摘要:應(yīng)用ManásevichMawhin 連續(xù)性定理,研究了具偏差變元的含有2個(gè)pLaplacian算子的微分方程周期解的存在性,獲得了周期解存在的新的充分性條件,并通過實(shí)例說明本文結(jié)論的有效性.
關(guān)鍵詞:周期系統(tǒng);pLaplacian算子;周期解;存在性;ManásevichMawhin連續(xù)定理
中圖分類號(hào):O175.6 文獻(xiàn)標(biāo)識(shí)碼:A
4 結(jié)論
本文應(yīng)用ManásevichMawhin的連續(xù)性定理和一些分析技巧,在沒有f(0)=0和∫2π0e(t)dt=0的條件下,得到了pLaplacian方程(3) 存在2π周期解的新的充分性條件.
參考文獻(xiàn)
[1] LIU Bingwen. Periodic solutions for Liénard type pLaplacian equation with a deviating argument [J]. Journal of Computational and Applied Mathematics, 2008, 214(1): 13-18.
[2] LU Shiping. New results on the existence of periodic solutions to a pLaplacian differential equation with a deviating argument[J]. Journal of Mathematical Analysis and Applications, 2007,336 (2):1107-1123.
[3] MNASEYICH R, MAWHIN J L. Periodic solutions for nonlinear systems with pLaplacianlike operators[J].Journal of Differential Equations, 1998,145(2):367-393.
[4] ZHANG Fuxing,LI Ya.Existence and uniqueness of periodicsolutions for a kind of Duffing type pLaplacian equation[J]. Nonlinear Analysis: Real World Applications, 2008,9(1):985-989.
[5] ZHOU Yinggao,TANG Xianhua.Periodic solutions for a kind of Rayleigh equation with a deviating argument[J].Computers Mathematics with Applications, 2007,53(5):825-830.
[6] ZONG Minggang, LIANG Hongzhen.Periodic solutions for Rayleigh type pLaplacian equation with deviating arguments[J]. Applied Mathematics Letters, 2007,20(1):43-47.
[7] XIAO Bing, LIU Bingwen.Periodic solutions for Rayleigh type pLaplacian equation with a deviating argument[J].Nonlinear Analysis:Real World Applications, 2009,10(1):16-22.
[8] WANG Genqiang, YAN Jurang. On existence of periodic solutions of the Rayleigh equation of retarded type[J]. The International Journal of Mathematics and Mathematical Sciences, 2000,23 (1): 65-68.
[9] WANG Genqiang, CHENG Suisun. A priori bounds for periodic solutions of a delay Rayleigh equation[J]. Applied Mathematics Letters,1999,12(3):41-44.