• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    微米橄欖石型LiFePO4的水熱合成優(yōu)化

    2012-03-06 04:43:18孫孝飛徐友龍劉養(yǎng)浩
    物理化學(xué)學(xué)報(bào) 2012年12期
    關(guān)鍵詞:橄欖石西安交通大學(xué)水熱

    孫孝飛 徐友龍,* 劉養(yǎng)浩 李 璐

    (1西安交通大學(xué),電子陶瓷與器件教育部重點(diǎn)實(shí)驗(yàn)室,西安710049;2西安交通大學(xué),國(guó)際電介質(zhì)研究中心,西安710049; 3西安交通大學(xué)化學(xué)系,西安710061)

    1 Introduction

    Rechargeable lithium-ion batteries(LIBs)are now widely used in laptops,cell phones,cameras,and other portable electronic devices.At the same time,they are also considered to have broad applications in energy storage systems for high efficiency energy transmission and distribution as the fossil fuels have limited resources and severe environmental pollutions.1,2For instance,lithium-ion battery is the most hopeful energy storage technology for electric vehicles(EVs)including hybrid electric vehicles(HEVs)and plug-in hybrid electric vehicles (PHEVs).Since the successful commercialization of carbon as the anode by Sony Corporation in 1992,3world-wide research has been dedicated to develop high-performance cathode materials.

    Olivine lithium iron phosphate(LiFePO4)is one of the most promising cathode materials for LIBs because of its intrinsic thermal stability,high theoretical capacity(170 mAh·g-1),environmental benignity,and cost effectiveness.1,4Since first studied by Padhi et al.5in 1997,a lot of effort has been put on this material to find new synthesis routes6,7and to understand the relationship between the physicochemical properties and the crystal structures,8-13so as to improve its electrochemical performance.14The main obstacle hindering the large-scale commercialization of LiFePO4in EVs/HEVs/PHEVs is the low conductivity that constrains its high-rate performance.From ab-initio calculation,Morgan et al.15proposed that Li+diffuses preferentially via a one-dimensional channel along[010]direction,which was further confirmed computationally by Islam et al.16and experimentally by Nishimura et al.17Therefore,particle size plays an important role and nanoparticles are no doubt beneficial for lithium migration.14It has been found that during electrochemical charge/discharge,the solid-solution phase increases with the reduction of particle size.18,19Recently,Malik?s computation revealed the particle size dependence of Li+diffusivity which can be easily blocked in large particle LiFePO4.20Therefore,nano-sized LiFePO4is intentionally made to shorten Li+diffusion path.21,22Besides,surface coating23and bulk doping24are employed to improve the electrical conductivity and ultimately the battery performance of LiFePO4.

    However,the tap density of nano materials is lower comparing with that of micro-sized counterparts.Therefore,the volumetric capacity as well as the energy density and power density are decreased.25An ideal case would be having good performance while still keeping particle size in micro scale.Unfortunately,there is no such material reported yet due to the above assumptions.Furthermore,the pathological underneath mechanism that large particle LiFePO4has poorer electrochemical performance is still unclear.We think a reliable groundwork of preparing a representative LiFePO4with single olivine phase, appropriate particle size,uniform morphology,and homogeneous particle distribution is of great importance to start investigation on such fundamental mechanism.Hydrothermal synthesis has been successfully used to prepare olivine LiMPO4(M=Fe,Mn,Co,etc.)family compounds as an effective and low cost method.26,27Its specialty in easy control of particle size and morphology makes it facile in studying the structure and property of LiFePO4.28But a systematic investigation is still needed to fully understand the influence of synthesis condition on the structure and property of the final product.29

    2 Experimental

    2.1 Material preparation

    A series of LiFePO4with different particle sizes and morphologies were prepared hydrothermally by adjusting the synthesis parameters.The starting materials of LiOH·H2O(>98%, Alfa Aesar),FeSO4·7H2O(>99%,Alfa Aesar),and H3PO4(>99%,Aldrich)were mixed together in de-ionized water by a molar ratio of 3:1:1,a little citric acid(>99.5%,Aldrich)was added to prevent oxidation of Fe2+.The pH value was controlled by LiOH or citric acid.The mixture was then transferred into a Teflon-lined stainless steel autoclave which was sealed into an oven.Different temperatures and heating times were implemented to modify the particle size and morphology of LiFePO4.After heat treatment,the products were washed and filtered for several times.The final samples were collected by drying at 80°C under vacuum for 12 h.

    2.2 Characterization

    Powder X-ray diffraction(XRD)was conducted to identify the phase structures on a Rigaku diffactometer with Cu Kαradiation at the 2θ range of 10°-80°.The particle morphology was observed by a JEOL 6320FV field emission scanning electron microscopy(FE-SEM)with an accelerating voltage of 5 kV.

    2.3 Battery performance

    Swagelok half cells using lithium metal as the anodes were assembled in an Argon filled glove box.The cathodes were consisted of LiFePO4,super P,and polytetrafluoroethylene(PTFE) in a mass ratio of 80:15:5.The electrolyte was 1 mol·L-1LiPF6in ethylene carbonate/dimethyl carbonate(EC/DMC,1:1)and the separator was Celgard 2500.The batteries were cycled with constant currents on anArbin BT2000 at room temperature.

    3 Results and discussion

    3.1 Hydrothermal synthesis

    In this work,the influences of precursor concentration,pH value,hydrothermal temperature,and heating time on the particle size and morphology of LiFePO4were investigated.

    3.1.1 Precursor concentration

    The concentration of FeSO4·7H2O was altered to 0.16,0.32, 0.48,and 0.60 mol·L-1while the molar ratio of Li+:Fe2+:PO34-was kept stoichiometrically at[Li+]:[Fe2+]:[PO34-]=3:1:1.The pH value was not changed intentionally,and was 7.87,6.93, 6.85,and 6.89 respectively after mixing.The mixture was heated at 190°C for 60 h.No detective impurities can be found by X-ray diffraction in Fig.1 for all the 4 samples.The difference of peak intensities among these samples is attributed to different atom ordering and preferred orientation in the crystals as can be seen by SEM images in Fig.2.The particle grows bigger when the precursor concentration is increased.At low concentration of[Fe2+]=0.16 mol·L-1,the primary particles are about 200-300 nm and aggregate to flower-like secondary particles with a typical size of~0.7 μm.When the concentration is increased to[Fe2+]=0.32 mol·L-1,the particle size is~1.8 μm with platelet-like morphology.Larger particles with sizes of~2.6 and~3.0 μm are prepared respectively when the concentration is further increased to[Fe2+]=0.48 mol·L-1and[Fe2+]= 0.60 mol·L-1.Moreover,the platelets are grown thicker to form diamond shapes,and the particle distribution gets more homogeneous.According to first principle calculation,the growing particles exhibit(010),(100),and(101)faces.30As identified by Chen et al.,31the large diamond surface corresponds to ac plane that is perpendicular to(010).When the diamond-shaped platelets grow thicker and bigger at higher concentrations,such preferred orientation generates higher(020) intensity on XRD patterns.Since Li+diffuses in a one-dimension channel along(010)direction,the thick profiles along (010)will increase the Li+diffusion path,and eventually degrade the electrochemical performance of LiFePO4.In case of [Fe2+]=0.48 mol·L-1,it shows slightly different relative peak intensity in X-ray diffraction because of partial morphology distortion to elongated hexagonal-prisms as shown in Fig.2(c).30It is also interesting to see small pores on the particle surface of some samples.The detailed mechanism is still unclear and needs further investigation.

    Fig.1 XRD patterns of LiFePO4synthesized at different concentrations

    3.1.2 pH value

    The starting materials were kept at[Fe2+]=0.60 mol·L-1with a molar ratio of[Li+]:[Fe2+]:[PO3-4]=3:1:1.LiOH and citric acid were used to control the pH values at 10.05,7.05,and 4.50,respectively.The mixtures were heated at 190°C for 60 h.The initial pH value was about 6.50 when the precursors were mixed together.The XRD patterns and SEM images are shown in Fig.1([Fe2+]=0.60 mol·L-1)and Fig.2(d),respectively.The particle size is~3.0 μm and the morphology looks like a thick diamond.In the basic solution(pH=10.05),impurities of Li3PO4and Fe3O4are observed by X-ray diffraction in Fig.3.In order to adjust the pH value,large amount of LiOH is added and there is much lithium excess in the precursors.It is then possible to produce Li3PO4during hydrothermal synthesis,and the residual iron can also be oxidized.The typical particle size is about 0.5 μm as shown in Fig.4(a).Yu et al.32also found Li3PO4as an impurity in hydrothermally synthesized LiFePO4with extra lithium in the precursors,which was removed by washing the sample in a neutral buffer solution.When the synthesis solution is adjusted to neutral at pH=7.05,it results in pure-phase LiFePO4with a diamond shape,and the particle size is about 2.3 μm.It is noteworthy that the particles grow dramatically larger to~16.5 μm without any detectable impurities when the pH value is decreased to 4.50.The morphology is not homogeneous either(Fig.4(c)).Some are large bulks while others are agglomerates of needle-like particles.Therefore,the particles are grown bigger at lower pH which is consistent with ab-initio calculation by Wang et al.33that LiFePO4particles can be modified to large plates at lower pH value during solvent synthesis.One should also note that the large content citric acid might play a certain role as well during the particle formation of Fig.4(c).

    Fig.2 SEM images of LiFePO4synthesized at different concentrations[Fe2+]/(mol·L-1):(a)0.16,(b)0.32,(c)0.48,(d)0.60

    Fig.3 XRD patterns of LiFePO4synthesized at different pH values (●)Li3PO4(JCPDS 74-0358),(?)Fe3O4(JCPDS 75-0033)

    Fig.4 SEM images of LiFePO4synthesized at different pH values pH:(a)10.05,(b)7.05,(c)4.50

    3.1.3 Hydrothermal temperature

    In this group of experiments,the concentration was kept constant at[Fe2+]=0.60 mol·L-1with a molar ratio of[Li+]:[Fe2+]: []=3:1:1.The pH value was not changed when the precursors were mixed together,which was about 6.50.The mixture was heated at 170,190,and 220°C respectively for the same time of 60 h to find an optimum temperature of preparing homogeneous micro-sized LiFePO4.

    As Dokko et al.34has pointed out,170°C is high enough to get phase-pure olivine LiFePO4(see Fig.5),but SEM picture in Fig.6(a)indicates that the particle size is only~0.9 μm.The particles are grown to~3.0 μm at 190°C as already discussed in Fig.2(d).However,further increasing the temperature to 220°C has little influence on modifying the particle size and morphology(Fig.6(b)).Ellis et al.35also used hydrothermal method to synthesize LiFePO4and found that the particles prepared at 190°C were bigger than that at 140°C,but they had no clue of further increasing the temperature.

    3.1.4 Heating time

    The heating time was set as 3,6,12,20,and 60 h respectively while the heat temperature was kept at 190°C.Other synthesis parameters were the same as in part 3.1.3.At 190°C, phase-pure LiFePO4could be obtained after 3 h(Fig.7),the longer time was then used to modify the particle size and morphology as shown in Fig.8.The typical particle size is only~0.6 μm when t=3 h.When it is prolonged to 6,12,and 20 h,the particle size increases to~1.5,~2.2,and~2.6 μm respectively and finally reaches~3.0 μm(t=60 h)in Fig.2(d).It seems that longer time is helpful for particle growth,but the electrochemical performance and the synthesis cost should also be considered in large-scale production.Therefore,a better way of synthesizing high performance large particle LiFePO4is combining all these factors together to get a group of optimized param-eters with a compromise as will be discussed later.

    Fig.5 XRD patterns of LiFePO4synthesized at different temperatures

    Fig.6 SEM images of LiFePO4synthesized at different temperatures T/°C:(a)170,(b)220

    3.2 Electrochemical performance

    Four representatives of the above LiFePO4with different sizes and morphologies were selected to study their electrochemical performance:PS0.7([Fe2+]=0.16 mol·L-1,Fig.2(a)),PS2.3 (pH=7.05,Fig.4(b)),PS3.0([Fe2+]=0.60 mol·L-1,Fig.2(d))and PS16.5(pH=4.50,Fig.4(c)),where PS stands for particle size and the number shows its value of~0.7,~2.3,~3.0,and~16.5 μm,respectively.

    Fig.7 XRD patterns of LiFePO4synthesized for different heating times

    Swagelok prototype batteries were assembled in an Ar-filled glove box and were cycled on an Arbin BT2000 between 2.0-4.3V(vs Li/Li+hereafter)at room temperature.The charge/ discharge curves are plotted in Fig.9(a)at a constant current density of 0.1C(1C=170 mA·g-1).All of them have the similar discharge plateau at 3.4 V that is characteristic of LiFePO4. The specific discharge capacities are 152,146,and 142 mAh· g-1when the particle sizes are 0.7,2.3,and 3.0 μm,respectively.It decreases dramatically to 80 mAh·g-1for PS16.5.One should also note the small discharge plateau at 2.5 V for PS0.7 which comes from reduction of Fe2O3according to Dokko et al.36Amorphous Fe2O3could be formed during hydrothermal synthesis in high temperature aqueous solutions.With only a little quantity,it cannot be detected by XRD.

    Fig.8 SEM images of LiFePO4synthesized for different heating times t/h:(a)3,(b)6,(c)12,(d)20

    Fig.9 Charge/discharge curves at 0.1C rate(a)and constant current cyclings at 1C rate(b)of LiFePO4with different particle sizesContinuous lines and dotted lines in(a)correspond to the first and fifth cycles,respectively.The potential window in(b)is 2.0-4.3 V(vs Li/Li+).All tests are performed at room temperature and the cathodes are composed of 80%(w)active material,15%(w)conducting carbon(super P),and 5%(w)binder(PTFE).

    The cells were then cycled at a constant current of 1C for 100 cycles between 2.0 and 4.3 V.No relaxation was allowed during cycling and the results are shown in Fig.9(b).LiFePO4with particle size of 0.7 μm has the highest initial capacity of 105 mAh·g-1and the highest capacity retention of 94.6%after 100 cycles,while PS16.5 has the lowest capacity of 40 mAh· g-1with the capacity retention of 82%.The performance difference between PS2.3 and PS3.0 is not significant at the beginning where they have a similar capacity of 92 mAh·g-1,but PS3.0 loses more capacity after 100 cycles with a capacity retention of only 77.2%(vs 83.77%for PS2.3).The results are in agreement with the charge/discharge curves.Remember that there is no modification such as surface coating or bulking doping for these pristine samples,both Fig.9(a)and Fig.9(b)demonstrate the intrinsic degradation of electrochemical performance in large particle LiFePO4that deserves further investigation.

    3.3 Optimized micro LiFePO4

    Fig.10 Optimized micro-sized LiFePO4as a cathode for LIBs(a)and(b)are the XRD pattern and SEM image of hydrothermally prepared LiFePO4respectively,(c)is the charge/discharge curve at 0.1C rate and(d)is the cycling performance at 1C rate between 2.0 and 4.3 V(vs Li/Li+).The inset in(d)shows the charge/discharge curves of the 1st,50th,and 100th cycles respectively along with cycling.All tests are performed at room temperature and the cathode composition is LiFePO4/super P/PTFE of 80/15/5(mass ratio).

    Based on the above results,an optimized synthesis condition for micro-sized LiFePO4was chosen as follows:[Fe2+]=0.4 mol· L-1with a stoichiometric ratio of ,the pH value was adjusted to 7.05 by a little LiOH,and the mixture was hydrothermally heated at 200°C for 24 h.Phase-pure olivine LiFePO4is prepared as indicated by XRD in Fig.10(a). The SEM image in Fig.10(b)shows that the particles are mainly~2 μm size with distorted thick diamond shapes that are typical for hydrothermally synthesized LiFePO4as discussed before.Moreover,the particle distribution in concern of size and morphology is more homogeneous than the aforementioned samples.The charge/discharge curves of this optimized LiFe-PO4at a constant current of 0.1C are shown in Fig.10(c).Its initial specific discharge capacity is 146 mAh·g-1and a very slight discharge plateau at 2.5 V of Fe2O3could still be found in the first cycle but seems disappeared along with cycling.37The specific discharge capacity of the fifth cycle is stabilized at 148 mAh·g-1with a mono plateau at 3.4 V.When the charge/ discharge rate is changed to a higher current of 1C(Fig.10(d)), the capacity decreases dramatically to 102 mAh·g-1and decays to 90 mAh·g-1after 100 cycles with a retention of 88.24%.It follows well with the above performance trend in micro-sized LiFePO4and lies between sub-micro particles and large micro particles.Without any modification(coating/doping),the capacity is reasonable and kind of acceptable but the rate and cycle performance still need to be enhanced.Moreover,the inset of Fig.10(d)indicates that the charge/discharge curves are slightly transformed to slope-like profiles with increased polarization along with cycling.Therefore,it is a good candidate for investigating the plausible mechanism of performance degradation in large particle LiFePO4.If the electrochemical property LiFePO4with such particle size could be improved,the practical performance especially the volumetric performance of LIBs as well as that of the end applications such as HEVs,PHEVs,and EVs could be much elevated.

    4 Conclusions

    The particle size of olivine LiFePO4increases with the increase of precursor concentration,heat temperature and heating time but with the decrease of pH value during hydrothermal synthesis.The specific capacity drops from 152 to 80 mAh·g-1at 0.1C rate and from 105 to 40 mAh·g-1at 1C rate when the particle size is increased from 0.7 to 16.5 μm demonstrating the intrinsic electrochemical performance degradation in large particle LiFePO4.An optimized 2 μm LiFePO4with relatively homogeneous size and morphology distribution shows reasonable capacity without any modification such as surface coating or bulk doping.Further work is undergoing to understand the underneath mechanism of performance loss in large particle LiFePO4and to improve its battery performance accordingly so as to get high energy/power density cathodes for lithium ion batteries in high efficiency energy storage applications.

    (1)Whittingham,M.S.Chem.Rev.2004,104,4271.doi:10.1021/ cr020731c

    (2) Yang,Z.;Liu,J.;Baskaran,S.;Imhoff,C.;Holladay,J.D. Journal of the Minerals,Metals and Materials Society 2010,62, 14.

    (3) Ozawa,K.Solid State Ionics 1994,69,212.doi:10.1016/0167-2738(94)90411-1

    (4) Ellis,B.L.;Lee,K.T.;Nazar,L.F.Chem.Mater.2010,22,691. doi:10.1021/cm902696j

    (5) Padhi,A.K.;Nanjundaswamy,K.S.;Goodenough,J.B. J.Electrochem.Soc.1997,144,1188.doi:10.1149/1.1837571

    (6) Jugovic,D.;Uskokovic,D.J.Power Sources 2009,190,538. doi:10.1016/j.jpowsour.2009.01.074

    (7) Franger,S.;Le Cras,F.;Bourbon,C.;Rouault,H.J.Power Sources 2003,119-121,252.

    (8) Cabana,J.;Shirakawa,J.;Chen,G.Y.;Richardson,T.J.;Grey, C.P.Chem.Mater.2010,22,1249.doi:10.1021/cm902714v

    (9)Ong,S.P.;Wang,L.;Kang,B.;Ceder,G.Chem.Mater.2008, 20,1798.doi:10.1021/cm702327g

    (10) Recham,N.;Casas-Cabanas,M.;Cabana,J.;Grey,C.P.;Jumas, J.C.;Dupont,L.;Armand,M.;Tarascon,J.M.Chem.Mater. 2008,20,6798.doi:10.1021/cm801817n

    (11) Zhou,F.;Maxisch,T.;Ceder,G.Phys.Rev.Lett.2006,97,4.

    (12)Yamada,A.;Koizumi,H.;Nishimura,S.I.;Sonoyama,N.; Kanno,R.;Yonemura,M.;Nakamura,T.;Kobayashi,Y.Nat. Mater.2006,5,357.doi:10.1038/nmat1634

    (13) Delacourt,C.;Poizot,P.;Tarascon,J.M.;Masquelier,C.Nat. Mater.2005,4,254.doi:10.1038/nmat1335

    (14) Kang,B.;Ceder,G.Nature 2009,458,190.doi:10.1038/ nature07853

    (15) Morgan,D.;Van der Ven,A.;Ceder,G.Electrochem.Solid-State Lett.2004,7,A30.

    (16) Islam,M.S.;Driscoll,D.J.;Fisher,C.A.J.;Slater,P.R.Chem. Mater.2005,17,5085.doi:10.1021/cm050999v

    (17) Nishimura,S.I.;Kobayashi,G.;Ohoyama,K.;Kanno,R.; Yashima,M.;Yamada,A.Nat.Mater.2008,7,707.doi: 10.1038/nmat2251

    (18) Kobayashi,G.;Nishimura,S.I.;Park,M.S.;Kanno,R.; Yashima,M.;Ida,T.;Yamada,A.Adv.Funct.Mater.2009,19, 395.doi:10.1002/adfm.v19:3

    (19) Gibot,P.;Casas-Cabanas,M.;Laffont,L.;Levasseur,S.; Carlach,P.;Hamelet,S.;Tarascon,J.M.;Masquelier,C.Nat. Mater.2008,7,741.doi:10.1038/nmat2245

    (20) Malik,R.;Burch,D.;Bazant,M.;Ceder,G.Nano Lett.2010, 10,4123.doi:10.1021/nl1023595

    (21) Delacourt,C.;Poizot,P.;Levasseur,S.;Masquelier,C. Electrochem.Solid-State Lett.2006,9,A352.

    (22) Herle,P.S.;Ellis,B.;Coombs,N.;Nazar,L.F.Nat.Mater. 2004,3,147.doi:10.1038/nmat1063

    (23) Herstedt,M.;Stjerndahl,M.;Nytén,A.;Gustafsson,T.; Rensmo,H.;Siegbahn,H.;Ravet,N.;Armand,M.;Thomas,J. O.;Edstr?m,K.Electrochem.Solid-State Lett.2003,6,A202.

    (24) Chung,S.Y.;Bloking,J.T.;Chiang,Y.M.Nat.Mater.2002,1, 123.doi:10.1038/nmat732

    (25)Oh,S.W.;Bang,H.J.;Myung,S.T.;Bae,Y.C.;Lee,S.M.; Sun,Y.K.J.Electrochem.Soc.2008,155,A414.

    (26) Chen,J.;Vacchio,M.J.;Wang,S.;Chernova,N.;Zavalij,P.Y.; Whittingham,M.S.Solid State Ionics 2008,178,1676.doi: 10.1016/j.ssi.2007.10.015

    (27) Yang,S.;Zavalij,P.Y.;Whittingham,M.S.Electrochem. Commun.2001,3,505.doi:10.1016/S1388-2481(01)00200-4

    (28) Chen,G.;Song,X.;Richardson,T.J.J.Electrochem.Soc.2007, 154,A627.

    (29) Zhao,H.C.;Song,Y.;Guo,X.D.;Zhong,B.H.;Dong,J.;Liu, H.Acta Phys.-Chim.Sin.2011,27,2347.[趙浩川,宋 楊,郭孝東,鐘本和,董 靜,劉 恒.物理化學(xué)學(xué)報(bào),2011,27, 2347.]doi:10.3866/PKU.WHXB20110905

    (30) Fisher,C.A.J.;Islam,M.S.J.Mater.Chem.2008,18,1209. doi:10.1039/b715935h

    (31) Chen,G.;Song,X.;Richardson,T.J.Electrochem.Solid-State Lett.2006,9,A295.

    (32) Yu,D.Y.W.;Donoue,K.;Kadohata,T.;Murata,T.;Matsuta,S.; Fujitani,S.J.Electrochem.Soc.2008,155,A526.

    (33) Wang,L.;Zhou,F.;Meng,Y.S.;Ceder,G.Phys.Rev.B 2007, 76,165435.doi:10.1103/PhysRevB.76.165435

    (34)Dokko,K.;Koizumi,S.;Kanamura,K.Chem.Lett.2006,35, 338.doi:10.1246/cl.2006.338

    (35)Ellis,B.;Kan,W.H.;Makahnouk,W.R.M.;Nazar,L.F. J.Mater.Chem.2007,17,3248.doi:10.1039/b705443m

    (36) Dokko,K.;Shiraishi,K.;Kanamura,K.J.Electrochem.Soc. 2005,152,A2199.

    (37) Sun,X.;Xu,Y.Mater.Lett.2012,84,139.doi:10.1016/ j.matlet.2012.06.053

    猜你喜歡
    橄欖石西安交通大學(xué)水熱
    《西安交通大學(xué)(社會(huì)科學(xué)版)》青年編委招募
    《西安交通大學(xué)(社會(huì)科學(xué)版)》再獲“最受歡迎期刊”
    西安交通大學(xué)馬克思主義學(xué)院簡(jiǎn)介
    綠色之星橄欖石
    化石(2021年1期)2021-03-16 01:20:50
    橄欖石項(xiàng)鏈
    水熱還是空氣熱?
    天然橄欖石單晶的壓縮性*
    échanges humains dans le contexte de la mondialisation
    綠色小精靈橄欖石
    西部資源(2014年1期)2014-04-29 00:44:03
    簡(jiǎn)述ZSM-5分子篩水熱合成工藝
    国产综合精华液| 国产成人aa在线观看| 99久久人妻综合| 91精品三级在线观看| 午夜福利网站1000一区二区三区| 亚洲综合色网址| 国产免费视频播放在线视频| 九九爱精品视频在线观看| 国产成人精品无人区| 在线观看免费日韩欧美大片 | av电影中文网址| 三级国产精品片| 亚洲av不卡在线观看| 国产色爽女视频免费观看| 欧美+日韩+精品| 日韩人妻高清精品专区| 国产片内射在线| 女性被躁到高潮视频| 久久久a久久爽久久v久久| 女人久久www免费人成看片| 国产极品天堂在线| 亚洲av电影在线观看一区二区三区| 女性被躁到高潮视频| 久久久久久久亚洲中文字幕| 国产免费福利视频在线观看| 又粗又硬又长又爽又黄的视频| 高清不卡的av网站| 久久久久久久久久久丰满| 黄色配什么色好看| 国产一区二区在线观看av| 亚洲欧美日韩卡通动漫| av线在线观看网站| 中文字幕人妻丝袜制服| 亚洲一级一片aⅴ在线观看| 精品卡一卡二卡四卡免费| 久久久久久久国产电影| 黄色一级大片看看| 精品久久久久久电影网| 国产在视频线精品| 美女中出高潮动态图| 日本黄大片高清| 久久久久视频综合| 黄色视频在线播放观看不卡| 久久精品熟女亚洲av麻豆精品| 日本黄大片高清| 欧美精品国产亚洲| 久久精品夜色国产| 欧美人与善性xxx| 国产精品成人在线| av国产精品久久久久影院| 亚洲成人一二三区av| 国产精品99久久久久久久久| 精品国产乱码久久久久久小说| 日日爽夜夜爽网站| 三上悠亚av全集在线观看| 日日摸夜夜添夜夜添av毛片| 欧美bdsm另类| videossex国产| 18禁观看日本| 久久久国产精品麻豆| 亚洲欧洲国产日韩| 大香蕉97超碰在线| 午夜视频国产福利| av播播在线观看一区| 丰满迷人的少妇在线观看| 麻豆精品久久久久久蜜桃| 欧美激情 高清一区二区三区| 蜜臀久久99精品久久宅男| 亚洲国产精品一区三区| 欧美亚洲日本最大视频资源| 日韩熟女老妇一区二区性免费视频| 日韩精品有码人妻一区| 亚洲高清免费不卡视频| 黄色欧美视频在线观看| 亚洲精品日韩在线中文字幕| 高清不卡的av网站| 亚洲av成人精品一区久久| 亚洲第一区二区三区不卡| 各种免费的搞黄视频| 一本久久精品| kizo精华| 亚洲国产av影院在线观看| 好男人视频免费观看在线| 伊人久久国产一区二区| 国产女主播在线喷水免费视频网站| 国产男女内射视频| 久久久久国产精品人妻一区二区| 尾随美女入室| 草草在线视频免费看| 久久国产亚洲av麻豆专区| 99热这里只有精品一区| 免费观看在线日韩| 丰满乱子伦码专区| 欧美成人精品欧美一级黄| av有码第一页| av免费在线看不卡| 九色亚洲精品在线播放| 亚洲精品美女久久av网站| 亚洲天堂av无毛| av在线播放精品| 中文字幕免费在线视频6| 色94色欧美一区二区| 99热网站在线观看| 欧美xxxx性猛交bbbb| 蜜桃在线观看..| 街头女战士在线观看网站| 黄色怎么调成土黄色| 久热久热在线精品观看| 你懂的网址亚洲精品在线观看| 精品午夜福利在线看| 最近2019中文字幕mv第一页| 看免费成人av毛片| 久久久久视频综合| 久久精品久久久久久久性| 国产精品99久久久久久久久| 亚洲欧洲国产日韩| 午夜激情av网站| 日日摸夜夜添夜夜添av毛片| 精品久久久久久久久亚洲| 卡戴珊不雅视频在线播放| 日日啪夜夜爽| 午夜福利网站1000一区二区三区| 青青草视频在线视频观看| 久久久久久久大尺度免费视频| 尾随美女入室| 日韩大片免费观看网站| 国产精品国产三级国产专区5o| 99国产精品免费福利视频| 又大又黄又爽视频免费| 99久国产av精品国产电影| av专区在线播放| 肉色欧美久久久久久久蜜桃| 看非洲黑人一级黄片| 少妇丰满av| 伦理电影免费视频| 女性被躁到高潮视频| 内地一区二区视频在线| 久久精品国产亚洲av涩爱| 中文天堂在线官网| 免费人妻精品一区二区三区视频| 久久久国产一区二区| 国内精品宾馆在线| av在线老鸭窝| 999精品在线视频| 91成人精品电影| 国产成人freesex在线| 美女大奶头黄色视频| 国产精品秋霞免费鲁丝片| 黑人欧美特级aaaaaa片| 麻豆精品久久久久久蜜桃| 美女中出高潮动态图| 99视频精品全部免费 在线| 久久99蜜桃精品久久| 免费播放大片免费观看视频在线观看| 精品久久蜜臀av无| 久久人人爽av亚洲精品天堂| 欧美xxxx性猛交bbbb| 免费少妇av软件| 插逼视频在线观看| 婷婷色综合大香蕉| 久久久久人妻精品一区果冻| 久久久久精品性色| 精品亚洲成a人片在线观看| 国产成人精品福利久久| 国产精品成人在线| 在线观看国产h片| 中文乱码字字幕精品一区二区三区| 国产亚洲精品第一综合不卡 | 精品酒店卫生间| 欧美人与性动交α欧美精品济南到 | 水蜜桃什么品种好| 夫妻性生交免费视频一级片| 99九九线精品视频在线观看视频| 丝袜喷水一区| 日本色播在线视频| 国产亚洲精品久久久com| 91精品一卡2卡3卡4卡| 欧美bdsm另类| 99热全是精品| 黑丝袜美女国产一区| 多毛熟女@视频| 亚洲精品456在线播放app| 亚洲成人av在线免费| 多毛熟女@视频| 国产69精品久久久久777片| 99re6热这里在线精品视频| 男女免费视频国产| 狂野欧美白嫩少妇大欣赏| 免费少妇av软件| 亚洲av日韩在线播放| 男女高潮啪啪啪动态图| 超碰97精品在线观看| 精品人妻熟女毛片av久久网站| 亚洲精品久久久久久婷婷小说| 九色成人免费人妻av| 亚洲国产精品成人久久小说| 国产又色又爽无遮挡免| 最黄视频免费看| 久久午夜福利片| 日本91视频免费播放| 国产成人精品在线电影| 哪个播放器可以免费观看大片| 国产精品女同一区二区软件| 在线免费观看不下载黄p国产| 亚洲精华国产精华液的使用体验| 69精品国产乱码久久久| 日本爱情动作片www.在线观看| 精品99又大又爽又粗少妇毛片| 国产成人精品福利久久| 国产伦精品一区二区三区视频9| 91久久精品国产一区二区成人| 97在线人人人人妻| 高清黄色对白视频在线免费看| 少妇的逼好多水| 曰老女人黄片| 久久精品熟女亚洲av麻豆精品| 夫妻性生交免费视频一级片| 一区在线观看完整版| 久久人人爽av亚洲精品天堂| 日本黄色片子视频| 久久久精品免费免费高清| 日本黄大片高清| 国产精品免费大片| 午夜激情av网站| 日韩在线高清观看一区二区三区| 欧美精品人与动牲交sv欧美| 高清av免费在线| 男人爽女人下面视频在线观看| 久久久国产欧美日韩av| 99精国产麻豆久久婷婷| 精品久久久久久电影网| 久久国内精品自在自线图片| 美女中出高潮动态图| 国产成人精品久久久久久| 日本猛色少妇xxxxx猛交久久| 欧美日韩亚洲高清精品| 91久久精品电影网| 国语对白做爰xxxⅹ性视频网站| 国产成人一区二区在线| 91久久精品国产一区二区三区| 97在线人人人人妻| 久久久久精品久久久久真实原创| 人妻系列 视频| 国产有黄有色有爽视频| 啦啦啦视频在线资源免费观看| 亚洲精品久久成人aⅴ小说 | 日韩欧美精品免费久久| 十八禁网站网址无遮挡| 国产成人精品婷婷| 乱人伦中国视频| 超色免费av| 美女cb高潮喷水在线观看| 欧美人与善性xxx| 啦啦啦在线观看免费高清www| 女的被弄到高潮叫床怎么办| 国产极品天堂在线| 美女国产高潮福利片在线看| videosex国产| 视频中文字幕在线观看| 久久婷婷青草| 久久久久久久久大av| 另类精品久久| 欧美日韩成人在线一区二区| 水蜜桃什么品种好| 国产免费一级a男人的天堂| 男男h啪啪无遮挡| 97超碰精品成人国产| 大码成人一级视频| 一个人免费看片子| 我的女老师完整版在线观看| 久久久久久久久久久丰满| 国产午夜精品久久久久久一区二区三区| 国产片特级美女逼逼视频| 免费高清在线观看日韩| 午夜福利视频精品| 岛国毛片在线播放| 天美传媒精品一区二区| 日韩在线高清观看一区二区三区| 一级毛片电影观看| 久久久久久久久久久丰满| 欧美日韩视频精品一区| 三级国产精品片| 人成视频在线观看免费观看| 亚洲国产精品专区欧美| 欧美亚洲日本最大视频资源| 久久免费观看电影| 国产 精品1| 亚洲第一区二区三区不卡| av卡一久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 成人免费观看视频高清| 一区二区三区四区激情视频| 午夜视频国产福利| 国产精品免费大片| 久久婷婷青草| 九色成人免费人妻av| 乱码一卡2卡4卡精品| 欧美bdsm另类| 狠狠精品人妻久久久久久综合| 国产极品天堂在线| 麻豆乱淫一区二区| 亚洲精品亚洲一区二区| 久久精品夜色国产| 亚洲精品乱码久久久久久按摩| 99久久精品国产国产毛片| 久久女婷五月综合色啪小说| 精品少妇久久久久久888优播| 久久久欧美国产精品| 久久人人爽人人爽人人片va| 午夜影院在线不卡| 大码成人一级视频| 黄色欧美视频在线观看| 午夜激情久久久久久久| 男女无遮挡免费网站观看| av免费在线看不卡| 在线观看人妻少妇| 爱豆传媒免费全集在线观看| 乱人伦中国视频| 日本av免费视频播放| a级毛片黄视频| 人人妻人人爽人人添夜夜欢视频| 夫妻午夜视频| 两个人免费观看高清视频| 日本色播在线视频| 国产 精品1| 在线看a的网站| 日韩欧美精品免费久久| 全区人妻精品视频| 一本久久精品| 永久网站在线| 精品一区二区三区视频在线| 全区人妻精品视频| 亚洲av免费高清在线观看| 国产男女超爽视频在线观看| 99九九在线精品视频| 国产欧美亚洲国产| 男男h啪啪无遮挡| 国产欧美亚洲国产| 男男h啪啪无遮挡| 少妇高潮的动态图| 国产成人免费无遮挡视频| 国产精品99久久久久久久久| 最近中文字幕高清免费大全6| 麻豆成人av视频| av天堂久久9| 国产精品国产av在线观看| 一边亲一边摸免费视频| 精品一品国产午夜福利视频| 夫妻午夜视频| 国产又色又爽无遮挡免| 9色porny在线观看| 麻豆成人av视频| 美女xxoo啪啪120秒动态图| 少妇被粗大的猛进出69影院 | 高清不卡的av网站| 亚洲av二区三区四区| 美女福利国产在线| 精品国产一区二区三区久久久樱花| 大片免费播放器 马上看| 看十八女毛片水多多多| 精品国产国语对白av| 波野结衣二区三区在线| 精品久久久精品久久久| 亚洲欧美精品自产自拍| 曰老女人黄片| 婷婷色麻豆天堂久久| 一级黄片播放器| 一级,二级,三级黄色视频| 水蜜桃什么品种好| 蜜臀久久99精品久久宅男| 国产乱来视频区| 久久久午夜欧美精品| 亚洲精品成人av观看孕妇| 亚洲精品久久久久久婷婷小说| 一级黄片播放器| 日产精品乱码卡一卡2卡三| 国产视频内射| 亚洲天堂av无毛| 欧美日韩亚洲高清精品| 日韩制服骚丝袜av| 亚洲欧美色中文字幕在线| 国产精品人妻久久久影院| 精品久久久噜噜| av又黄又爽大尺度在线免费看| 国产成人精品一,二区| av又黄又爽大尺度在线免费看| 夜夜爽夜夜爽视频| 亚洲欧洲日产国产| 欧美老熟妇乱子伦牲交| 久久精品久久精品一区二区三区| 久久精品人人爽人人爽视色| av电影中文网址| 亚洲第一区二区三区不卡| 女性被躁到高潮视频| 成人毛片a级毛片在线播放| 亚洲欧美中文字幕日韩二区| 亚洲av中文av极速乱| 99热6这里只有精品| 日本与韩国留学比较| 欧美亚洲日本最大视频资源| 精品国产一区二区久久| 日本91视频免费播放| 精品午夜福利在线看| 一级毛片aaaaaa免费看小| 男女国产视频网站| 一个人看视频在线观看www免费| 国产av国产精品国产| videosex国产| 欧美 亚洲 国产 日韩一| 三级国产精品欧美在线观看| 久久人人爽人人片av| 91aial.com中文字幕在线观看| 如何舔出高潮| 亚洲综合色惰| 久久精品熟女亚洲av麻豆精品| 男女高潮啪啪啪动态图| 十八禁网站网址无遮挡| 99九九在线精品视频| 久久人妻熟女aⅴ| 下体分泌物呈黄色| 在线观看免费日韩欧美大片 | 国产一区亚洲一区在线观看| 99久久精品一区二区三区| av天堂久久9| 久久精品国产亚洲av涩爱| 91精品国产国语对白视频| 美女脱内裤让男人舔精品视频| 夜夜骑夜夜射夜夜干| 亚洲精品aⅴ在线观看| 水蜜桃什么品种好| 成人黄色视频免费在线看| 亚洲不卡免费看| 免费不卡的大黄色大毛片视频在线观看| 美女中出高潮动态图| 国产亚洲最大av| 麻豆成人av视频| 91精品国产国语对白视频| 最近中文字幕2019免费版| 女性被躁到高潮视频| 亚洲精品自拍成人| 中文字幕制服av| 精品久久久久久电影网| 日韩电影二区| 观看美女的网站| 人人妻人人澡人人爽人人夜夜| 99久久精品国产国产毛片| 国产永久视频网站| 亚洲国产欧美日韩在线播放| av免费在线看不卡| 考比视频在线观看| 亚洲色图综合在线观看| 一级毛片黄色毛片免费观看视频| 最近的中文字幕免费完整| 国产精品一国产av| 亚洲国产精品国产精品| 精品久久国产蜜桃| 十八禁网站网址无遮挡| 人妻人人澡人人爽人人| 一级,二级,三级黄色视频| 999精品在线视频| 少妇人妻久久综合中文| 美女中出高潮动态图| 欧美性感艳星| 国产男女超爽视频在线观看| 午夜激情av网站| 亚洲色图 男人天堂 中文字幕 | 久久久精品94久久精品| 中国美白少妇内射xxxbb| 亚洲国产精品专区欧美| 欧美97在线视频| 一级二级三级毛片免费看| 日韩熟女老妇一区二区性免费视频| 一本大道久久a久久精品| 国产永久视频网站| 亚洲国产成人一精品久久久| 精品午夜福利在线看| 在线播放无遮挡| 少妇猛男粗大的猛烈进出视频| 亚洲第一区二区三区不卡| 日韩亚洲欧美综合| 亚洲精品,欧美精品| 免费黄网站久久成人精品| 黑人高潮一二区| 91精品一卡2卡3卡4卡| 91精品国产国语对白视频| 亚洲欧美精品自产自拍| 啦啦啦啦在线视频资源| 亚洲av.av天堂| 人妻 亚洲 视频| 久久97久久精品| 天堂中文最新版在线下载| 人妻系列 视频| 精品国产一区二区久久| 日韩欧美一区视频在线观看| 亚洲精品久久午夜乱码| 成人亚洲欧美一区二区av| a级毛片黄视频| 男人操女人黄网站| 国产日韩欧美在线精品| 亚洲情色 制服丝袜| 人人妻人人澡人人爽人人夜夜| 亚洲国产精品成人久久小说| 美女主播在线视频| 精品一区二区三卡| av国产精品久久久久影院| 天堂中文最新版在线下载| 久久99热6这里只有精品| 日本vs欧美在线观看视频| 两个人免费观看高清视频| 国产成人免费无遮挡视频| 国产成人精品无人区| 国产一级毛片在线| 国产一区亚洲一区在线观看| 欧美+日韩+精品| 夜夜骑夜夜射夜夜干| 免费人妻精品一区二区三区视频| 国产日韩欧美亚洲二区| 亚洲国产精品一区三区| 国产有黄有色有爽视频| 性色av一级| 国产精品国产三级国产av玫瑰| 国产精品不卡视频一区二区| 18禁在线无遮挡免费观看视频| 大话2 男鬼变身卡| 欧美成人精品欧美一级黄| 欧美精品国产亚洲| 看免费成人av毛片| 亚洲欧美中文字幕日韩二区| 最新中文字幕久久久久| 一区二区日韩欧美中文字幕 | 女性被躁到高潮视频| 日本色播在线视频| 男人添女人高潮全过程视频| 国产av国产精品国产| 国产免费一级a男人的天堂| 欧美 日韩 精品 国产| 国产亚洲欧美精品永久| 日韩,欧美,国产一区二区三区| 国产老妇伦熟女老妇高清| 欧美日韩精品成人综合77777| 一级爰片在线观看| 免费观看性生交大片5| 久久99一区二区三区| 女的被弄到高潮叫床怎么办| 色哟哟·www| 看十八女毛片水多多多| 99热6这里只有精品| 日日撸夜夜添| 人妻一区二区av| 国产亚洲精品久久久com| 日本色播在线视频| av专区在线播放| 嫩草影院入口| 欧美日韩成人在线一区二区| tube8黄色片| 欧美日韩视频高清一区二区三区二| 高清午夜精品一区二区三区| 蜜桃国产av成人99| 少妇的逼好多水| 色94色欧美一区二区| 一级黄片播放器| 日韩大片免费观看网站| 国产探花极品一区二区| 久久久久精品性色| 国产伦精品一区二区三区视频9| 国产成人午夜福利电影在线观看| 亚洲综合精品二区| 免费观看a级毛片全部| 精品视频人人做人人爽| 亚洲成人手机| 只有这里有精品99| 亚洲av成人精品一区久久| 国产av国产精品国产| 男女啪啪激烈高潮av片| 乱码一卡2卡4卡精品| 日韩成人av中文字幕在线观看| 满18在线观看网站| 亚洲不卡免费看| 国产日韩一区二区三区精品不卡 | 嫩草影院入口| 大香蕉久久成人网| 中文字幕久久专区| 国产成人a∨麻豆精品| 超色免费av| 国产免费又黄又爽又色| 久久韩国三级中文字幕| 超色免费av| 日韩视频在线欧美| av卡一久久| 日本与韩国留学比较| 亚洲三级黄色毛片| 好男人视频免费观看在线| av播播在线观看一区| 精品一区二区三卡| 亚洲婷婷狠狠爱综合网| 91国产中文字幕| 久久婷婷青草| 最后的刺客免费高清国语| 亚洲天堂av无毛| 80岁老熟妇乱子伦牲交| 日韩欧美精品免费久久| 一区在线观看完整版| 成人午夜精彩视频在线观看| 国产在视频线精品| 精品国产乱码久久久久久小说| 国产成人午夜福利电影在线观看| 大香蕉97超碰在线| 亚洲av成人精品一二三区| 国产毛片在线视频| 国产 精品1| 国产精品国产三级国产av玫瑰| 久久久久国产网址| 麻豆乱淫一区二区| 久久人人爽人人爽人人片va| 国产高清不卡午夜福利|