• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Kinetics of Photocatalytic Degradation of Gaseous Organic Compounds on Modified TiO2/AC Composite Photocatalyst*

    2012-02-14 08:25:38YANGQingshan楊青山LIAOYongjin廖永進(jìn)andMAOLingling毛玲玲
    關(guān)鍵詞:青山

    YANG Qingshan (楊青山)** , LIAO Yongjin (廖永進(jìn)) and MAO Lingling (毛玲玲)

    1 Guangzhou Unisun Power Technology Co., Ltd., Guangzhou 510600, China

    2 Guangdong Power Test and Research Institute, Guangzhou 510600, China

    3 Guangdong Inspection & Quarantine Technology Center, Guangzhou 510623, China

    1 INTRODUCTION

    In recent years, the use of the titanium dioxide(TiO2) as photocatalytic semiconductor material in environmental clean-up operations has aroused great interest due to its non-toxic nature, photochemical stability and low cost, particularly when sunlight is used as the source of irradiation [1-4]. But the shortcomings of conventional TiO2catalyst lie in the low photon utilization efficiency and the difficulty of recovery from reaction medium [5-7]. Therefore, much work has focused on its modification and immobilization [8-13].

    Although a great deal of research has been conducted on the photocatalytic reactions, only a few studies have been reported for the photocatalytic degradation kinetics, and the kinetics of photocatalytic oxidation of organic compounds are not clear. However, most researchers believe that the photocatalytic oxidation reaction of organic compounds is a surface reaction, and the rate equation was often expressed by the Langmuir-Hinshelwood (L-H) model as follows [14-16]:

    in which c is the concentration of reactants; t is reaction time; k is the rate constant, K is the adsorption constant. The kinetic parameter of k and K are affected by light intensity, temperature, the initial concentration and physical properties of reactants, the gaseous oxygen concentration, etc. In liquid phase reaction system,the initial value of pH is another factor. In suspension system, the geometry and the experiential parameters of the reactors should also be considered [17].

    Moreover, the first order kinetic expression has been proved to be compatible for some main factors.Liao et al. investigated the photocatalytic degradation kinetics by changing initial concentrations of formaldehyde on TiO2and confirmed the first order kinetics[18]. By photocatalytic degradation of rhodamine B on TiO2/activated carbon (AC) photocatalyst, Li et al.explored the influence of initial concentration of organic compounds, light intensity and the loading amount of TiO2on reaction kinetics, and the results were showed to be consistent with the first order kinetic model, and the rate constant was obviously dependent on the above factors [19].

    In fact, the L-H model is only a kinetic model based on the ideal adsorption, but it is more complicated for actual reaction, especially for gas phase reaction. Moreover, most of study on photocatalytic degradation kinetics paid attention to the effect of a single factor only, meanwhile ignoring the role of multiple factors. In addition, the values of k and K in the L-H model are related with many factors, so it is difficult to use a general mathematical equation to describe the photocatalytic kinetics, and the reaction order may change in different reaction stages. If describing the whole reaction process with a fixed model,significant deviation from the real kinetics would be inevitable [17].

    In this article, basing on the previous research results of the photocatalytic degradation of organic compounds in gas phase on modified TiO2/AC composite photocatalyst (MTA) [20], we fit the experimental data to the zero, first and second order kinetic model equations, and the factors that affecting the kinetic model were explored.

    2 EXPERIMENTAL

    2.1 Photocatalyst preparation

    Figure 1 Schematic diagram of photo-reactor and GC analysis1—coolant inlet; 2—coolant outlet; 3—organic feed tap; 4—sampling port; 5—high-pressure mercury lamp; 6—glass plates; 7-reactor; 8—fan

    The commercially available AC (AR, Guangdong Taishan Overseas Reagent Plastic Co.) was used, its specific surface area was 1147.5 m2·g-1, and the nominal size was less than 0.18 mm. The MTA was synthesized by the sol-gel method at room temperature as follows: 20 ml butyl titanate (concentration>97%) was slowly dropped into the mixture of 70 ml absolute ethanol and 18 g AC under stirring, adjusted pH=2-3 with acetic acid (HAc), then the suspension was stirred vigorously for 30 min followed by adding a mixture of 60 ml water, 1.012 g ammonium sulfate and 2.065 g ferric nitrate, which was also adjusted pH=2-3 with HAc. The resulted solution was stirred for 2 h, and then stood still for 48 h before drying at 100 °C. MTA was obtained after calcining in stagnant air at 500 °C for 2 h. The modified TiO2composite photocatalyst (MT) was also prepared at the same preparation conditions (without adding AC) [4, 19]. For comparison, P-25 catalyst (product of Degussa, Germany) was used as the photocatalyst directly in photocatalytic reaction.

    2.2 Experimental procedure

    The uniform mixture of 2 g MTA (MT or P-25)and 10 g water glass (about 25% of SiO2) was coated on one side of four clear glass plates (the total effective illumination area about 331 cm2), drying in a vacuum drier at 100 °C for 2 h, then the four plates were placed into a photo-reactor (SGY-1, Nanjing Sidongke Electric Equipment Co.) as can be seen in Fig. 1, which is a 1200 ml quartz cylindrical vessel with a water-cooled jacket and a fan in the bottom. Certain amount of organic compound was injected into the reactor, which was kept in dark for 60 min to ensure a sufficient volatilization and the establishment of gas adsorption/desorption equilibrium. Irradiation was provided by a 300 W high-pressure mercury lamp (effective arc length 125±10 mm, stabilization time 5 min) with major emission at 365 nm. By sampling (0.1 ml) gaseous mixture from photo-reactor at 20 min intervals, the concentration of organic compounds can be calculated from the analytical results of GC (9800TFP, Shanghai Kechuang Chromatograph Instruments Co., China).

    Degradation rate of organic compounds could be evaluated with the following equation:

    whereC0is the initial concentration of organic compounds when achieving the stabilization time,Ctis the concentration of organic compounds at timet.

    3 RESULTS AND DISCUSSION

    3.1 Characterization

    Figure 2 shows the scanning electron micrograph(SEM) of MTA. It can be seen that part of TiO2(white particles) is wrapped in the surface of AC (gray), and the other part of TiO2is embedded in the hole of AC.The loss of adsorption sites of AC due to impregnation is not significant.

    Figure 2 SEM of MTA

    Figure 3 shows the UV-visible (UV-Vis) absorption spectra of different catalysts. Comparing the curves 1 and 2 can be found that the absorption spectrum of MT undergoes an obvious red shift, and the absorption intensity in visible region increases, but it weakens in UV region. Comparing the curves 2 and 3 can be seen that MTA shows strong absorption intensity in the UV and visible region.

    Figure 3 UV-Vis absorption spectra of the catalysts prepared at different conditions1—P-25; 2—MT; 3—MTA

    3.2 Performance of photocatalyst

    Experiments on photocatalytic degradation of toluene, acetone and formaldehyde vapors were conducted on MTA, and the degradation curves are shown in Fig. 4.

    Figure 4 The degradation capability of MTA for different organic compounds(c0 toluene=44.30 g·m-3, c0 acetone=39.40 g·m-3, c0 formaldehyde=39.40 g·m-3)■ toluene; ● formaldehyde; ▲ acetone

    As can be seen from Fig. 4, there is little change in degradation rate of toluene and acetone when using MTA, and it maintains a high degradation rate (about 90% in 120 min), but the degradation rate of formaldehyde is lower (only 35% in 120 min).

    Experiments on photocatalytic degradation of toluene were also conducted with different initial concentrations: 39.88, 42.05, 43.50, 47.13 g·m-3on MTA, and the results can be seen in Fig. 5. In this range of concentration, the degradation rate of toluene in 120 min increases with the increase of the initial concentration.

    Figure 5 Influence of initial toluene concentrations on degradation rate■ 39.88 g·m-3; ● 42.05 g·m-3; ▲ 43.50 g·m-3; × 47.13 g·m-3

    3.3 Kinetic model analysis of photocatalytic reaction

    3.3.1Kinetic model of toluene

    Figure 6 shows the fitting results of zero, first and second order kinetic models based on the experimental degradation data of toluene in Fig. 4. It can be concluded that the second order kinetic model equation:X/c0(1-X)=ktcorrelates the experimental data quite well, which is different from the first order kinetic model reported in the literature [16, 21]. It is probably because the L-H model is based on the kinetic model of ideal adsorption, but it is more complex for actual kinetics. In particular, the molecular diffusion rate of gas-solid phase photocatalytic reaction is very high, toluene may occur in two different kinds of oxidation under the existence of a large number of electrons and holes [22]. In this study, it is also because of the strong adsorption capacity of MTA,a large amount of toluene was needed in the process of photocatalytic degradation, which leading to a higher concentration of toluene adsorbed on its surface,therefore, the deviation from the application conditions of the L-H model is inevitable. Besides the specific physical properties of black AC can greatly enhance the absorption of light by MTA, which not only affects the stability of photocatalytic temperature, but also increased the probability of directly photolysis for toluene, so the degradation reaction of toluene may be more complicated.

    3.3.2Kinetic model of acetone

    Table 1 shows the fitting results of the kinetic models basing on the experimental data of acetone in Fig. 4. It is apparent from the results in Table 1 that the data fits well with the second order kinetic model equation, too. The reasons may be related to the same as that of toluene.

    3.3.3Kinetic model of formaldehyde

    Table 2 shows the fitting results of the kinetic models basing on the experimental data of formaldehyde with initial concentrationc0=39.40 g·m-3in Fig. 4. It can be seen that all the fitting results show a well linear relationship. However, the value of correlation coefficientR2from the zero order kinetic model is higher than others, and the fitting residual of data points is more randomly distributed, suggesting that the photo catalysis is more in line with the zero order kinetic model equation:c0X=kt.

    Figure 6 The kinetic model of photocatalytic reaction of toluene

    Table 1 The kinetic parameters of photocatalytic degradation of acetone

    Table 2 The kinetic parameters of photocatalytic degradation of formaldehyde

    The factors affecting the fitting result of kinetic model as follows: because the adsorption properties of AC is strong, and formaldehyde was added into the reactor in form of aqueous solution, the excessive water vapor not only aggravated the competitive adsorption between water molecules and formaldehyde molecules on the surface of MTA, but also hindered the contact of formaldehyde with TiO2[23, 24]. This resulted in the degradation rate mainly controlled by the diffusion rate finally, so that the real kinetics was masked.

    3.3.4Effect of initial toluene concentration

    Table 3 shows the fitting results basing on the experimental data of different initial toluene concentrations in Fig. 5. It is evidently observed that the fitting results are all fit well with the second order kinetic model equation.

    It is apparent from the results in Table 3 that therate constant increases with increasing toluene concentration. This can be explained as follows: The essence of photocatalytic reaction is the indirect photolysis reaction of hydroxyl radicals (OH-) and organic compounds, the molecules of H2O is an important source of OH-, but the amount of catalyst and H2O in air is finite for a closed system. The presence of AC can enhance the adsorption capacity of MTA, and improve the separation efficiency of electrons and holes. When the initial toluene concentration increases, the equilibrium adsorption of the MTA increases, followed by the increase of photocatalytic reaction rate and the amount of H2O (equivalent to improve the air humidity of the system), thereby the content of hydroxyl radicals will be increased under UV irradiation [23].

    Table 3 The second order kinetic parameters of different initial toluene concentrations

    4 CONCLUSIONS

    The kinetic models of the photocatalytic degradation of organic compounds by MTA were investigated with respect to the species of organic compounds and different initial toluene concentrations. The fitting results of toluene and acetone were ascertained to fit quite well with the second order kinetic model, and the degradation of formaldehyde fits well with the zero order kinetic model. With higher initial concentration of toluene, the second order kinetic rate constant increased significantly. The validity of the model was partly proved by fitting the experimental data obtained to zero, first and second order kinetic expressions under various conditions.

    1 Gaya, U.I., Abdullah, A.H., “Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: A review of fundamentals, progress and problems”,J.Photochem.Photobiol.C:Photochem.Rev., 9 (1), 1-12 (2008).

    2 Tryba B., “Immobilization of TiO2and Fe-C-TiO2photocatalysts on the cotton material for application in a flow photocatalytic reactor for decomposition of phenol in water”,J.Hazard.Mater., 151 (2-3),623-627 (2008).

    3 Sun, R.B., Xi, Z.G., Chao, F.H., Zhang, W., Zhang, H.S., Yang, D.F.,“Decomposition of low-concentration gas-phase toluene using plasma-driven photocatalyst reactor”,Atmos.Environ., 41 (32),6853-6859 (2007).

    4 El-Bahy, Z.M., Ismail, A.A., Mohamed, R.M., “Enhancement of titania by doping rare earth for photo degradation of organic dye (Direct Blue)”,J.Hazard.Mater., 166 (1), 138-143 (2009).

    5 Seery, M.K., George, R., Floris, P., Pillai, S.C., “Silver doped titanium dioxide nanomaterials for enhanced visible light photocatalysis”,J.Photochem.Photobiol.A, 189 (2-3), 258-263 (2007).

    6 Wu, P.X., Tang, J.W., Dang Z., “Preparation and photocatalysis of TiO2nanoparticles doped with nitrogen and cadmium”,Mater.Chem.Phys., 103 (2-3), 264-269 (2007).

    7 Zhang, X.W., Zhou, M.H., Lei, L.C., “Preparation of anatase TiO2supported on alumina by different metal organic chemical vapor deposition methods”,Appl.Catal.A, 282 (1-2), 285-293 (2005).

    8 Choi, W., Termin, A., Hoffmann, M.R., “The role of metal ion dopants in quantum-sided TiO2: Correlation between photoreactivity and charge carrier recombination dynamics”,J.Phys.Chem., 98 (51),13669-13679 (1994).

    9 Sathish, M., Viswanathan, B., Viswanath, R.P., “Characterization and photocatalytic activity of N-doped TiO2prepared by thermal decomposition of Ti-melamine complex”,Appl.Catal.B, 74 (3-4),307-312 (2007).

    10 Song, S., Tu, J.J., Xu, L.J., Xu, X., He, Z.Q., Qiu, J.P., Ni, J.G., Chen,J.M., “Preparation of a titanium dioxide photocatalyst codoped with cerium and iodine and its performance in the degradation of oxalic acid”,Chemosphere, 73 (9), 1401-1406 (2008).

    11 Mahalakshmi, M., Vishnu Priya, S., Arabindoo, B., Palanichamy, M.,Murugesan, V., “Photocatalytic degradation of aqueous propoxur solution using TiO2and Hβ zeolite-supported TiO2”,J.Hazard.Mater., 161 (1), 336-343 (2009).

    12 Plesch, G., Gorbár, M., Vogt, U., Jesenák, K., Vargová, M., “Reticulated macroporous ceramic foam supported TiO2for photocatalytic applications”,Mater.Lett., 63 (3-4), 461-463 (2009).

    13 Zhang, X.W., Zhou, M.H., Lei, L.C., “Enhancing the concentration of TiO2photocatalyst on the external surface of activated carbon by MOCVD”,Mater.Res.Bull., 40 (11), 1899-1904 (2005).

    14 Takashi, T., Mamoru, F., Tetsuro, M., “Mechanistic insight into the TiO2photocatalytic reactions: Design of new photocatalysts”,J.Phys.Chem.C, 111 (14), 5259-5275 (2007).

    15 Maruga, J., Grieken, R.V., Cassano, A.E., Alfano, O.M., “Intrinsic kinetic modeling with explicit radiation absorption effects of the photocatalytic oxidation of cyanide with TiO2and silica-supported TiO2suspensions”,Appl.Catal.,B:Environmental, 85 (1-2), 48-60(2008).

    16 Wang, W.Q., Zhang, Q.C., Jian, L., Liu, J.M., Wei, Y.H., “Preparation of regular TiO2-carbide catalyst and its photocatalytic properties”,Journal of Inner Mongolia University of Technology, 26 (4),260-264 (2007). (in Chinese)

    17 Dai, D.M., Zhou, J., Gao, H.T., “The advancement on nano-TiO2photocatalytic oxidation technology”,Journal of Liaocheng University(Nat.Sic.), 20 (3), 56-60 (2007). (in Chinese)

    18 Liao, D.L., Xiao, X.Y., Deng, Q., Zhang, H.P., Wan, C.X., “Study on kinetics of formaldehyde photocatalytic degradation on titanium dioxide”,Environmental Protectionof Chemical Industry, 23 (4),191-194 (2003). (in Chinese)

    19 Li, Y.J., Sun, S.G., Ma, M.Y., Ouyang, Y.Z., Yan, W.B., “Kinetic study and model of the photocatalytic degradation of rhodamine B(RhB) by a TiO2-coated activated carbon catalyst: Effects of initial RhB content, light intensity and TiO2content in the catalyst”,Chem.Eng.J., 142 (2), 147-155 (2008).

    20 Yang, Q.S., Liao, Y.J., Xiao, X.Y., “Preparation of iron, nitrogen co-doped TiO2/AC composite photo catalysts and their photo catalytic activities for degradation of gaseous pollutants”,Materials Review, 25 (17), 62-67 (2011). (in Chinese)

    21 Yin, Y.Q., Zheng, Y., Su, Y.C., Cui, Q., Cui, Z.J., “Reaction kinetics and mechanism of photocatalytic degradation of gaseous toluene”,Chinese Journal of Process Engineering, 9 (3), 536-540 (2009). (in Chinese)

    22 Zhang, J.C., Guo, K.M., Ma, L., Zhao, H.Y., “Reaction mechanisms for gas-phase photocatalytic degradation of benzene and butyraldehyde over TiO2/AC composite photocatalyst”,Chinese Journal of Catalysis, 27 (10), 853-856 (2006). (in Chinese)

    23 Guo, T., Bai, Z.P., Wu, C., Zhu, T., “Influence of environmental humidity on the photocatalytic oxidation of toluene by TiO2Loaded on activated carbon fibers”,Chinese Journal of Catalysis, 28 (12),1089-1095 (2007). (in Chinese)

    24 Li, B., Li, B.Z., Li, J., Liu, X., “Investigation of the influencing factors on ACF/TiO2photocatalytic degradation of formaldehyde”,Sciencepaper Online, 3 (5), 347-350 (2008). (in Chinese)

    猜你喜歡
    青山
    青山著意化為橋
    留得“青山”,贏得未來
    人不負(fù)青山,青山定不負(fù)人
    云南畫報(2021年11期)2022-01-18 03:15:32
    第十九回 山外青山樓外樓 獨(dú)孤求敗處處敗
    雨后青山
    青山攬勝
    寶藏(2020年4期)2020-11-05 06:48:36
    夏夜青山
    青山在
    收藏界(2018年5期)2018-10-08 09:10:58
    青山的起伏
    詩潮(2017年2期)2017-03-16 20:02:48
    青山
    黄色毛片三级朝国网站| 熟女人妻精品中文字幕| 新久久久久国产一级毛片| 一区二区日韩欧美中文字幕 | 国产色婷婷99| 美女脱内裤让男人舔精品视频| 18在线观看网站| 精品午夜福利在线看| 精品少妇内射三级| a级毛色黄片| 999精品在线视频| 在线亚洲精品国产二区图片欧美 | 欧美人与性动交α欧美精品济南到 | 在线观看美女被高潮喷水网站| 男男h啪啪无遮挡| 丝袜脚勾引网站| 熟女人妻精品中文字幕| 熟妇人妻不卡中文字幕| 亚洲人成网站在线观看播放| 久久国产精品大桥未久av| 亚洲av欧美aⅴ国产| 男人操女人黄网站| 成人毛片60女人毛片免费| 久久99蜜桃精品久久| 91午夜精品亚洲一区二区三区| 五月伊人婷婷丁香| 黑人猛操日本美女一级片| 欧美日韩精品成人综合77777| 2018国产大陆天天弄谢| 又粗又硬又长又爽又黄的视频| 国产成人精品婷婷| 国产精品一区二区在线不卡| 一级毛片我不卡| 九色亚洲精品在线播放| 亚洲精品国产av蜜桃| 免费黄频网站在线观看国产| 日韩,欧美,国产一区二区三区| 熟女电影av网| 插逼视频在线观看| 日本午夜av视频| 黑人高潮一二区| 亚洲一级一片aⅴ在线观看| 男女边摸边吃奶| 十八禁网站网址无遮挡| 国产亚洲av片在线观看秒播厂| 人妻系列 视频| 久久久久精品性色| 曰老女人黄片| 热99国产精品久久久久久7| 91在线精品国自产拍蜜月| 大片电影免费在线观看免费| 日本vs欧美在线观看视频| 街头女战士在线观看网站| 日韩电影二区| 在线亚洲精品国产二区图片欧美 | 欧美日韩亚洲高清精品| 91精品国产九色| 婷婷色av中文字幕| 九色亚洲精品在线播放| 51国产日韩欧美| 少妇人妻精品综合一区二区| 最后的刺客免费高清国语| 国产成人a∨麻豆精品| 精品少妇内射三级| 一本久久精品| 99久国产av精品国产电影| 哪个播放器可以免费观看大片| 观看av在线不卡| 亚洲欧美一区二区三区黑人 | 午夜免费鲁丝| 少妇的逼好多水| 亚洲欧洲日产国产| 又粗又硬又长又爽又黄的视频| 国产一区亚洲一区在线观看| 97超视频在线观看视频| 美女主播在线视频| 日本欧美视频一区| 极品少妇高潮喷水抽搐| 丝袜脚勾引网站| 能在线免费看毛片的网站| 天美传媒精品一区二区| 日韩大片免费观看网站| 精品一区二区免费观看| 汤姆久久久久久久影院中文字幕| 日韩,欧美,国产一区二区三区| 看十八女毛片水多多多| 久久国产精品男人的天堂亚洲 | 亚洲国产欧美日韩在线播放| 欧美丝袜亚洲另类| 春色校园在线视频观看| 最近2019中文字幕mv第一页| 亚洲av在线观看美女高潮| 免费黄频网站在线观看国产| 成人亚洲欧美一区二区av| 国产黄频视频在线观看| 久久久精品94久久精品| 国产在视频线精品| 亚洲av不卡在线观看| 国产淫语在线视频| 在线天堂最新版资源| 黄片无遮挡物在线观看| 18禁裸乳无遮挡动漫免费视频| 亚洲,一卡二卡三卡| 久久国产亚洲av麻豆专区| 下体分泌物呈黄色| 国产免费又黄又爽又色| 老司机影院毛片| av.在线天堂| 少妇人妻 视频| 搡老乐熟女国产| 能在线免费看毛片的网站| 久久精品国产亚洲网站| av在线app专区| 精品人妻一区二区三区麻豆| 人体艺术视频欧美日本| av免费在线看不卡| 久久国产精品男人的天堂亚洲 | 熟女人妻精品中文字幕| 五月开心婷婷网| 搡女人真爽免费视频火全软件| 99九九在线精品视频| 免费黄频网站在线观看国产| 超色免费av| 亚洲欧美日韩卡通动漫| 国产高清三级在线| 亚洲精品久久久久久婷婷小说| 精品一区在线观看国产| 精品99又大又爽又粗少妇毛片| .国产精品久久| 国产精品秋霞免费鲁丝片| 日韩欧美精品免费久久| 亚洲不卡免费看| 成年人免费黄色播放视频| 国产精品久久久久久av不卡| 国产精品久久久久久av不卡| 午夜激情福利司机影院| 久久久久久久久久久丰满| 久久久欧美国产精品| 99精国产麻豆久久婷婷| 国产极品天堂在线| 桃花免费在线播放| 国精品久久久久久国模美| 99热6这里只有精品| 午夜福利视频在线观看免费| 亚洲国产日韩一区二区| 男女啪啪激烈高潮av片| 少妇人妻久久综合中文| 欧美另类一区| 我要看黄色一级片免费的| 成年av动漫网址| 国产精品人妻久久久久久| 久久99一区二区三区| 又大又黄又爽视频免费| 欧美日韩av久久| 国产成人一区二区在线| 亚洲伊人久久精品综合| 天堂俺去俺来也www色官网| 少妇高潮的动态图| 亚州av有码| 51国产日韩欧美| 黄色配什么色好看| 又粗又硬又长又爽又黄的视频| 性色av一级| 成人亚洲精品一区在线观看| 激情五月婷婷亚洲| 久久久a久久爽久久v久久| 亚洲精品自拍成人| 国产在视频线精品| 亚洲精品美女久久av网站| 亚洲综合色惰| 欧美精品亚洲一区二区| 国产免费现黄频在线看| 国产亚洲午夜精品一区二区久久| 香蕉精品网在线| 国产有黄有色有爽视频| 美女xxoo啪啪120秒动态图| 精品亚洲乱码少妇综合久久| 黄片无遮挡物在线观看| 我要看黄色一级片免费的| 欧美老熟妇乱子伦牲交| 国产精品人妻久久久影院| 九色亚洲精品在线播放| 国产av码专区亚洲av| 国产精品欧美亚洲77777| 狠狠精品人妻久久久久久综合| 久久久久久久久久人人人人人人| 激情五月婷婷亚洲| 国产一区有黄有色的免费视频| 亚洲av中文av极速乱| 国精品久久久久久国模美| 黄色欧美视频在线观看| 日韩制服骚丝袜av| 亚洲五月色婷婷综合| 女人久久www免费人成看片| 在线观看三级黄色| 成年av动漫网址| 久久久久久久久久久久大奶| 国产在视频线精品| www.av在线官网国产| 爱豆传媒免费全集在线观看| a级毛色黄片| 九九在线视频观看精品| 亚洲精品av麻豆狂野| 国产精品麻豆人妻色哟哟久久| 久久久午夜欧美精品| 王馨瑶露胸无遮挡在线观看| 尾随美女入室| 亚洲欧洲日产国产| 十八禁高潮呻吟视频| 日韩av在线免费看完整版不卡| 久久青草综合色| 新久久久久国产一级毛片| freevideosex欧美| 日本欧美国产在线视频| 久久精品人人爽人人爽视色| 99九九线精品视频在线观看视频| 免费黄频网站在线观看国产| 免费观看a级毛片全部| 一级毛片我不卡| 亚洲欧美成人精品一区二区| 国产男女内射视频| av黄色大香蕉| 美女主播在线视频| 国产精品久久久久久精品电影小说| av有码第一页| 亚洲av电影在线观看一区二区三区| 精品亚洲乱码少妇综合久久| 日产精品乱码卡一卡2卡三| 国产免费一区二区三区四区乱码| 91精品一卡2卡3卡4卡| 亚洲综合色惰| 国产欧美日韩一区二区三区在线 | 高清欧美精品videossex| 99re6热这里在线精品视频| 777米奇影视久久| 亚洲国产欧美日韩在线播放| 欧美亚洲 丝袜 人妻 在线| 久久ye,这里只有精品| 午夜福利视频在线观看免费| 欧美日韩视频精品一区| 日韩 亚洲 欧美在线| 国产白丝娇喘喷水9色精品| 亚洲欧洲精品一区二区精品久久久 | 一区二区日韩欧美中文字幕 | 男女国产视频网站| 狠狠精品人妻久久久久久综合| 男女边摸边吃奶| 国产在视频线精品| 精品少妇黑人巨大在线播放| 国产视频首页在线观看| 国产亚洲av片在线观看秒播厂| 成人黄色视频免费在线看| 老司机影院成人| 成年人免费黄色播放视频| 国产精品欧美亚洲77777| 国产亚洲精品第一综合不卡 | 成年美女黄网站色视频大全免费 | 精品酒店卫生间| 亚洲欧洲精品一区二区精品久久久 | 99精国产麻豆久久婷婷| 少妇猛男粗大的猛烈进出视频| 考比视频在线观看| 日韩中文字幕视频在线看片| 飞空精品影院首页| 国产精品偷伦视频观看了| 国内精品宾馆在线| 欧美日韩综合久久久久久| 黄色怎么调成土黄色| 日韩欧美一区视频在线观看| 国产欧美另类精品又又久久亚洲欧美| av在线app专区| 欧美人与性动交α欧美精品济南到 | 欧美日韩视频精品一区| 水蜜桃什么品种好| 国产av码专区亚洲av| 校园人妻丝袜中文字幕| 色5月婷婷丁香| 一边亲一边摸免费视频| 高清在线视频一区二区三区| 视频区图区小说| 国产精品国产三级国产专区5o| 日本黄大片高清| 国产精品久久久久久av不卡| 不卡视频在线观看欧美| 国产精品女同一区二区软件| 午夜免费观看性视频| 99热网站在线观看| 亚洲美女搞黄在线观看| 成人国产麻豆网| 天堂俺去俺来也www色官网| 中文天堂在线官网| 国产精品嫩草影院av在线观看| 波野结衣二区三区在线| 亚洲成人手机| 九草在线视频观看| 亚洲精品av麻豆狂野| 国产毛片在线视频| 国产精品一区二区在线不卡| 国产成人午夜福利电影在线观看| 一级毛片电影观看| 国产午夜精品一二区理论片| 有码 亚洲区| 国产一区有黄有色的免费视频| 亚洲国产av新网站| 亚洲美女搞黄在线观看| 搡女人真爽免费视频火全软件| 欧美亚洲日本最大视频资源| 日本色播在线视频| 国产无遮挡羞羞视频在线观看| 欧美精品人与动牲交sv欧美| 热99国产精品久久久久久7| 精品国产一区二区三区久久久樱花| 久久青草综合色| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 我的老师免费观看完整版| 亚洲婷婷狠狠爱综合网| 久久久国产精品麻豆| 国产综合精华液| 两个人免费观看高清视频| 女人精品久久久久毛片| 久久久久久人妻| 国产精品无大码| 亚洲精品第二区| 欧美精品人与动牲交sv欧美| 国产黄色视频一区二区在线观看| 免费观看在线日韩| 五月天丁香电影| 欧美三级亚洲精品| 五月天丁香电影| 欧美三级亚洲精品| 一本一本综合久久| 一级毛片黄色毛片免费观看视频| 性色avwww在线观看| av有码第一页| 18禁在线无遮挡免费观看视频| 少妇高潮的动态图| 精品卡一卡二卡四卡免费| 国产欧美亚洲国产| 欧美日韩视频高清一区二区三区二| 精品人妻在线不人妻| 日韩av免费高清视频| 国产亚洲av片在线观看秒播厂| 亚洲伊人久久精品综合| 久久久a久久爽久久v久久| 亚洲av.av天堂| 伊人久久国产一区二区| 亚洲伊人久久精品综合| 丝袜喷水一区| 一本色道久久久久久精品综合| av线在线观看网站| 亚洲伊人久久精品综合| 免费黄频网站在线观看国产| 国产男人的电影天堂91| 在线观看一区二区三区激情| 亚州av有码| 精品亚洲成a人片在线观看| 亚洲国产av影院在线观看| 99久久人妻综合| 国产伦精品一区二区三区视频9| 自线自在国产av| 国产国语露脸激情在线看| 熟妇人妻不卡中文字幕| 国产成人免费观看mmmm| 免费少妇av软件| 亚洲av福利一区| 久久国产精品男人的天堂亚洲 | 中文乱码字字幕精品一区二区三区| 寂寞人妻少妇视频99o| 性色avwww在线观看| 免费av不卡在线播放| 久久青草综合色| 国产伦理片在线播放av一区| 久久久久久久精品精品| 免费大片黄手机在线观看| 久久久久久久精品精品| 成人亚洲精品一区在线观看| 日日爽夜夜爽网站| 亚洲经典国产精华液单| 国产成人a∨麻豆精品| 人人妻人人澡人人爽人人夜夜| 91精品国产国语对白视频| 欧美激情极品国产一区二区三区 | 在线免费观看不下载黄p国产| 亚洲精品乱码久久久久久按摩| a 毛片基地| 永久网站在线| 亚洲四区av| 午夜福利网站1000一区二区三区| 国产精品熟女久久久久浪| 国产av精品麻豆| 99久久精品国产国产毛片| 肉色欧美久久久久久久蜜桃| 久久国内精品自在自线图片| 欧美三级亚洲精品| 我要看黄色一级片免费的| 美女脱内裤让男人舔精品视频| 丝袜美足系列| 肉色欧美久久久久久久蜜桃| 午夜激情av网站| 久久久久久久久久久久大奶| 建设人人有责人人尽责人人享有的| 一区二区三区精品91| 国产亚洲一区二区精品| 国产极品粉嫩免费观看在线 | 一区二区三区精品91| 国产精品久久久久久精品古装| 亚洲色图 男人天堂 中文字幕 | 日韩电影二区| 久久影院123| 亚洲国产精品999| 人人澡人人妻人| 十八禁网站网址无遮挡| 一区二区三区免费毛片| 国产免费一级a男人的天堂| 亚洲人与动物交配视频| 成人黄色视频免费在线看| 免费黄网站久久成人精品| 桃花免费在线播放| h视频一区二区三区| 在线观看国产h片| 免费看光身美女| 啦啦啦视频在线资源免费观看| 国产白丝娇喘喷水9色精品| 一区二区三区乱码不卡18| 欧美日韩一区二区视频在线观看视频在线| 人妻少妇偷人精品九色| 22中文网久久字幕| 国产视频内射| 一区二区av电影网| 精品久久久噜噜| 日本猛色少妇xxxxx猛交久久| 日韩精品免费视频一区二区三区 | 一区二区三区免费毛片| 国产成人精品无人区| 欧美精品亚洲一区二区| 国产 一区精品| 免费播放大片免费观看视频在线观看| 国产高清三级在线| 国产视频首页在线观看| 大香蕉久久网| 在现免费观看毛片| 免费人妻精品一区二区三区视频| 内地一区二区视频在线| 又粗又硬又长又爽又黄的视频| 97超碰精品成人国产| 国产高清有码在线观看视频| 久久久久久久久久人人人人人人| a 毛片基地| av播播在线观看一区| 自线自在国产av| 日韩中文字幕视频在线看片| 欧美老熟妇乱子伦牲交| 热re99久久国产66热| 制服丝袜香蕉在线| 国产亚洲一区二区精品| www.色视频.com| 日韩电影二区| 精品少妇久久久久久888优播| 成人黄色视频免费在线看| 999精品在线视频| 菩萨蛮人人尽说江南好唐韦庄| 少妇精品久久久久久久| 久久午夜综合久久蜜桃| 久久女婷五月综合色啪小说| 欧美日韩av久久| 国产一区二区三区av在线| 自线自在国产av| 亚洲国产欧美在线一区| 亚洲欧美成人精品一区二区| 大片免费播放器 马上看| 精品熟女少妇av免费看| 亚洲五月色婷婷综合| 少妇被粗大猛烈的视频| 国产色爽女视频免费观看| 亚洲欧洲日产国产| 岛国毛片在线播放| 欧美 亚洲 国产 日韩一| 男女边摸边吃奶| 亚洲av不卡在线观看| 亚州av有码| 熟女av电影| 91久久精品国产一区二区成人| 久久人妻熟女aⅴ| 国产日韩欧美视频二区| 菩萨蛮人人尽说江南好唐韦庄| 久久婷婷青草| 黑人欧美特级aaaaaa片| 美女脱内裤让男人舔精品视频| 国产成人aa在线观看| 哪个播放器可以免费观看大片| 涩涩av久久男人的天堂| a级毛片免费高清观看在线播放| 免费大片黄手机在线观看| 我要看黄色一级片免费的| 日产精品乱码卡一卡2卡三| 自线自在国产av| 九色成人免费人妻av| 日日摸夜夜添夜夜添av毛片| 亚洲高清免费不卡视频| 男的添女的下面高潮视频| 91精品国产九色| 久久久久视频综合| 色5月婷婷丁香| 国产免费一区二区三区四区乱码| 亚洲激情五月婷婷啪啪| 成年av动漫网址| 午夜激情久久久久久久| 亚洲国产日韩一区二区| 久久久久网色| 观看av在线不卡| 国产色爽女视频免费观看| 亚洲国产精品一区三区| 99精国产麻豆久久婷婷| 麻豆乱淫一区二区| 七月丁香在线播放| kizo精华| 国语对白做爰xxxⅹ性视频网站| 欧美精品人与动牲交sv欧美| 国产爽快片一区二区三区| 在线观看三级黄色| 欧美激情国产日韩精品一区| 高清欧美精品videossex| 成人手机av| 极品少妇高潮喷水抽搐| 国产亚洲午夜精品一区二区久久| 国产欧美亚洲国产| 午夜激情av网站| 视频区图区小说| 久热这里只有精品99| 久久韩国三级中文字幕| 一级,二级,三级黄色视频| 丝瓜视频免费看黄片| 一级a做视频免费观看| 亚洲中文av在线| 中文乱码字字幕精品一区二区三区| av免费观看日本| 大又大粗又爽又黄少妇毛片口| av在线播放精品| 成人毛片60女人毛片免费| 亚洲av不卡在线观看| 日本猛色少妇xxxxx猛交久久| 午夜免费男女啪啪视频观看| 一级毛片电影观看| 伦精品一区二区三区| 一二三四中文在线观看免费高清| 免费看光身美女| 精品久久久久久久久av| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 午夜激情av网站| 只有这里有精品99| 晚上一个人看的免费电影| 免费观看a级毛片全部| 中文字幕人妻熟人妻熟丝袜美| 视频区图区小说| 老熟女久久久| 亚洲国产av影院在线观看| 免费少妇av软件| 久久午夜综合久久蜜桃| 九草在线视频观看| 中文字幕精品免费在线观看视频 | 美女大奶头黄色视频| 三级国产精品片| 大香蕉久久成人网| 久久久久国产精品人妻一区二区| 哪个播放器可以免费观看大片| av在线app专区| 少妇的逼好多水| 日韩成人伦理影院| 欧美日韩视频高清一区二区三区二| 日日摸夜夜添夜夜添av毛片| 制服人妻中文乱码| a级片在线免费高清观看视频| 亚洲国产精品一区三区| 国产成人freesex在线| 亚洲高清免费不卡视频| 精品熟女少妇av免费看| 国产精品一区www在线观看| 亚洲精品,欧美精品| 美女视频免费永久观看网站| 亚洲怡红院男人天堂| 久久久a久久爽久久v久久| 精品久久久久久久久av| 亚洲性久久影院| 亚洲成人手机| 男女免费视频国产| 国产黄色视频一区二区在线观看| 成人手机av| 亚洲图色成人| 各种免费的搞黄视频| 少妇被粗大的猛进出69影院 | 一本—道久久a久久精品蜜桃钙片| 日韩欧美一区视频在线观看| 观看美女的网站| 久久久久久久久久人人人人人人| 中文乱码字字幕精品一区二区三区| 这个男人来自地球电影免费观看 | av天堂久久9| 亚洲欧美一区二区三区黑人 | 国产精品久久久久久久久免| 免费av中文字幕在线| 国产精品久久久久久久电影| 18禁动态无遮挡网站| 夫妻午夜视频| 中文字幕人妻丝袜制服| 欧美 日韩 精品 国产| 国产视频首页在线观看| 寂寞人妻少妇视频99o| 亚洲精品乱码久久久v下载方式| 搡老乐熟女国产| 久久99一区二区三区| 亚洲国产精品国产精品| 亚洲精品久久午夜乱码| 亚洲av欧美aⅴ国产| 精品亚洲成国产av| 一二三四中文在线观看免费高清|