大片免费播放器 马上看| 伊人亚洲综合成人网| 亚洲专区中文字幕在线 | 日日啪夜夜爽| 一级毛片 在线播放| 一级爰片在线观看| 亚洲熟女精品中文字幕| 天天躁夜夜躁狠狠躁躁| 人人妻人人澡人人看| 青春草国产在线视频| 欧美在线一区亚洲| 亚洲成人手机| 久久鲁丝午夜福利片| 国产视频首页在线观看| 国产又爽黄色视频| 69精品国产乱码久久久| 中文字幕亚洲精品专区| 十八禁人妻一区二区| 黄网站色视频无遮挡免费观看| 一区二区三区精品91| 欧美成人午夜精品| 天天躁夜夜躁狠狠久久av| 老司机影院成人| 男的添女的下面高潮视频| 麻豆乱淫一区二区| 一区二区三区精品91| 亚洲国产成人一精品久久久| 一区二区av电影网| 国产亚洲av片在线观看秒播厂| 中国三级夫妇交换| 精品一区二区三卡| 日本猛色少妇xxxxx猛交久久| 国产精品国产av在线观看| 校园人妻丝袜中文字幕| 亚洲av日韩精品久久久久久密 | 成人国语在线视频| 两个人免费观看高清视频| 国产成人av激情在线播放| 美女高潮到喷水免费观看| 丰满少妇做爰视频| 51午夜福利影视在线观看| 国产精品国产三级国产专区5o| 国产精品一国产av| 久久久久久人人人人人| 亚洲美女视频黄频| 丁香六月天网| 欧美日韩亚洲国产一区二区在线观看 | 一边摸一边做爽爽视频免费| 国产精品久久久久久人妻精品电影 | 啦啦啦视频在线资源免费观看| 宅男免费午夜| 亚洲 欧美一区二区三区| 色网站视频免费| www日本在线高清视频| 久久精品国产亚洲av高清一级| 热99国产精品久久久久久7| 亚洲一码二码三码区别大吗| 最近手机中文字幕大全| 国产福利在线免费观看视频| 狂野欧美激情性bbbbbb| 满18在线观看网站| 午夜激情av网站| 超色免费av| 自线自在国产av| 亚洲综合色网址| 男女床上黄色一级片免费看| 丰满少妇做爰视频| 亚洲精品自拍成人|