• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluating Local Elasticity of the Metal Nano-films Quantitatively Based on Referencing Approach of Atomic Force Acoustic Microscopy

    2012-01-20 04:46:14ZHANGGaimeiHECunfuWUBinandCHENQiang

    ZHANG Gaimei ,HE Cunfu *,WU Bin ,and CHEN Qiang

    1 College of Mechanical Engineering and Applied Electronics Technology,Beijing University of Technology,Beijing 100124, China 2 Laboratory of Plasma Physics and Materials,Beijing Institute of Graphic Communication,Beijing 102600,China

    1 Introduction

    Metallic nano-particles and nano-film have received significant attention due to their unique properties such as color,conductivity,melting temperature,magnetism,specific heat and light absorption in comparison with bulk metal[1-2].Additionally,further miniaturization of advanced electronic devices requires a reduction in the thickness and width of the metal lines,resulting in sizes of several to several tens of nanometers[3-4].So it is necessary to accurately evaluate the material properties for designing devices with sufficient strength,not only to predict the performance of a system before use,but also to evaluate its reliability during or after use,especially nano-mechanical information—knowledge on mechanical properties at the nano-scale such as elastic modulus,adhesion,and friction.Meanwhile,subsurface defects can be present during nano-film deposition,which will deteriorate the properties of the nano-materials.But the detection of these nano-scale tiny defects is very difficult by conventional methods.

    There are many methods such“nano-”indentation(NI)method based on Nano Indenter[5]and force-displacement curve method based on atomic force microscope(AFM) that can measure the mechanical properties[6-8].But NI measurement is inherently destructive,creating indents hundreds to thousands of nanometers wide and with insufficient spatial resolution.Due to the indenting depth,the measurement result is affected by the mechanical property of substrate easily,especially for the films of nano-thickness.Force-displacement curve methods work best when the compliance of the cantilever is roughly comparable to that of the tested material.Therefore,these methods are better suited to very compliant(“soft”)materials,and lose effectiveness as the material stiffness increases.

    To address the requirements,many researchers[9-13]have developed the atomic force acoustic microscope(AFAM)system and measured the thin film with nano-scale thickness such diamond-like carbon(DLC) film with 5 nm,20 nm and 100 nm thickness[14],nano-crystalline ferrites film of 200 nm thickness[12]and Nb film with nano-film thickness[15].AFAM is a dynamical technique[9-13],where the cantilever or the sample surface is vibrated at ultrasonic frequencies while a sample surface is scanned with the sensor tip contacting the sample.At a consequence,the amplitude of the cantilever vibration as well as the shift of the cantilever resonance frequencies containing information about local tip-sample contact stiffness can be used to calculate the contact stiffness between the tip and sample.According to the Hertz contact model and referencing approach[9,12],the value of indentation modulus can be determined.The AFAM technique has been demonstrated to be a powerful tool for the investigation of the local elastic prosperities of sample surface[9,11,12,16].Moreover,in the case of a thin film deposited over a substrate,AFAM measurements are less affected by mechanical properties of the substrate itself[11,17].

    Copper(Cu) film with nano-thickness has many attractive properties such as low resistivity and high electro migration resistance.Another important factor is the reliability of the thin film,which depends on the method of processing.To satisfy this requirement,the sputtering method is one of the most useful thin film production techniques as it allows low temperature formation of almost ideal films,i.e.films with properties very similar to that of the bulk material.To illustrate the feasibility of AFAM system and investigate the metal film with nano-thickness,in this paper,the Cu films with 110 nm thickness prepared by direct current(DC)magnetron sputtering method are investigated.At the same time,the zinc thin films of 90 nm thickness prepared by DC magnetron sputtering method and bulk glass are measured also to prove the AFAM method.

    Compared with reference value of test materials,the measured results reveal that it is a promised method evaluating the local nano-mechanical properties not only for bulk sample but also for metal thin film with nano-thickness.Furthermore,the choice of the reference material,tip wear and the influencing factors arising from the cantilever characteristics were analyzed.

    2 Experimental Method

    2.1 Samples preparation

    In this paper,the copper and zinc thin films of nano-thickness prepared by direct current(DC) magnetron sputtering method and glass slide are investigated by the atomic force acoustic microscope technique experimentally.The single crystal silicon wafers(used for depositing the zinc film) and glass slides(used for depositing the copper film) as the substrates are cleaned sequentially in an ultrasonic bath using ethanol,acetone and de-ionized water before they are mounted on the sample holder.The copper films are deposited by DC magnetron sputtering method.The background pressure is 2.6 mPa,the flow rate of Ar2is 20 scc/m(standard cubic centimeter per minute),the deposition time is 5 min and the input power were 20 W,40 W and 60 W respectively.The back of substrates are glued the sample holder using the double-side tape.The substrate-to-target distance is 100 mm.Fig.1 shows the samples with the copper coating on the glass slide substrate and zinc coating on Si substrate.The thicknesses are 40 nm,80 nm and 110 nm for input power with 20 W,40 W and 60 W respectively.In this paper,only the copper film with 110 nm thickness is measured.To minimize the impact of inaccuracy arising from indentation modulus of the tip,the SiOx films are chosen as reference sample.

    Fig.1.Photography of the tested namo-films

    2.2 AFAM setup and method

    The AFAM technique is based on the contact theory and the vibration theory of the cantilever,the contact stiffness can be calculated according to the contact resonance frequencies measured by the AFAM system.The elastic modulus can be deduced from contact stiffness based on the contact theory.The details of description see Ref.[13].

    A modified commercial atomic force microscope (CSPM 5000,Ben Yuan,China) is used to image the sample surface,and to control the static cantilever forces before the tip contacting the sample.An external function generator(Handyscope-HS3,TiePie,UK) provides a stable sinusoidal excitation,which is applied to a piezoelectric transducer(V103-RM,Panametrics,USA),coupled to the back side of the sample with the double-sided tape,as Fig.2 and Fig.3.Fig.2 and Fig.3 show the block diagram and actual photograph of the AFAM system.The transducer,worked on the thickness vibration,emits longitudinal acoustic waves into the sample,which causes out-of-plane vibration of the sample surface.These surface vibrations are transmitted into the cantilever via the sensor tip.The cantilever vibrations are measured by the photodiode detector of the atomic force microscope(AFM) instrument,and the signal is connected to the signal channel of lock-in amplifier(Model 7280 DSP,Signal Recovery,USA) which also receives a reference signal from the function generator at the reference channel.

    To measure the contact resonance frequencies for the fixed point of sample,the amplitude of the cantilever vibration is demodulated by the lock-in amplifier only at an excitation frequency and is output to HS3.The data acquisition software is created with commercial tool Labview(National Instruments,Austin,TX,USA),by which the excitation frequency is changed stepwise and the digitized lock-in output at the specific frequency is read.And the amplitude of the cantilever versus as the excitation frequency is stored.

    Fig.2.Block diagram of AFAM system

    Fig.3.Photograph of AFAM system

    3 Results and Discussion

    3.1 Free and contact resonance frequency of the cantilever

    Before performing contact experiments,the first two free resonance frequencies of the clamped-free cantilever must be measured when the tip is out of contact[18].The cantilever is brought close to,but not in contact with the sample.Driving the transducer at relatively high voltages creates ultrasonic vibrations,which are large enough to excite the cantilever's free resonances via air coupling.

    According to the referencing approach,in this paper three cantilevers are used for three different tested samples.Meanwhile,to investigate the effect of the cantilever on contact resonance frequency,for the tested sample and corresponding reference sample the same cantilever are used.We define the cantilever for the copper film as #1,zinc film as number #2,and glass as number #3 respectively.The free flexural frequencies for three cantilevers are measured and shown in Fig.4.

    Fig.4.The first two orders free flexural resonance spectra of three cantilevers

    In order to determine the elastic modulus of the tested sample,a referencing or comparison approach is used[9,12],in which measurements are performed on the tested sample and the reference samples under the same static forces (960 nN) separately.The contact resonance spectra measured on the tested and corresponding reference samples are shown in Fig.5.From Fig.4 and Fig.5,it can be seen that the first two orders free and contact resonance frequencies are clearly visible,and listed in Table 1.Heref1andf2are the first and second contact resonance frequencies of the cantilever respectively when the tip contacts the samples.f10andf20are the first and second free resonance frequencies of the cantilever respectively.

    3.2 Contact stiffness and elasticity modulus

    According to the flexural beam model for the AFM cantilever with sensor tip contacting with samples and characteristic equation(see Ref.[16]),the contact stiffness between samples (including tested and reference samples)and the tip can be calculated.According to the measured first and second contact resonance frequencies,the function between the contact stiffness andL1/Lcan be shown in Fig.5.Here,Lis the total length of the cantilever,andL1is the length between the tip and the cantilever base.From Fig.6,the contact stiffness andL1/Lfor tested sample and corresponding reference sample can be read,shown in Table 2.

    Fig.5.The contact resonance spectra of the first and second order for tested and corresponding reference sample

    Table 1.The first two order contact resonance frequencies of the tested and reference samples

    According to the Hertz contact theory and referencing approach,Eq.(1) can be obtained:

    whereEs*andEref*are reduced Yong's modulus for tested and reference materials respectively.ksandkrefare contact stiffness for tested sample and reference materials respectively.

    Also,we know that

    whereMtandMsare the indentation modulus of the tip and the tested sample,respectively.

    Fig.6.Contact stiffness as a function of relative tip position L1/L for samples

    Table 2.Measured values of the contact stiffness and L1/L for tested and corresponding reference samples

    Assuming the indentation modulus as 75 GPa for reference sample,and 165.5 GPa for cantilever tip,the elastic modulus of tested samples can be obtained and are listed in Table 2.kis the contact stiffness calculated from the resonance frequencies for tested and reference samples.Msis indentation modulus of the tested sample.These results are within the range of the literature values for copper film[18](MCu=105-130 GPa)and bulk glass (MGlass=50-90 GPa).Due to the errors of the parameter provided by manufacturer,purity level of the copper target and zinc target,the wear of the tip,the errors of the indentation modulus are suitable.

    3.3 Discuss and analysis

    3.3.1 Effect of the cantilever on the contact resonancefrequency and sensitivity

    Due to the manufacturing error,for the same model cantilevers the free resonance frequencies can be different,such as the first and second free resonance frequencies for three cantilevers in Fig.4(a),Fig.4(b) and Fig.4(c).From the Fig.4,it can be found that the first free frequencies are 161.8 kHz,149.9 kHz and 161.4 kHz for three cantilevers respectively,which relate with the dimensions especially the length of the cantilever.So,for the same sample and same static cantilever force,the contact resonance frequencies vary with the free resonance frequency of the cantilever and spring constant of the cantilever,such as contact resonance spectra of reference samples in Fig.5(a) and Fig.5(b).Even the free frequencies are same or close for two cantilevers,due to the error of the spring stiffness,the contact resonance spectra are still different,shown in Fig.5(a) and Fig.5(c) for same reference sample.So for every cantilever,before measuring the contact resonance frequencies it is necessary to determine the free resonance frequencies.

    According to the characterization equation of the cantilever (see Ref.[16]),the sensitivity to the contact stiffness and accuracy can be calculated and are affected by free frequencies and spring constant of the cantilever.Table 3 lists the contact resonance frequency varying with the contact stiffness for three models of cantilevers.The dimension of the cantilever isL×W×t(length×width×thickness),Spring constant and natural frequencyf0of cantilever are provided by manufacture.The values of spring constant are 48 N/m,40 N/m and 0.9 N/m for three type cantilever.f1andf2are the corresponding first and second contact resonance frequencies respectively whenkare set as 200 N/m,400 N/m,600 N/m and 800 N/m respectively.Δf1and Δf2are the first and second frequency increments for 200 N/m contact stiffness increment,which can reflect the sensitivity of contact resonance frequency to the contact stiffness.

    Table 3.Contact resonance frequency varying with the contact stiffness for three types of cantilevers

    From Table 3,we can find that the sensitivity of contact resonance frequency to contact stiffness varies with the cantilevers.It can be found that from the 600 N/m to 800 N/m,the first resonance frequencies increase 37 kHz,50 kHz and 0.1 kHz for three models of cantilevers respectively,but it is difficult to distinguish 0.1 kHz for the device.So the cantilever can affect the measurement accuracy and it is necessary to choose suitable cantilever according to the stiffness of the sample and frequency band wide of the AFAM system.To measure the stiff material(modulus greater than approximately 50 GPa),the cantilevers with spring constant of approximately 30 N/m to 50 N/m are available.

    3.3.2 Elastic modulus affected by reference materials

    From Eq.(1) and Eq.(2),the equation can be obtained:

    whereMrefandkrefare the indentation modulus and contact stiffness of the reference sample.From Eq.(3),it can be found that if there is too much difference between the stiffness of reference material and that of tested material,the inaccuracy of indentation modulus of the tip will impact the measured values of the tested sample.The reference material needs to be similar to the tested material in stiffness.So,the tested and reference materials should have similar modulus to ensure accuracy of the referencing approach.At the same time,contact models vary with the stiffness of sample.If the tested sample is similar with reference sample in stiffness,the contact models are same,so the referencing approach is suitable.

    3.3.3 Contact resonance frequency affected by tip wearAccording to the Hertz model we can obtain

    whereF0is static cantilever force acting on the tip.Ris the tip radius.E*is the reduced Yong's modulus for sample.It can be found that the radiusRincreases with the wear of tip,which causes the contact stiffness to increase.So for same sample and same cantilever,even the applied load was kept same throughout the measurements,it can be happened that the contact resonance frequency increases.So measuring the reference sample before and after each measurement on the tested sample is necessary to reduce the inaccuracy.It has also been demonstrated in Ref.[18].

    4 Conclusions

    (1) The AFAM system is built based on commercial atomic force microscope (AFM) and the data acquisition software is created with commercial tool Labview.The excitation frequency is changed stepwise and the frequency spectra of the cantilever are constructed by the AFAM system.

    (2) The copper and zinc films with nano-thickness are prepared by the DC magnetron sputtering method and the elastic modulus are determined by the AFAM system.Meanwhile,the glass slides are measured.The results show that the AFAM technique is a sensitive method of quantitatively measuring the indentation modulus for fixed point.

    (3) The effect of cantilever on the sensitivity and accuracy of contact resonance frequency is discussed.When the length of cantilever increases,the natural frequency and the sensitivity reduce.

    (4) The choice of the reference material and wear of tip are analyzed.The error can be reduced when the reference material is familiar with tested sample in stiffness.

    [1]ZHANG L D,MU J M.Nanoscale Materials and Nanostructures[M].Beijing:Science Press,2001.(in Chinese)

    [2]MCFARLAND A D,VAN DUYNE R P.Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity[J].Nano Letters,2003,3(8):1 057-1 062.

    [3]MICHEL B,BERNARD A,BIETSCH A,et al.Printing meets lithography:Soft approaches to high-resolution patterning[J].IBM Journal of Research and Development,2001,45(5):697-719.

    [4]SEUNG H K,INKYU P,HENG P,et al.Direct nanoimprinting of metal nanoparticles for nanoscale electronics fabrication[J].Nano Letters,2007,7(7):1 869-1 877.

    [5]OLIVER W C,PHARR G M.An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments[J].Journal of Materials Research,1992,7(6):1 564-1 583.

    [6]ZHONG Q,INNISS D,KJOLLER K,et al.A Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy[J].Surface Science Letters,1993,290(1-2):L688-L692.

    [7]BURNHAM N A,KULIK A J,GREMAUD G,et al.Scanning local-acceleration microscopy[J].Journal of Vacuum Science &Technology B,1996,14(2):794-799.

    [8]TROYON M,WANG Z,PASTRE D,et al.Force modulation microscopy for the study of stiff materials[J].Nanotechnology,1997,8(4):163-170.

    [9]RABE U,JANSER K,ARNOLD W.Vibrations of free and surface coupled atomic force microscope cantilevers:theory and experiment[J].Review of Scientific Instruments,1996,67(9):3 281-3 293.

    [10]PASSERI D,ROSSIA M,ALIPPI A,et al.Characterization of epoxy/single-walled carbon nanotubes composite samples via atomic force acoustic microscopy[J].Physica E.2008,40(7):2 419-2 424.

    [11]AMELIO S,GOLDADE A V,RABE U,et al.Measurements of elastic properties of ultra-thin diamond-like carbon coatings using atomic force acoustic microscopy[J].Thin Solid Films,2001,392(1):75-84.

    [12]HURLEY D C,SHEN K,JENNETT N M,et al.Atomic force acoustic microscopy methods to determine thin-film elastic properties[J].Journal of Applied Physics,2003,94(4):2 347-2 354.

    [13]HE C F,ZHANG G M,WU B,et al.Subsurface defect of the SiOx film imaged by atomic force acoustic microscopy[J].Optics and Lasers in Engineering,2010,48(11):1 108-1 112.

    [14]KESTER E,RABE U,PRESMANES L,et al.Measurement of Young's modulus of nanocrystalline ferrites with spinel structures by atomic force acoustic microscopy[J].Journal of Physics and Chemistry of Solids,2000,61(8):1 275-1 284.

    [15]HURLEY D C,KOPYCINSKA-MüLLER M,KOS A B,et al.Nanoscale elastic-property measurements and mapping using atomic force acoustic microscopy methods[J].Measurement Science and Technology,2005,16(11):2 167-2 172.

    [16]HE C F,ZHANG G M,WU B.Quantitative measurement of local elasticity of SiOx film by atomic force acoustic microscopy[J].Chinese Physics B,2010,19(8):084302.

    [17]KOPYCINSKA-MüLLER M,GEISS R H,MüLLER J,et al.Elastic property measurements of ultrathin films using atomic force acoustic microscopy[J].Nanotechnology,2005,16(6):703-709.

    [18]BerLin:Hurley D C.Applied Scanning Cantilever Methods XI[M]Berlin:Springer-Verlag Berlin Heidelberg,2008.

    Biographical notes

    ZHANG Gaimei,born in 1975,is currently a PhD candidate atCollege of Mechanical Engineering and Applied Electronics Technology,Beijing University of Technology,China.She received her master degree fromXi'an University of Technology,China,in 2001.Her research interests include the measurement of nanomechanics based on atomic force acoustic microscopy and the technology of the nondestructive tests.

    Tel:+86-10-60 261105;E-mail:zhang_gaimei@163.com

    HE Cunfu,born in 1958,is currently a professor atCollege of Mechanical Engineering and Applied Electronics Technology,Beijing University of Technology,China.He received his PhD degree fromDepartment of Engineering Mechanics,Tsinghua University,China,in 1996.His research interests include modern nondestructive testing methods and signal processing.

    Tel:86-10-67 391938;E-mail:hecunfu@bjut.edu.cn

    WU Bin,born in 1962,is currently a professor atCollege of Mechanical Engineering and Applied Electronics Technology,Beijing University of Technology,China.He received his PhD degree fromTaiyuan University of Technology,China,in 1996.His research interests include electrodynamics,modern nondestructive testing methods and signal processing.

    Tel:86-10-67 391766;E-mail:wb@bjut.edu.cn

    CHEN Qiang,born in 1963,is currently a professor atBeijing Institute of Graphic Communication,China.He received his PhD degree fromInstitute of Plasma Physics Chinese Academy of Sciences,China,in 2000.His research interests include plasma physics,plasma diagnostic,plasma chemistry,new softpackaging materials fabrication and modifications.

    Tel:86-10-60 261099;E-mail:lppmchenqiang@hotmail.com

    成年av动漫网址| 成年人黄色毛片网站| 夜夜夜夜夜久久久久| 日本av手机在线免费观看| 精品福利观看| 国产一区有黄有色的免费视频| 日韩,欧美,国产一区二区三区| 这个男人来自地球电影免费观看| 成人18禁高潮啪啪吃奶动态图| 亚洲欧美清纯卡通| www.自偷自拍.com| 国产成人精品在线电影| 欧美日韩一级在线毛片| 亚洲中文日韩欧美视频| 乱人伦中国视频| 国产欧美亚洲国产| 最黄视频免费看| 久久久久久久久免费视频了| 999久久久精品免费观看国产| 热99久久久久精品小说推荐| 欧美亚洲 丝袜 人妻 在线| 欧美另类亚洲清纯唯美| 男人爽女人下面视频在线观看| 精品亚洲成a人片在线观看| 国产欧美亚洲国产| 老司机午夜十八禁免费视频| 亚洲专区字幕在线| 亚洲精品一区蜜桃| 黄频高清免费视频| 欧美另类亚洲清纯唯美| 精品少妇一区二区三区视频日本电影| a级片在线免费高清观看视频| av超薄肉色丝袜交足视频| 国产男人的电影天堂91| www日本在线高清视频| 久久久国产欧美日韩av| 国产伦人伦偷精品视频| 亚洲avbb在线观看| 麻豆乱淫一区二区| 老汉色av国产亚洲站长工具| 免费在线观看黄色视频的| 免费在线观看日本一区| 丝瓜视频免费看黄片| 国产亚洲欧美在线一区二区| 夜夜夜夜夜久久久久| 黑人操中国人逼视频| av线在线观看网站| 国产精品av久久久久免费| 日本wwww免费看| 国产免费视频播放在线视频| 少妇精品久久久久久久| 国产有黄有色有爽视频| 一级片'在线观看视频| 欧美 亚洲 国产 日韩一| 女人高潮潮喷娇喘18禁视频| 久久精品国产亚洲av高清一级| 久久久久视频综合| 午夜激情av网站| 在线观看免费视频网站a站| 满18在线观看网站| 日韩中文字幕视频在线看片| 国产精品一区二区精品视频观看| 免费在线观看完整版高清| 欧美日韩成人在线一区二区| 脱女人内裤的视频| 日韩欧美国产一区二区入口| 男女免费视频国产| 欧美精品av麻豆av| 秋霞在线观看毛片| 成年人免费黄色播放视频| 麻豆国产av国片精品| 精品少妇久久久久久888优播| 飞空精品影院首页| 日韩,欧美,国产一区二区三区| 99精品久久久久人妻精品| 精品人妻一区二区三区麻豆| 国产av精品麻豆| 免费不卡黄色视频| 老熟妇乱子伦视频在线观看 | 精品福利永久在线观看| 亚洲欧洲精品一区二区精品久久久| 欧美成人午夜精品| 国产三级黄色录像| 成年女人毛片免费观看观看9 | 亚洲成国产人片在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品偷伦视频观看了| 丰满迷人的少妇在线观看| 欧美成人午夜精品| 久久女婷五月综合色啪小说| 欧美另类亚洲清纯唯美| 不卡一级毛片| 国产av精品麻豆| 成年女人毛片免费观看观看9 | 国产精品 欧美亚洲| 久热爱精品视频在线9| 国产不卡av网站在线观看| 国产成+人综合+亚洲专区| 亚洲第一av免费看| 国产黄色免费在线视频| 午夜福利视频精品| 亚洲伊人色综图| 国产亚洲精品久久久久5区| 可以免费在线观看a视频的电影网站| 色老头精品视频在线观看| 成年动漫av网址| 中亚洲国语对白在线视频| 久久午夜综合久久蜜桃| 嫩草影视91久久| 99精国产麻豆久久婷婷| 午夜成年电影在线免费观看| 丝袜在线中文字幕| 久久中文字幕一级| 国产人伦9x9x在线观看| 啦啦啦啦在线视频资源| 老司机影院毛片| av天堂在线播放| 亚洲欧美一区二区三区黑人| 亚洲精品国产色婷婷电影| 亚洲三区欧美一区| 日韩三级视频一区二区三区| 久久久久视频综合| 国产日韩欧美视频二区| 久久久国产精品麻豆| 欧美黄色淫秽网站| 999久久久精品免费观看国产| 国产精品九九99| 精品久久久久久电影网| 丝袜脚勾引网站| 亚洲成人国产一区在线观看| 日本撒尿小便嘘嘘汇集6| 欧美 亚洲 国产 日韩一| 日韩欧美一区视频在线观看| 午夜福利在线观看吧| 精品第一国产精品| 极品少妇高潮喷水抽搐| 亚洲精品自拍成人| 美女福利国产在线| 久久亚洲精品不卡| 欧美日韩福利视频一区二区| 成年人午夜在线观看视频| 日韩欧美一区二区三区在线观看 | 国产在线视频一区二区| 可以免费在线观看a视频的电影网站| 97人妻天天添夜夜摸| 高清视频免费观看一区二区| 成年女人毛片免费观看观看9 | 久久人人爽av亚洲精品天堂| 欧美av亚洲av综合av国产av| 久久精品成人免费网站| 精品久久久精品久久久| 1024香蕉在线观看| 亚洲伊人久久精品综合| 日韩中文字幕欧美一区二区| 国产精品自产拍在线观看55亚洲 | 99热网站在线观看| 亚洲专区国产一区二区| 视频区欧美日本亚洲| 婷婷丁香在线五月| 美女视频免费永久观看网站| 人成视频在线观看免费观看| 啦啦啦视频在线资源免费观看| 97在线人人人人妻| 中文欧美无线码| 99久久综合免费| 男人添女人高潮全过程视频| 操出白浆在线播放| 亚洲欧美精品综合一区二区三区| 日韩视频一区二区在线观看| 久久人人爽av亚洲精品天堂| 男人添女人高潮全过程视频| 一区二区av电影网| 国产老妇伦熟女老妇高清| 亚洲视频免费观看视频| 99热国产这里只有精品6| 高清欧美精品videossex| 考比视频在线观看| 国产成人免费观看mmmm| 激情视频va一区二区三区| 亚洲人成77777在线视频| 一级片'在线观看视频| 国产无遮挡羞羞视频在线观看| 黑丝袜美女国产一区| 欧美日韩亚洲国产一区二区在线观看 | 久久久国产成人免费| 日韩免费高清中文字幕av| 国产欧美日韩一区二区三 | 在线观看www视频免费| 亚洲人成77777在线视频| 欧美国产精品一级二级三级| 91成人精品电影| 交换朋友夫妻互换小说| 精品一区二区三区av网在线观看 | 18禁国产床啪视频网站| 一本色道久久久久久精品综合| 又紧又爽又黄一区二区| 日韩欧美免费精品| 精品国内亚洲2022精品成人 | 国产精品99久久99久久久不卡| 十八禁网站免费在线| 国产成人免费观看mmmm| 欧美日韩亚洲高清精品| 亚洲激情五月婷婷啪啪| 国产高清视频在线播放一区 | 国产精品国产三级国产专区5o| 天天添夜夜摸| 精品第一国产精品| 午夜免费观看性视频| 69精品国产乱码久久久| 久久久久国产精品人妻一区二区| 成在线人永久免费视频| 亚洲av电影在线观看一区二区三区| 日本五十路高清| 视频在线观看一区二区三区| 国产精品熟女久久久久浪| 久久久欧美国产精品| 国产成人一区二区三区免费视频网站| 动漫黄色视频在线观看| 母亲3免费完整高清在线观看| 少妇猛男粗大的猛烈进出视频| 日韩电影二区| 亚洲免费av在线视频| 建设人人有责人人尽责人人享有的| 欧美日韩亚洲综合一区二区三区_| 久久ye,这里只有精品| 老熟女久久久| 成人黄色视频免费在线看| 岛国在线观看网站| 国产成人精品在线电影| 久久综合国产亚洲精品| 国产免费av片在线观看野外av| 国产成人一区二区三区免费视频网站| 国产精品久久久久久精品古装| 在线看a的网站| xxxhd国产人妻xxx| 男人添女人高潮全过程视频| 两人在一起打扑克的视频| 激情视频va一区二区三区| 性色av乱码一区二区三区2| 91老司机精品| av视频免费观看在线观看| 日本撒尿小便嘘嘘汇集6| 动漫黄色视频在线观看| 麻豆av在线久日| 黑人操中国人逼视频| 亚洲,欧美精品.| 久久久久视频综合| 午夜免费成人在线视频| 成人黄色视频免费在线看| 9热在线视频观看99| 国产精品一区二区在线观看99| 丰满迷人的少妇在线观看| 天天影视国产精品| 菩萨蛮人人尽说江南好唐韦庄| 一边摸一边做爽爽视频免费| 欧美在线一区亚洲| 99国产精品一区二区三区| 大香蕉久久网| 黑人欧美特级aaaaaa片| av视频免费观看在线观看| 成人国产av品久久久| 日韩视频在线欧美| 日韩一卡2卡3卡4卡2021年| 热re99久久精品国产66热6| 最近最新中文字幕大全免费视频| 亚洲av成人一区二区三| 国产欧美亚洲国产| 精品一区二区三区av网在线观看 | 啦啦啦 在线观看视频| www.熟女人妻精品国产| 搡老岳熟女国产| 人人妻人人澡人人看| 秋霞在线观看毛片| 久久天躁狠狠躁夜夜2o2o| 女人爽到高潮嗷嗷叫在线视频| 捣出白浆h1v1| 淫妇啪啪啪对白视频 | av片东京热男人的天堂| 男人舔女人的私密视频| 美女主播在线视频| 亚洲精品中文字幕在线视频| 青草久久国产| 亚洲精品成人av观看孕妇| 狠狠婷婷综合久久久久久88av| 精品少妇久久久久久888优播| 国产av一区二区精品久久| 国产成人欧美在线观看 | 亚洲精品在线美女| 黄片大片在线免费观看| 麻豆乱淫一区二区| 国产黄色免费在线视频| 97精品久久久久久久久久精品| 丝袜美腿诱惑在线| 搡老熟女国产l中国老女人| 国产欧美亚洲国产| 啦啦啦中文免费视频观看日本| 蜜桃在线观看..| 欧美另类亚洲清纯唯美| 日韩电影二区| 国产男女内射视频| 在线观看免费视频网站a站| 成人国语在线视频| 涩涩av久久男人的天堂| 欧美日韩一级在线毛片| 久久久久久久大尺度免费视频| 亚洲av国产av综合av卡| 久久久久国产精品人妻一区二区| 纵有疾风起免费观看全集完整版| 欧美性长视频在线观看| 少妇裸体淫交视频免费看高清 | 在线精品无人区一区二区三| 青青草视频在线视频观看| 日韩欧美一区二区三区在线观看 | a级毛片在线看网站| 欧美精品啪啪一区二区三区 | 脱女人内裤的视频| 亚洲,欧美精品.| 黑人猛操日本美女一级片| 午夜影院在线不卡| 91麻豆av在线| 国产精品久久久av美女十八| 成人国语在线视频| 国产一区有黄有色的免费视频| 极品人妻少妇av视频| 午夜精品国产一区二区电影| 在线观看免费午夜福利视频| 男人舔女人的私密视频| 日本wwww免费看| 亚洲精品国产av蜜桃| 国产欧美日韩一区二区精品| 欧美日韩亚洲高清精品| 99热国产这里只有精品6| 国产成人欧美| 欧美日韩视频精品一区| 少妇粗大呻吟视频| 亚洲一卡2卡3卡4卡5卡精品中文| 每晚都被弄得嗷嗷叫到高潮| 久久久国产成人免费| 国产无遮挡羞羞视频在线观看| a在线观看视频网站| 97精品久久久久久久久久精品| 欧美精品一区二区大全| 国产精品1区2区在线观看. | 99精品欧美一区二区三区四区| 亚洲欧洲精品一区二区精品久久久| 午夜免费观看性视频| 高清av免费在线| 美女午夜性视频免费| 精品欧美一区二区三区在线| 天天影视国产精品| 亚洲avbb在线观看| 国产av一区二区精品久久| 法律面前人人平等表现在哪些方面 | 欧美日韩福利视频一区二区| 成人国产一区最新在线观看| 国产成人一区二区三区免费视频网站| 精品亚洲乱码少妇综合久久| e午夜精品久久久久久久| 精品人妻1区二区| 日韩一卡2卡3卡4卡2021年| 亚洲伊人色综图| 亚洲国产av影院在线观看| 日韩制服丝袜自拍偷拍| 桃花免费在线播放| 在线观看一区二区三区激情| 91麻豆av在线| 久久精品国产亚洲av香蕉五月 | 黄色怎么调成土黄色| 亚洲成人国产一区在线观看| 黄色a级毛片大全视频| 亚洲成av片中文字幕在线观看| 夫妻午夜视频| a级片在线免费高清观看视频| 国产精品一区二区在线不卡| 蜜桃在线观看..| av天堂久久9| 久久av网站| 9色porny在线观看| 19禁男女啪啪无遮挡网站| 黑人欧美特级aaaaaa片| 精品少妇黑人巨大在线播放| 国产99久久九九免费精品| 19禁男女啪啪无遮挡网站| 丁香六月欧美| 女人久久www免费人成看片| 男男h啪啪无遮挡| 女人久久www免费人成看片| 真人做人爱边吃奶动态| 丝袜美腿诱惑在线| a级毛片黄视频| 久久久久久久久久久久大奶| 亚洲成人免费电影在线观看| 日本av免费视频播放| 另类精品久久| 久久精品久久久久久噜噜老黄| 久久人人97超碰香蕉20202| 久久这里只有精品19| 日本五十路高清| 国产精品亚洲av一区麻豆| 国产精品麻豆人妻色哟哟久久| 婷婷丁香在线五月| 少妇被粗大的猛进出69影院| 黄色a级毛片大全视频| 啦啦啦 在线观看视频| 男男h啪啪无遮挡| 日韩视频一区二区在线观看| 在线十欧美十亚洲十日本专区| 交换朋友夫妻互换小说| 亚洲三区欧美一区| 欧美日韩福利视频一区二区| 涩涩av久久男人的天堂| 免费久久久久久久精品成人欧美视频| 国产一卡二卡三卡精品| 啦啦啦在线免费观看视频4| 五月开心婷婷网| 99久久99久久久精品蜜桃| 国产亚洲精品久久久久5区| 欧美激情久久久久久爽电影 | 两个人看的免费小视频| 日本黄色日本黄色录像| 热re99久久国产66热| 天天添夜夜摸| 一边摸一边抽搐一进一出视频| 色精品久久人妻99蜜桃| 欧美亚洲日本最大视频资源| 老司机午夜十八禁免费视频| 男人添女人高潮全过程视频| 青春草亚洲视频在线观看| 高清视频免费观看一区二区| 大片免费播放器 马上看| 狠狠婷婷综合久久久久久88av| 男人爽女人下面视频在线观看| 麻豆av在线久日| 超碰97精品在线观看| 国产欧美日韩综合在线一区二区| 日本五十路高清| 亚洲第一欧美日韩一区二区三区 | 啦啦啦在线免费观看视频4| 欧美日本中文国产一区发布| 99久久99久久久精品蜜桃| 亚洲欧美精品自产自拍| 日韩一区二区三区影片| 日本一区二区免费在线视频| videos熟女内射| 欧美另类亚洲清纯唯美| 99精品欧美一区二区三区四区| 91精品国产国语对白视频| 久久中文字幕一级| av免费在线观看网站| 久久九九热精品免费| 久久人人97超碰香蕉20202| 成人国语在线视频| 另类亚洲欧美激情| 一级毛片女人18水好多| 日韩欧美免费精品| 又紧又爽又黄一区二区| 操出白浆在线播放| 巨乳人妻的诱惑在线观看| 一级毛片电影观看| 久久久水蜜桃国产精品网| 亚洲av片天天在线观看| 欧美精品人与动牲交sv欧美| 国产成人欧美| 亚洲成国产人片在线观看| 人妻 亚洲 视频| 高潮久久久久久久久久久不卡| 一个人免费在线观看的高清视频 | 最近中文字幕2019免费版| 男人爽女人下面视频在线观看| 嫁个100分男人电影在线观看| 999久久久国产精品视频| 桃花免费在线播放| 久久久欧美国产精品| 啦啦啦在线免费观看视频4| 肉色欧美久久久久久久蜜桃| 国产视频一区二区在线看| 久久久国产成人免费| 精品亚洲成国产av| 免费av中文字幕在线| www.999成人在线观看| 丰满少妇做爰视频| 中国美女看黄片| 午夜精品国产一区二区电影| 国产男人的电影天堂91| 99精品欧美一区二区三区四区| 国产免费一区二区三区四区乱码| a级毛片在线看网站| 12—13女人毛片做爰片一| 一本—道久久a久久精品蜜桃钙片| 日韩欧美一区视频在线观看| 亚洲精品av麻豆狂野| 99国产综合亚洲精品| 狂野欧美激情性bbbbbb| 99香蕉大伊视频| 免费黄频网站在线观看国产| 中国国产av一级| 美女高潮到喷水免费观看| 欧美精品啪啪一区二区三区 | 国产精品1区2区在线观看. | 俄罗斯特黄特色一大片| 日韩 亚洲 欧美在线| 中文字幕人妻熟女乱码| 日韩视频在线欧美| 久久青草综合色| 肉色欧美久久久久久久蜜桃| 精品国产超薄肉色丝袜足j| 国产一区二区在线观看av| 人妻 亚洲 视频| 日日摸夜夜添夜夜添小说| 免费观看av网站的网址| 一区二区三区激情视频| 最新在线观看一区二区三区| 黄片小视频在线播放| 丰满少妇做爰视频| 18在线观看网站| av线在线观看网站| 高清在线国产一区| 国产精品一区二区在线观看99| 九色亚洲精品在线播放| 亚洲人成电影免费在线| 午夜福利乱码中文字幕| 99国产精品99久久久久| 天天操日日干夜夜撸| 亚洲精品中文字幕在线视频| 精品欧美一区二区三区在线| 精品人妻熟女毛片av久久网站| 一区二区三区乱码不卡18| 国产成人影院久久av| 国产深夜福利视频在线观看| 国产精品 欧美亚洲| 亚洲av日韩精品久久久久久密| 亚洲国产精品成人久久小说| 日韩有码中文字幕| 人妻 亚洲 视频| 国产成人精品久久二区二区免费| 亚洲激情五月婷婷啪啪| 日本五十路高清| 制服人妻中文乱码| 日韩欧美免费精品| 国产精品久久久久久精品古装| 老司机午夜福利在线观看视频 | 男女之事视频高清在线观看| 蜜桃国产av成人99| 少妇的丰满在线观看| 欧美激情 高清一区二区三区| 人妻人人澡人人爽人人| 一区二区三区精品91| 新久久久久国产一级毛片| 亚洲av电影在线观看一区二区三区| 亚洲九九香蕉| 欧美日韩黄片免| 老司机福利观看| 国产精品九九99| 国产精品99久久99久久久不卡| 国产精品秋霞免费鲁丝片| 国产欧美日韩一区二区三 | 大香蕉久久网| 久热爱精品视频在线9| 三级毛片av免费| 91麻豆精品激情在线观看国产 | 香蕉国产在线看| 国产xxxxx性猛交| 免费一级毛片在线播放高清视频 | 精品第一国产精品| 精品免费久久久久久久清纯 | 亚洲成人免费电影在线观看| 国产成人欧美在线观看 | 宅男免费午夜| 超碰成人久久| 欧美日韩一级在线毛片| 考比视频在线观看| 国产亚洲精品一区二区www | 日韩精品免费视频一区二区三区| 真人做人爱边吃奶动态| 18在线观看网站| 欧美av亚洲av综合av国产av| 国产99久久九九免费精品| 母亲3免费完整高清在线观看| 久久精品国产a三级三级三级| 亚洲av电影在线观看一区二区三区| 国产伦人伦偷精品视频| 老熟妇仑乱视频hdxx| 午夜成年电影在线免费观看| 99精国产麻豆久久婷婷| 国产精品久久久久久精品古装| 国产男女内射视频| 天天添夜夜摸| 蜜桃国产av成人99| 亚洲欧洲日产国产| 99国产综合亚洲精品| 999精品在线视频| 夫妻午夜视频| 欧美日韩亚洲综合一区二区三区_| 老汉色∧v一级毛片| 亚洲欧洲日产国产| 丝袜美腿诱惑在线| 女人被躁到高潮嗷嗷叫费观| 精品一区在线观看国产| 狠狠婷婷综合久久久久久88av| 成人av一区二区三区在线看 | 国产免费现黄频在线看| 亚洲三区欧美一区| 国产亚洲欧美精品永久| 视频区欧美日本亚洲| 丰满饥渴人妻一区二区三| 欧美日韩亚洲国产一区二区在线观看 | 女性被躁到高潮视频| 国产成人一区二区三区免费视频网站| 精品乱码久久久久久99久播| 亚洲午夜精品一区,二区,三区| 99久久精品国产亚洲精品| 久久久久精品人妻al黑| 侵犯人妻中文字幕一二三四区| 欧美黄色淫秽网站| 亚洲中文av在线|