摘要:在Quantales理論中引入導(dǎo)子的概念,探討了Quantales中運(yùn)算的性質(zhì),并研究了左(右,雙)側(cè)元導(dǎo)子的包含關(guān)系,最后討論了簡(jiǎn)單導(dǎo)子的相應(yīng)性質(zhì).
關(guān)鍵詞:計(jì)算科學(xué);Quantale;導(dǎo)子;左(右,雙)側(cè)元;子Quantale;理想;簡(jiǎn)單導(dǎo)子
中圖分類號(hào):O153.1 文獻(xiàn)標(biāo)識(shí)碼:A
參考文獻(xiàn)
[1] MULVEY C J. [J]. Suppl Rend Circ Nat Palermo, 1986, 12(2):99-104.
[2] ROSENTHAL K I. Quantales and their applications [M]. New York:Longman Scientific Technical,1990.
[3] PICADO J. The quantale of Galois connections [J]. Algebra Universalis, 2004, 52 (4):527-540.
[4] 王順欽,趙彬.Prequantale 同余及其性質(zhì)[J]. 數(shù)學(xué)進(jìn)展,2005, 34(6):746-752.
WANG Shunqin, ZHAO Bin.Prequantale congruence and its properties [J]. Advances in Mathmatics, 2005, 34(6):746-752.(In Chinese)
[5] 趙彬,梁少輝.雙Quantale模范疇[J]. 數(shù)學(xué)學(xué)報(bào),2009, 52(4): 199-210.
ZHAO Bin, LIANG Shaohui, The category of double Quantale modules[J]. Acta Mathematica Sinica,2009, 52(4):199-210. (In Chinese)
[6] 周異輝,趙彬. 對(duì)合Quantale范疇中的自由對(duì)象及其良冪性[J]. 工程數(shù)學(xué)學(xué)報(bào), 2006, 23(2): 216-224.
ZHOU Yihui, ZHAO Bin.The free objects in the category of involutive Quantales and its property of wellpowered [J]. Chinese Journal of Engineering Mathematics, 2006,23(2): 216-224. (In Chinese)
[7] POSNER E.Derivations in prime rings [J].Proceedings of American Mathmatical Society, 1957, 8(6): 1093-1100.
[8] JUN Y B,XIN X L.On derivations of BCIalgebras [J]. Information Sciences, 2004, 159: 167-176.
[9] XIN X L,LI T Y.On derivations of lattices [J]. Information Sciences, 2008, 178 (2): 307-316.