• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental and CFD Studies on the Performance of Microfiltration Enhanced by a Turbulence Promoter*

    2012-02-14 08:26:16LIUYuanfa劉元法HEGaohong賀高紅DINGLuhui丁路輝DOUHong竇紅JUJia鞠佳andLIBaojun李保軍
    關(guān)鍵詞:元法

    LIU Yuanfa (劉元法), HE Gaohong (賀高紅),**, DING Luhui (丁路輝), DOU Hong (竇紅),JU Jia (鞠佳) and LI Baojun (李保軍)

    1 State Key Laboratory of Fine Chemicals, R&D Center of Membrane Science and Technology, School of Chemical Engineering, Dalian University of Technology, Dalian 116012, China

    2 Department of Biological Engineering, University of Technology of Compiegne, Compiegne 60205, France

    1 INTRODUCTION

    Microfiltration is a pressure-driven membrane filtration process to remove and separate the particles in the range 0.1-10 μm from liquid suspensions. It has been widely used in pharmaceutical, biotechnology,medical, semiconductor, wastewater treatment, wine,dairy, beverage, food and chemical industries [1].However, the separation performance of microfiltration in many applications is seriously hindered by membrane fouling, i.e., the deposition of rejected particles on the membrane surface, leading to blockage of membrane pores or formation of a cake layer, which causes an undesirable decline of permeate flux and high cost of membrane filtration system. Therefore, it is of great importance to alleviate the adverse effects of membrane fouling.

    The use of turbulence promoter in the tubular membrane is a simple and effective way to reduce membrane fouling in the crossflow microfiltration(CFMF) of particulate suspensions. Turbulence promoters with different shapes, such as static mixer [2],steel rod [3], twisted wire-rod [4], disc or doughnut shape insert [5], cone shape insert [6] and helical screw insert [7-11], have been developed for various membrane filtration processes. Among these approaches,helical screw insert attracts much attention and interest owing to its excellent streamline shape. For the same reason, we used a helical screw insert to improve the permeate flux of membrane in the CFMF of calcium carbonate (CaCO3) suspension.

    Nevertheless, the intrinsic mechanism of flux enhancement by a helical screw insert has not been fully understood, which needs quantitative analysis on the hydrodynamic characteristics inside the membrane modules. Computational fluid dynamics (CFD) is a powerful tool to investigate the processes involved with fluid flow [12-14], heat and mass transfer [15-17],since it can provide plenty of interesting information without recourse to costly experimental work. In recent years, this tool was utilized to describe the complex hydrodynamics generated by rotating disk [18, 19],gas sparging [20, 21] and spacer [22-24] in the membrane modules. For example, Torras et al. [19] carried out a numerical simulation for the fluid flow in a rotating disk filtration module and suggested high permeate flux for the device was due to high shear stresses on the membrane and the absence of stagnant zones inside the module. Cao et al. [22] investigated the effects of various arrangements of turbulence promoters on the fluid flow in a spacer-filled channel and found that the high shear stress and eddies were responsible for the enhanced filtration performance of membrane module.

    Unfortunately, the numerical simulation for fluid flow in the helical-screw-inserted tube is limited. It is most likely due to the complexity of the problem and convergence difficulty of numerical simulation. Bellhouse et al. [9] made an attempt and carried out a two-dimensional CFD simulation, but unable to display co-planar velocity vectors and precisely capture the features of flow pattern. Therefore, it is necessary to conduct a three-dimensional (3D) simulation for the fluid flow.

    In this study, the filtration performance of membrane is enhanced by a helical screw insert during the CFMF of CaCO3suspension and the effects of operation conditions on the flux improvement efficiency are investigated. To better understand the intrinsic mechanism of flux enhancement, three-dimensional CFD simulation for the fluid flow in the helical-screw-inserted tube is conducted.

    2 EXPERIMENTAL

    Microfiltration experiments were conducted with a ceramic tubular membrane (Nanjing University of Technology, China) of 15 mm inner diameter and 200 mm length, with average membrane pore size of 0.91 μm.

    The helical screw insert, made of stainless steel,is shown in Fig. 1, with the geometrical parameters as follows: the length of helical screw insertL=200 mm,the diameter of helical screw insertDh=13 mm, the diameter of central rodDr=6 mm, the thickness of helix ridgeδ=2 mm, the width of helical grooveλ=12 mm, and the depth of helical grooveh=3.5 mm.

    Figure 1 Configuration of a helical screw insert

    A laboratory-scale filtration unit consists of a feed reservoir (10 L) thermostated at 30 °C, a peristaltic pump and measuring equipment (pressure gauge,flow meter). In addition, a stirrer was utilized to ensure complete mixing of feed. The test fluid is the suspension of calcium carbonate powder with the median particle size (D50) of 6.18 μm. During a run, both the permeate and the retentate were recycled back to the feed reservoir. The membrane module was rinsed with 0.1 mol·L-1hydrochloric acid solution to restore the pure water flux of the membrane before each experiment.

    The pressure drop (ΔP) along the membrane tube was measured with a U-type mercury manometer. The permeate fluxes of membrane with a turbulence promoter (TP) or without it (NTP) were monitored during all of experiments. Flux improvement (FI) efficiency was defined as

    whereJTPandJNTPare the permeate flux of membrane with and without turbulence promoter, respectively.

    3 CFD MODELLING

    3.1 Model geometry

    In order to reduce computational time, the length of helical screw insert is fixed at 50 mm here. Other parameters of helical screw insert are same as those depicted in Section 2. The helical screw insert is centrally inserted in a tube of 70 mm in length, with a distance of 10 mm from the inlet and outlet. Since the tube diameter is 15 mm and the diameter of helical screw insert is 13 mm, the radial clearance gap is 1 mm between the helical screw insert and tube wall.

    3.2 Governing equations

    The fluid used for simulation is assumed to be Newtonian and incompressible, and governed by the continuity and Navier-Stokes equations. The timeaveraged continuity and Navier-Stokes equations (Reynolds equations) are as follows [25].

    where the second-order tensor of Reynolds stressescan be computed in terms of the Boussinesq hypothesis,

    where the turbulent viscosityμtis described as

    3.3 Turbulence model

    The turbulent viscosityμtcan be calculated with different turbulence models, including the mixing length, standardk-ε, RNGk-ε, Reynolds stress, and algebraic stress models. The RNGk-εmodel is employed here because it is widely applied for the rotating and swirling flows, which are involved in this study.In terms of RNGk-εturbulence model, the turbulence kinetic energyk(m2·s-2) and turbulent dissipation rateε(m2·s-3) are determined by the following equations[25, 26].

    The model constants have following default values:

    3.4 Solution method

    The software package (FLUENT, v. 6.2.16),which employs the finite-volume method, is used for CFD simulation. In the pre-processing, the geometry modeling of a helical screw insert is created using Pro/Engineer package, and mesh generation is implemented using GAMBIT. Since the permeate rate in industrial membrane processes is often <0.5% of the total crossflow velocity in the channel, the wall suction does not distort the flow field. Therefore, the assumption of non-permeable wall is adopted here,which is widely accepted in literature. In addition, the no-slip boundary conditions are applied to the turbulence promoter and tube wall.

    The pressure-velocity coupling is handledviathe SIMPLE algorithm, and the convective terms are discretized by a second-order upwind scheme. A grid size small enough is chosen based on the comparison of results from a succession of finer meshes to ensure that the simulation results are independent of the gird size. Fig. 2 shows the computation grid of local partition of the tube with a helical screw insert.

    Figure 2 Computation grid of local partition

    4 RESULTS AND DISCUSSION

    4.1 Experimental results

    4.1.1Effect of turbulence promoter on the permeate flux

    Microfiltration of CaCO3suspension was conducted at transmembrane pressure (TMP) of 50 kPa,inlet velocity (uin) of 0.5 m·s-1and feed concentration(C) of 1.0 g·L-1. Fig. 3 shows that the permeate fluxes in both cases decline with filtration time due to the particle deposition on the membrane surface, resulting in additional hydraulic resistance to the filtration flow.Since the surface deposition of particles is accomplished in a few minutes, the cake filtration is expected to govern the filtration process. The initial sharp decline in permeate flux is due to the rapid increase in cake thickness. The permeate flux then declines slowly over a long period and reaches a steady-state value after 70 min, while the cake thickness approaches a certain value. When using a helical screw insert, the steady-state permeate flux is increased by 28%. Flux enhancement is mainly attributed to the reduction in particle deposition on the membrane, since the presence of turbulence promoter in the membrane module yields high wall shear stress, which keeps particles away from the membrane.

    Figure 3 Variation of permeate fluxes with filtration time(C=1.0 g·L-1, TMP=50 kPa, uin=0.5 m·s-1)■ TP; ▲ NTP

    4.1.2Effect of TMP on the permeate flux

    TMP has an important effect on the permeate flux of membrane, since it is the driving force for a pressuredriven filtration process. Fig. 4 shows that higher TMP yields higher steady-state permeate flux in both cases. However, the permeate flux is not proportional to TMP, since the cake resistance varies with TMP.Higher TMP drives more particles towards the membrane, increasing the particle deposition. Higher TMP also causes depression/consolidation of the cake, increasing the cake resistance. However, the increased cake resistance does not necessarily reduce the permeate flux correspondingly, since higher TMP normally increases the filtrate flux, as predicted by Darcy’s law.

    The permeate flux of membrane can be enhanced by turbulence promoter in the tested range of TMP since the increased shearing force drives the depositedparticles away from the membrane. The flux improvement efficiency is more than 25% in the range of 20-50 kPa, but it decays at higher TMP (>50 kPa).Higher TMP increases the drag force of filtration flow,which drives more particles towards the membrane and weakens the effects of turbulence promoter on reducing particle deposition, resulting in the decline of flux improvement efficiency. Therefore, the microfiltration system is better to be operated at lower TMP(<50 kPa) for higher flux improvement efficiency.

    Figure 4 Effect of TMP on the steady-state permeate flux(C=1.0 g·L-1, uin=0.5 m·s-1)

    4.1.3Effect of inlet velocity on the permeate flux

    Figure 5 shows the variation of steady-state permeate flux with inlet velocity. With the increase of inlet velocity, the permeate fluxes in both cases increase, due to the increased wall shear stress associated with a thinner cake layer deposited on the membrane. The curve slope of TP is larger than that of NTP in the range of 0.25-0.5 m·s-1, and the former is smaller than the latter in the range of 0.63-0.75 m·s-1.As a result, the flux improvement efficiency first increases and then deceases with the inlet velocity. The presence of a helical screw insert changes the flow pattern into a swirling flow, which increases the turbulence intensity of bulk flow. At lower flow velocity(<0.5 m·s-1), the swirling flow is sufficient to alter the convection on the membrane surface to a desirabledegree, which enhances the permeate flux effectively.At higher flow velocity (>0.63 m·s-1), the turbulence intensity in the empty tube is so high that the addition of swirling flow does not bring about a major improvement in the permeate flux. Thus the enhanced microfiltration system should be operated at relatively low inlet velocity (<0.5 m·s-1) to obtain high flux improvement efficiency.

    Figure 5 Effect of inlet velocity on the steady-state permeate flux (C=1.0 g·L-1, TMP=50 kPa)

    4.1.4Effect of feed concentration on the permeate fluxFigure 6 shows the variations of steady-state permeate flux with feed concentration. The permeate fluxes in both cases decrease with the increase of feed concentration. The permeate flux of NTP declines faster than that of TP in the range of 0.5-10 g·L-1, so that the flux improvement efficiency increases sharply with the feed concentration. For example, it is more than 120% at the feed concentration of 10 g·L-1, indicating that the advantage of helical screw insert is rather predominant at higher feed concentrations.

    Figure 6 Effect of feed concentration on the steady-state permeate flux (TMP=50 kPa, uin=0.5 m·s-1)

    4.1.5Consideration of energy consumption

    The use of a helical screw insert can greatly improve the permeate flux of membrane, but the pressure drop along the tube is higher, increasing the energy cost. Hence the enhanced filtration performance should be checked for the energy consumption. In general, the specific hydraulic energy consumptionEp(kW·h·m-3)is widely adopted [2, 6], which is defined as the energy consumption per unit volume of permeate flow.

    where ΔPis the pressure drop along the tube (Pa),Qis the flow rate (m3·s-1),vis the filtration rate of membrane (m·s-1), andSis the effective membrane area (m2).

    It can be seen from Fig. 7 thatEpof NTP is higher than that of TP in the tested range of feed concentration except 0.5 g·L-1. With the increase of feed concentration, the energy consumption increase in both cases, but it increases faster in the NTP case. As a result, the ratio ofEpbetween NTP and TP cases sharply increases, indicating that more energy is saved at higher feed concentrations with a helical screw insert.

    Figure 7 Variation of specific energy consumption with feed concentration (TMP=50 kPa, uin=0.5 m·s-1)

    4.2 Numerical results

    To explore the intrinsic mechanism of flux improvement by a helical screw insert, 3D CFD simulation of fluid flow was implemented at the inlet velocity of 0.5 m·s-1and the outlet pressure of 50 kPa. The analysis of hydrodynamic characteristics inside the channel is useful for better understanding of the enhanced filtration performance.

    4.2.1Velocity vectors

    Figure 8 shows the velocity vector in the helicalscrew-inserted tube. The fluid flow in the tube is mainly divided into two parts, helical flow within the helical groove and axial flow through the radial clearance gap [Fig. 8 (a)]. The former is the main part of the total flow with a relatively lower velocity, and the latter is the small one but with relatively higher velocity. The axial flow is helpful to disrupt the boundary layer, and the helical flow can increase the convective mixing. Therefore, the fluid flow is beneficial to improve the filtration performance. Fig. 8 (b) presents the velocity vector in thex-yplane (L=0.023 m), in which the flow pattern of the tube cross-section (in radial direction) is displayed. The fluid is forced to rotate around the central rod of helical screw insert.The rotational flow pattern is the desirable dynamic feature to increases the scouring effect on the membrane surface, reducing the particle deposition.

    It is well known that the secondary flow is useful to enhance the permeate flux of membrane, since it introduces the unsteadiness into the bulk flow and increases the mixing of feed. Some researchers [7, 9]suggested that the secondary flow could be generated in the tubular membrane with a helical screw insert.However, our simulation result shows that no secondary flow can be observed within the helical grooves[Fig. 8 (c)]. The similar result was also reported by Guptaet al. [4] through the flow visualization experiment. The absence of secondary flow is mainly attributed to the convective mixing of axial flow and helical flow. The axial flow tends to occupy the helical grove dominated by the helical flow, while the helical flow tends to occupy the radial clearance gap dominated by the axial flow. As a result, the convective mixing of two fluid flows, to a great extent, disrupts the secondary flow. The absence of the secondary flow, owing to the streamline shape of helical screw insert, can reduce the flow resistance.

    4.2.2Velocity contours

    Figure 9 shows the velocity contours in the tube with a helical screw insert. At the inlet velocity of 0.5 m·s-1, the fluid flow in the whole tube except the entrance region keeps a relatively high velocity [Fig. 9(a)], since the cross-sectional area of the tube is occupied by helical screw insert [Fig. 9 (b)]. The free cross-sectional area for fluid flow is only 75% of the empty tube.

    Figure 8 Velocity vectors in the tube with a helical screw insert

    Figure 9 Velocity contours in the tube with a helical screw insert

    It is important to ensure that dead zones or stagnant regions are absent in the vicinity of tube wall, where the dispersed particles in the feed are readily deposited on the membrane to form a cake layer, increasing the resistance to filtration flow. Although stagnant regions are observed [Fig. 9 (c)], their adverse effect on the flux can be neglected, since they are located in the central part and the exit region of the membrane tube.The absence of stagnant regions in the vicinity of tube wall is the desirable hydrodynamic feature to avoid membrane fouling.

    4.2.3Wall shear stress

    The filtration performance of membrane module is closely related to the hydrodynamic conditions on the membrane surface. The distribution of wall shear stress (about 0.2 mm away from the top wall) was calculated through CFD simulations, as illustrated in Fig. 10. Compared to the case in empty tube, there is an intense fluctuation of wall shear stresses due to the helical screw insert. The peak values of wall shear stresses appear at the position where the helix ridge is located and the low values occur in the helical groove.The maximum value is obtained at the position ofL=0.01 m, the beginning of helical screw insert,where the flow velocity changes rapidly and intensely.The much higher wall shear stress due to the helical screw insert is the primary reason accounting for the permeate flux improvement, which reduces the thickness of cake layer deposited on the membrane effectively.

    Figure 10 Distribution of wall shear stress TP; NTP

    4.2.4Effects of configuration parameters on the wall velocity

    The configuration parameters of helical screw insert (Dh,Drandλ) have significant effects on the fluid flow. The increase ofDhvalue decreases the radial clearance gap between the tube wall and the helical screw insert, inducing higher wall velocities, as illustrated in Fig. 11. Similarly, the increase ofDrvalue decreases the depth of helical groove [h=(Dh-Dr)/2],inducing high-speed velocities, as illustrated in Fig. 12.Theλvalue determines the required number of helical turns. As the length of helical screw insert is constant(50 mm),λvalue of 6, 12 and 18 mm approximately corresponds to the number of helical turns of 8, 4 and 3,respectively. The more helical turns are required, the higher wall velocities are generated, as illustrated in Fig. 13.

    Figure 12 Effects of Dr values on the wall velocity (Dh=13 mm, λ=12 mm)Dr/mm: 8; 6; 4

    Figure 13 Effects of λ values on the wall velocity (Dh=13 mm, Dr=6 mm)λ/mm: 6; 12; 18

    5 CONCLUSIONS

    It is efficient to improve the permeate flux of membrane by a helical screw insert in the crossflow microfiltration (CFMF) of CaCO3suspension. The flux improvement efficiency is strongly influenced by the operation conditions. It is suggested that the enhanced microfiltration system should be operated at relatively lower TMP (<50 kPa), lower velocity (<0.5 m·s-1), and higher feed concentration, so as to obtain higher flux improvement efficiency. The energy consumption analysis shows that it is more energy saving at higher feed concentrations.

    The hydrodynamics of fluid flow in the membrane tube is entirely changed by a helical screw insert,which is helpful to improve the filtration performance of membrane. The rotational flow pattern increases the scouring effect on the tube wall, reducing the particle deposition on membrane. The absence of secondary flow, owing to the streamline shape of helical screw insert, reduces the flow resistance, lowering the energy consumption. Higher wall shear stress and absence of stagnant regions in the vicinity of tube wall are also responsible for the enhanced filtration performance. The effects of configuration parameters on the velocity fields suggest that the flow velocity increases with the increase ofDhandDrvalues, and with the decrease ofλvalue.

    NOMENCLATURE

    Cμconstant of the RNGk-εmodel

    C1εconstant of the RNGk-εmodel

    C2εconstant of the RNGk-εmodel

    Dhdiameter of helical screw insert, mm

    Drdiameter of central rod, mm

    Eijtime-average strain rate, s-1

    Epspecific hydraulic energy consumption, kW·h·m-3

    Gkgeneration of turbulence kinetic energy, m2·s-2

    hdepth of helical groove, mm

    Jpermeate flux of membrane, L·m-2·h-1

    kturbulence kinetic energy, m2·s-2

    Llength of helical screw insert, mm

    ΔPpressure drop along the tube, Pa

    ppressure, Pa

    Qflow rate, m3·s-1

    Smembrane surface, m2

    TMP transmembrane pressure, Pa

    ttime, s

    uvelocity, m·s-1

    uiicomponent of velocity, m·s-1

    ujjcomponent of velocity, m·s-1

    vfiltration rate of membrane, m·s-1

    xiicoordinate

    xjjcoordinate

    αkconstant of the RNGk-εmodel

    αεconstant of the RNGk-εmodel

    βconstant of the RNGk-εmodel

    δthickness of helical ridge, mm

    δijKronecker sign

    εturbulent dissipation rate, m2·s-3

    ηstrain rate, s-1

    η0constant of the RNGk-εmodel

    λwidth of helical groove, mm

    μfeed viscosity, Pa·s

    μtturbulent viscosity, Pa·s

    μeffeffective viscosity, Pa·s

    ρdensity, kg·m-3

    1 Rahimi, M., Madaeni, S.S., Abolhasani, M., Alsairafi, A.A., “CFD and experimental studies of fouling of a microfiltration membrane”,Chem.Eng.Process., 48, 1405-1413 (2009).

    2 Krstic, D.M., Tekic, M.N., Caric, M.D., Milanovic, S.D., “The effect of turbulence promoter on cross-flow microfiltration of skim milk”,J.Membr.Sci., 208, 303-314 (2002).

    3 Yeh, H.M., Chen, H.Y., Chen, K.T., “Membrane ultrafiltration in a tubular module with a steel rod inserted concentrically for improved performance”,J.Membr.Sci., 168, 121-133 (2000).

    4 Gupta, B.B., Howell, J.A., Wu, D., Field, R.W., “A helical baffle for cross-flow microfiltration”,J.Membr.Sci., 102, 31-42 (1995).

    5 Howell, J.A., Field, R.W., Wu, D.X., “Yeast-cell microfiltration—flux enhancement in baffled and pulsatile flow systems”,J.Membr.Sci., 80, 59-71 (1993).

    6 Mavrov, V., Nikolov, N.D., Islam, M.A., Nikolova, J.D., “An investigation on the configuration of inserts in tubular ultrafiltration module to control concentration polarization”,J.Membr.Sci., 75, 197-201(1992).

    7 Millward, H.R., Bellhouse, B.J., Walker, G., “Screw-thread flow promoter—An experimental study of ultrafiltration and microfiltration performance”,J.Membr.Sci., 106, 269-279(1995).

    8 Najarian, S., Bellhouse, B.J., “Enhanced microfiltration of bovine blood using a tubular membrane with a screw-threaded insert and oscillatory flow”,J.Membr.Sci., 112, 249-261 (1996).

    9 Bellhouse, B.J., Costigan, G., Abhinava, K., Merry, A., “The performance of helical screw-thread inserts in tubular membranes”,Sep.Purif. Technol., 22, 89-113 (2001).

    10 Costigan, G., Bellhouse, B.J., Picard, C., “Flux enhancement in microfiltration by corkscrew vortices formed in helical flow passages”,J. Membr. Sci., 206, 179-188 (2002).

    11 Ahmad, A.L., Mariadas, A., “Baffled microfiltration membrane and its fouling control for feed water of desalination”, Desalination, 168,223-230 (2004).

    12 Chen, J.B., Liu, C.J., Yuan, X.G., Yu, G.C., “CFD simulation of flow and mass transfer in structured packing distillation columns”, Chin.J. Chem. Eng., 17, 381-388 (2009).

    13 Parvareh, A., Rahimi, M., Madaeni, S.S., Alsairafi, A.A., “Experimental and CFD study on the role of fluid flow pattern on membrane permeate flux”, Chin. J. Chem. Eng., 19, 18-25 (2011).

    14 Wang, L.H., Cui, J.J., Yao, K.J., “Numerical simulation and analysis of gas flow field in serrated valve column”, Chin. J. Chem. Eng., 16,541-546 (2008).

    15 Cai, J., Huai, X.L., Yan, R.S., Cheng, Y.J., “Numerical simulation on enhancement of natural convection heat transfer by acoustic cavitation in a square enclosure”, Appl. Therm. Eng., 29, 1973-1982 (2009).

    16 Tesch, K., Collins, M.W., Karayiannis, T.G., Atherton, M.A., Edwards, P., “Heat and mass transfer in air-fed pressurised suits”, Appl.Therm. Eng., 29, 1375-1382 (2009).

    17 Licheng, W., Yifei, Z., Xingang, L., Yi, Z., “Experimental investigation and CFD simulation of liquid-solid-solid dispersion in a stirred reactor”, Chem. Eng. Sci., 65, 5559-5572 (2010).

    18 Rainer, M., Hoflinger, W., Koch, W., Pongratz, E., Oechsle, D.,“3D-flow simulation and optimization of a cross flow filtration with rotating discs”, Sep. Purif. Technol., 26, 121-131 (2002).

    19 Torras, C., Pallares, J., Garcia-Valls, R., Jaffrin, M.Y., “Numerical simulation of the flow in a rotating disk filtration module”, Desalination, 235, 122-138 (2009).

    20 Taha, T., Cui, Z.F., “CFD modelling of gas-sparged ultrafiltration in tubular membranes”, J. Membr. Sci., 210, 13-27 (2002).

    21 Taha, T., Cheong, W.L., Field, R.W., Cui, Z.F., “Gas-sparged ultrafiltration using horizontal and inclined tubular membranes—A CFD study”, J. Membr. Sci., 279, 487-494 (2006).

    22 Cao, Z., Wiley, D.E., Fane, A.G., “CFD simulations of net-type turbulence promoters in a narrow channel”, J. Membr. Sci., 185, 157-176(2001).

    23 Koutsou, C.P., Yiantsios, S.G., Karabelas, A.J., “A numerical and experimental study of mass transfer in spacer-filled channels: Effects of spacer geometrical characteristics and Schmidt number”, J.Membr. Sci., 326, 234-251 (2009).

    24 Liu, Y.F., He, G.H., Liu, X.D., Xiao, G.K., Li, B.J., “CFD simulations of turbulent flow in baffle-filled membrane tubes”, Sep. Purif.Technol., 67, 14-20 (2009).

    25 Fluent Inc., FLUENT User’s Guide, Fluent Inc. (2003).

    26 Liu, W., Liu, Z.C., Wang, Y.S., Huang, S.Y., “Flow mechanism and heat transfer enhancement in longitudinal-flow tube bundle of shell-and-tube heat exchanger”, Sci. China Ser. E—Tech. Sci., 52,2952-2959 (2009).

    猜你喜歡
    元法
    換元法在高中數(shù)學(xué)解題中的應(yīng)用
    解方程組的兩種特殊消元方法
    換元法在不等式中的應(yīng)用
    換元法在解題中的運(yùn)用
    用換元法推導(dǎo)一元二次方程的求根公式
    基于離散元法的礦石對(duì)溜槽沖擊力的模擬研究
    換元法在解題中的應(yīng)用
    “微元法”在含電容器電路中的應(yīng)用
    基于修正面元法的機(jī)翼靜氣動(dòng)彈性計(jì)算
    基于條元法的異步軋制金屬三維塑性變形分析
    日韩成人伦理影院| 51国产日韩欧美| 国产国拍精品亚洲av在线观看| 日本-黄色视频高清免费观看| 国产探花极品一区二区| 欧美97在线视频| 亚洲国产毛片av蜜桃av| 国产久久久一区二区三区| 免费在线观看成人毛片| 麻豆成人午夜福利视频| 狂野欧美激情性bbbbbb| 少妇人妻精品综合一区二区| 亚洲av综合色区一区| 男人狂女人下面高潮的视频| 视频中文字幕在线观看| 男女无遮挡免费网站观看| 久久久久精品性色| 日本爱情动作片www.在线观看| 国产男人的电影天堂91| 亚洲一区二区三区欧美精品| 蜜桃久久精品国产亚洲av| 久久精品夜色国产| 夜夜骑夜夜射夜夜干| 校园人妻丝袜中文字幕| 久久久国产一区二区| 搡女人真爽免费视频火全软件| 这个男人来自地球电影免费观看 | 看免费成人av毛片| 精品亚洲成a人片在线观看 | 交换朋友夫妻互换小说| 中文乱码字字幕精品一区二区三区| 日本猛色少妇xxxxx猛交久久| 国产真实伦视频高清在线观看| 国产成人精品久久久久久| 亚洲av日韩在线播放| 只有这里有精品99| 男女啪啪激烈高潮av片| 日日啪夜夜撸| 中文天堂在线官网| 日韩国内少妇激情av| 伦精品一区二区三区| 亚洲色图av天堂| 中文天堂在线官网| 国产黄色免费在线视频| 亚洲欧美日韩无卡精品| 男人添女人高潮全过程视频| 精品一区二区三卡| 色婷婷久久久亚洲欧美| 中文字幕免费在线视频6| 久久韩国三级中文字幕| 一级a做视频免费观看| 91狼人影院| 五月天丁香电影| 国产精品久久久久久精品电影小说 | 国产精品一区二区在线不卡| 亚洲精品国产成人久久av| 欧美少妇被猛烈插入视频| 六月丁香七月| 国产老妇伦熟女老妇高清| 下体分泌物呈黄色| 干丝袜人妻中文字幕| 97在线人人人人妻| 欧美高清性xxxxhd video| 国产精品久久久久久久久免| 欧美xxxx性猛交bbbb| videossex国产| 街头女战士在线观看网站| 国产一区二区三区综合在线观看 | 丝袜喷水一区| 中文在线观看免费www的网站| 蜜桃亚洲精品一区二区三区| 天堂俺去俺来也www色官网| 国产欧美日韩一区二区三区在线 | 麻豆国产97在线/欧美| 少妇猛男粗大的猛烈进出视频| 国产黄色视频一区二区在线观看| 精品99又大又爽又粗少妇毛片| 久久久久久久亚洲中文字幕| 欧美高清性xxxxhd video| 最近最新中文字幕大全电影3| 亚洲不卡免费看| 欧美一级a爱片免费观看看| 一级黄片播放器| 亚洲精品成人av观看孕妇| 国产一级毛片在线| 国产精品嫩草影院av在线观看| a级毛片免费高清观看在线播放| 99九九线精品视频在线观看视频| 国产免费一区二区三区四区乱码| 日韩亚洲欧美综合| 婷婷色综合www| 丰满少妇做爰视频| 热99国产精品久久久久久7| 干丝袜人妻中文字幕| 久久婷婷青草| 国产一区二区三区综合在线观看 | 国产男人的电影天堂91| 超碰av人人做人人爽久久| 欧美精品亚洲一区二区| 老熟女久久久| 色5月婷婷丁香| 成人毛片a级毛片在线播放| 精品久久久久久久久亚洲| 国产成人免费观看mmmm| 国产亚洲最大av| 高清不卡的av网站| 美女cb高潮喷水在线观看| 天堂俺去俺来也www色官网| 99热这里只有是精品50| 国产毛片在线视频| 国产精品一区二区性色av| 美女主播在线视频| 自拍欧美九色日韩亚洲蝌蚪91 | 一二三四中文在线观看免费高清| 简卡轻食公司| 国产久久久一区二区三区| 午夜免费观看性视频| 成人免费观看视频高清| 91aial.com中文字幕在线观看| 亚洲精品乱久久久久久| 插阴视频在线观看视频| 18+在线观看网站| 自拍偷自拍亚洲精品老妇| 国产精品精品国产色婷婷| 欧美3d第一页| 久久国产精品大桥未久av | 婷婷色综合www| 青春草视频在线免费观看| 欧美精品一区二区大全| 男女国产视频网站| 欧美丝袜亚洲另类| 亚洲中文av在线| 搡女人真爽免费视频火全软件| 亚洲综合精品二区| 国产成人午夜福利电影在线观看| 26uuu在线亚洲综合色| 嫩草影院入口| 成年女人在线观看亚洲视频| 国产午夜精品久久久久久一区二区三区| 一区二区三区四区激情视频| 观看免费一级毛片| 自拍偷自拍亚洲精品老妇| 久久6这里有精品| 国产久久久一区二区三区| 你懂的网址亚洲精品在线观看| 国产欧美另类精品又又久久亚洲欧美| 国产视频内射| 国产有黄有色有爽视频| 搡老乐熟女国产| 中文字幕免费在线视频6| 熟女电影av网| 午夜激情久久久久久久| 国产精品蜜桃在线观看| 国产熟女欧美一区二区| 国产视频首页在线观看| 内地一区二区视频在线| 边亲边吃奶的免费视频| 色视频在线一区二区三区| 中文字幕制服av| 亚洲成人av在线免费| 日韩三级伦理在线观看| 韩国av在线不卡| 亚洲国产日韩一区二区| 一本—道久久a久久精品蜜桃钙片| 色婷婷久久久亚洲欧美| 国产精品.久久久| 久久久久久久久大av| 亚洲欧美中文字幕日韩二区| 日韩,欧美,国产一区二区三区| 国产精品秋霞免费鲁丝片| 五月天丁香电影| 欧美老熟妇乱子伦牲交| 99热网站在线观看| 99热这里只有是精品在线观看| 国产成人精品福利久久| 国产亚洲欧美精品永久| 18禁动态无遮挡网站| 久久久久久久久久人人人人人人| 男女国产视频网站| 97在线人人人人妻| 少妇人妻一区二区三区视频| 成年人午夜在线观看视频| 久久亚洲国产成人精品v| av国产免费在线观看| 国模一区二区三区四区视频| 亚洲精品一二三| 美女主播在线视频| 国产精品一区www在线观看| 久久精品国产鲁丝片午夜精品| 久久久久久久久久人人人人人人| av又黄又爽大尺度在线免费看| 卡戴珊不雅视频在线播放| 国产日韩欧美亚洲二区| 国产亚洲5aaaaa淫片| 亚洲婷婷狠狠爱综合网| 亚洲丝袜综合中文字幕| 精品国产三级普通话版| 狂野欧美白嫩少妇大欣赏| 人妻制服诱惑在线中文字幕| 又粗又硬又长又爽又黄的视频| 国产精品一二三区在线看| 网址你懂的国产日韩在线| 国产精品免费大片| 成年av动漫网址| 寂寞人妻少妇视频99o| 国产精品女同一区二区软件| 国产日韩欧美亚洲二区| 精品人妻视频免费看| 日韩免费高清中文字幕av| 亚洲精品一二三| 精品一区二区免费观看| 美女福利国产在线 | 国产探花极品一区二区| 久久久久久九九精品二区国产| 深夜a级毛片| 精品久久久久久久久av| 国产片特级美女逼逼视频| 亚洲性久久影院| 亚洲综合色惰| 热re99久久精品国产66热6| 夫妻性生交免费视频一级片| 国产精品精品国产色婷婷| 国产色爽女视频免费观看| 只有这里有精品99| 中文乱码字字幕精品一区二区三区| 亚洲在久久综合| av又黄又爽大尺度在线免费看| 妹子高潮喷水视频| 男的添女的下面高潮视频| 男男h啪啪无遮挡| 亚洲三级黄色毛片| 亚洲成人中文字幕在线播放| 99久久精品国产国产毛片| 麻豆成人午夜福利视频| 国产在线视频一区二区| 狂野欧美激情性xxxx在线观看| 中文字幕制服av| 欧美精品人与动牲交sv欧美| 一级毛片我不卡| 久久久欧美国产精品| 国产成人91sexporn| 久久精品国产亚洲网站| 永久免费av网站大全| 女人十人毛片免费观看3o分钟| 精品久久久噜噜| 婷婷色综合大香蕉| 免费黄色在线免费观看| 制服丝袜香蕉在线| 欧美xxxx黑人xx丫x性爽| 另类亚洲欧美激情| 一级片'在线观看视频| 国产黄色视频一区二区在线观看| 在线观看一区二区三区激情| 肉色欧美久久久久久久蜜桃| 青青草视频在线视频观看| 在线观看人妻少妇| 日韩不卡一区二区三区视频在线| 啦啦啦啦在线视频资源| 91久久精品电影网| 久久99热这里只频精品6学生| 国产成人a区在线观看| 精华霜和精华液先用哪个| 五月天丁香电影| 精品酒店卫生间| 欧美另类一区| 亚洲第一av免费看| 菩萨蛮人人尽说江南好唐韦庄| 麻豆乱淫一区二区| 三级国产精品欧美在线观看| 婷婷色综合www| 不卡视频在线观看欧美| 精品一区在线观看国产| 亚洲第一av免费看| 我的女老师完整版在线观看| 成年免费大片在线观看| 亚洲一区二区三区欧美精品| 国产淫片久久久久久久久| 国产精品.久久久| 亚洲精品国产色婷婷电影| 国产精品麻豆人妻色哟哟久久| 欧美日韩精品成人综合77777| 国产黄色视频一区二区在线观看| av在线蜜桃| 欧美成人a在线观看| 国产精品人妻久久久久久| 七月丁香在线播放| 国产深夜福利视频在线观看| 欧美精品一区二区免费开放| 秋霞在线观看毛片| 在线观看av片永久免费下载| 老司机影院成人| 黄色一级大片看看| 久久久久久久精品精品| h视频一区二区三区| 亚洲av.av天堂| 国产精品伦人一区二区| 午夜福利在线在线| 欧美xxxx性猛交bbbb| 亚洲电影在线观看av| 91久久精品国产一区二区成人| 80岁老熟妇乱子伦牲交| 欧美精品国产亚洲| 少妇精品久久久久久久| 亚洲国产av新网站| 亚洲美女搞黄在线观看| 精华霜和精华液先用哪个| 日韩一区二区三区影片| 亚洲精品自拍成人| 亚洲欧美一区二区三区国产| 身体一侧抽搐| 一级毛片我不卡| 国产白丝娇喘喷水9色精品| 噜噜噜噜噜久久久久久91| 又黄又爽又刺激的免费视频.| 99热国产这里只有精品6| 韩国av在线不卡| 22中文网久久字幕| 久久久色成人| 制服丝袜香蕉在线| 亚洲av免费高清在线观看| 波野结衣二区三区在线| 国产免费视频播放在线视频| 欧美人与善性xxx| 男女国产视频网站| 国产av一区二区精品久久 | 精品99又大又爽又粗少妇毛片| 亚洲真实伦在线观看| 国产精品一区www在线观看| 免费观看在线日韩| 欧美成人a在线观看| 亚洲最大成人中文| 日本爱情动作片www.在线观看| 蜜桃在线观看..| 有码 亚洲区| 国产高清三级在线| 爱豆传媒免费全集在线观看| 免费少妇av软件| 亚洲综合色惰| 中文在线观看免费www的网站| 久久久久精品久久久久真实原创| 午夜精品国产一区二区电影| 国产真实伦视频高清在线观看| 久久人人爽人人片av| 我的老师免费观看完整版| 欧美xxxx黑人xx丫x性爽| 伦理电影大哥的女人| 日本av手机在线免费观看| 人人妻人人爽人人添夜夜欢视频 | av国产精品久久久久影院| 国产淫语在线视频| 一本色道久久久久久精品综合| 欧美高清性xxxxhd video| 观看av在线不卡| 久久人人爽人人片av| 亚洲av国产av综合av卡| 久久精品国产亚洲网站| 汤姆久久久久久久影院中文字幕| 一本一本综合久久| 高清黄色对白视频在线免费看 | 亚洲图色成人| 欧美区成人在线视频| 亚洲激情五月婷婷啪啪| 欧美少妇被猛烈插入视频| 中文精品一卡2卡3卡4更新| 色视频在线一区二区三区| 国产精品一及| av在线观看视频网站免费| 久久久久视频综合| 国产成人aa在线观看| 在线精品无人区一区二区三 | 黑人高潮一二区| 国产亚洲一区二区精品| 欧美最新免费一区二区三区| 国产精品三级大全| 亚洲精品国产av蜜桃| 男的添女的下面高潮视频| 久久久久久久久大av| 国产亚洲精品久久久com| 亚洲人成网站高清观看| 蜜臀久久99精品久久宅男| 一级二级三级毛片免费看| 免费黄频网站在线观看国产| 欧美精品人与动牲交sv欧美| 嫩草影院新地址| av在线老鸭窝| 日韩av不卡免费在线播放| 青青草视频在线视频观看| 国产伦精品一区二区三区四那| 日韩av不卡免费在线播放| 美女内射精品一级片tv| 国产伦在线观看视频一区| 欧美精品国产亚洲| 中文字幕亚洲精品专区| 各种免费的搞黄视频| 精品少妇久久久久久888优播| 狂野欧美激情性bbbbbb| 国产男女超爽视频在线观看| av又黄又爽大尺度在线免费看| 亚洲欧美清纯卡通| 国产精品99久久久久久久久| 亚洲av成人精品一二三区| 国产在视频线精品| 日韩欧美一区视频在线观看 | 三级国产精品欧美在线观看| 爱豆传媒免费全集在线观看| 久久精品国产亚洲网站| 黄色配什么色好看| 日韩三级伦理在线观看| 亚洲精品中文字幕在线视频 | 91精品一卡2卡3卡4卡| 亚洲美女视频黄频| 三级国产精品片| 99视频精品全部免费 在线| 成人漫画全彩无遮挡| 欧美97在线视频| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品第二区| 亚洲国产高清在线一区二区三| 久久精品久久精品一区二区三区| 久热这里只有精品99| 久久99热这里只有精品18| 国产精品一二三区在线看| 大话2 男鬼变身卡| 久久精品久久精品一区二区三区| 国产欧美日韩精品一区二区| 99热网站在线观看| 欧美日韩亚洲高清精品| 国产精品国产三级专区第一集| av卡一久久| 久久久久国产网址| 久久 成人 亚洲| 性高湖久久久久久久久免费观看| 国产免费一区二区三区四区乱码| 在线看a的网站| 亚洲欧美中文字幕日韩二区| 亚洲精品乱码久久久久久按摩| 99热6这里只有精品| 91午夜精品亚洲一区二区三区| 国产乱来视频区| 亚洲精品,欧美精品| 国产一级毛片在线| 高清日韩中文字幕在线| 日韩视频在线欧美| 精品亚洲成国产av| 这个男人来自地球电影免费观看 | 欧美精品亚洲一区二区| 国产精品福利在线免费观看| 欧美成人精品欧美一级黄| 久久精品国产自在天天线| 内地一区二区视频在线| 黑人高潮一二区| 中文字幕久久专区| 在线观看国产h片| 国产在线免费精品| 一区二区三区乱码不卡18| 亚洲电影在线观看av| 下体分泌物呈黄色| 亚洲欧美精品专区久久| 亚洲美女搞黄在线观看| 一级片'在线观看视频| 久久久欧美国产精品| 搡老乐熟女国产| 国产精品99久久久久久久久| 18禁在线无遮挡免费观看视频| 男女免费视频国产| 日韩一区二区三区影片| 久久综合国产亚洲精品| 久久久久久久久久久免费av| 亚洲av免费高清在线观看| 中文字幕av成人在线电影| 久久人人爽人人片av| 亚洲成人中文字幕在线播放| 老师上课跳d突然被开到最大视频| 18禁裸乳无遮挡动漫免费视频| 久久婷婷青草| 免费大片18禁| 亚洲成人av在线免费| 成年人午夜在线观看视频| 亚洲激情五月婷婷啪啪| 中文字幕免费在线视频6| 亚洲伊人久久精品综合| 久久国产精品男人的天堂亚洲 | 亚洲色图av天堂| 免费观看的影片在线观看| 午夜福利网站1000一区二区三区| 久久久久性生活片| 免费播放大片免费观看视频在线观看| 国产成人a区在线观看| 国产亚洲最大av| 看免费成人av毛片| 亚洲国产最新在线播放| 亚洲av中文av极速乱| 欧美丝袜亚洲另类| 少妇人妻久久综合中文| 少妇的逼水好多| 日日摸夜夜添夜夜爱| 九九在线视频观看精品| 久久精品夜色国产| 久久精品国产自在天天线| tube8黄色片| 国产亚洲最大av| 三级经典国产精品| 我要看黄色一级片免费的| 国产爱豆传媒在线观看| 晚上一个人看的免费电影| av国产免费在线观看| 国产精品伦人一区二区| 国产黄频视频在线观看| 国产人妻一区二区三区在| 九九在线视频观看精品| 天天躁日日操中文字幕| 日韩国内少妇激情av| 久久久精品94久久精品| av在线app专区| 亚洲精品日韩av片在线观看| 久久精品久久久久久久性| av在线蜜桃| 免费观看性生交大片5| 80岁老熟妇乱子伦牲交| 久久人人爽人人爽人人片va| 黄色视频在线播放观看不卡| 欧美日韩一区二区视频在线观看视频在线| av在线播放精品| 亚洲av在线观看美女高潮| 国产成人精品久久久久久| av又黄又爽大尺度在线免费看| 国产深夜福利视频在线观看| 中文天堂在线官网| 好男人视频免费观看在线| 国产精品99久久久久久久久| 国产一区亚洲一区在线观看| 国产日韩欧美亚洲二区| 国产精品秋霞免费鲁丝片| 嘟嘟电影网在线观看| 亚洲精品久久久久久婷婷小说| 亚洲精品第二区| 亚洲精品日韩av片在线观看| 一级爰片在线观看| 18禁在线播放成人免费| 亚洲第一区二区三区不卡| 少妇熟女欧美另类| 亚洲综合色惰| kizo精华| 午夜老司机福利剧场| 亚洲精品视频女| 国产91av在线免费观看| 国产精品三级大全| 国产白丝娇喘喷水9色精品| 国产人妻一区二区三区在| 最黄视频免费看| av专区在线播放| 高清不卡的av网站| 欧美精品人与动牲交sv欧美| 国产91av在线免费观看| 国产精品三级大全| 三级经典国产精品| 少妇 在线观看| 久久久成人免费电影| 国产成人午夜福利电影在线观看| 性色avwww在线观看| 91午夜精品亚洲一区二区三区| 熟女电影av网| 干丝袜人妻中文字幕| 爱豆传媒免费全集在线观看| 日韩国内少妇激情av| av女优亚洲男人天堂| 五月伊人婷婷丁香| 一级毛片aaaaaa免费看小| 午夜福利视频精品| 亚洲精品自拍成人| 国产 一区 欧美 日韩| av一本久久久久| 国产av精品麻豆| 亚洲av综合色区一区| 精品午夜福利在线看| 在线精品无人区一区二区三 | 亚洲精品日韩在线中文字幕| 亚洲成人一二三区av| 少妇人妻 视频| 观看免费一级毛片| 国产高清不卡午夜福利| 欧美少妇被猛烈插入视频| 国产一区二区三区综合在线观看 | 亚洲av电影在线观看一区二区三区| 国产成人精品福利久久| 最近手机中文字幕大全| 久久人妻熟女aⅴ| 黄色视频在线播放观看不卡| 深夜a级毛片| 精品人妻一区二区三区麻豆| 精品午夜福利在线看| 日日摸夜夜添夜夜添av毛片| 亚洲色图综合在线观看| 插逼视频在线观看| 亚洲欧美一区二区三区国产| 少妇人妻一区二区三区视频| 尤物成人国产欧美一区二区三区| 日韩大片免费观看网站| 人人妻人人看人人澡| 在线观看免费高清a一片| 永久网站在线| 国产视频内射| 精品一区二区免费观看| 久久婷婷青草| 亚洲,一卡二卡三卡| 天堂中文最新版在线下载| 国产精品国产三级国产专区5o| 国产伦精品一区二区三区视频9| tube8黄色片| 一级二级三级毛片免费看| 黄色日韩在线| 97精品久久久久久久久久精品| 观看av在线不卡| av在线老鸭窝| 欧美日韩视频高清一区二区三区二|