• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Optimal Design of Multiple Stress Constant Accelerated Life Test Plan on Non-rectangle Test Region

    2012-01-20 04:46:14CHENWenhuaGAOLiangLIUJuanQIANPingandPANJun

    CHEN Wenhua *,GAO Liang ,LIU Juan ,QIAN Ping ,and PAN Jun

    1 Department of Mechanical Engineering,Zhejiang University,Hangzhou 310027,China 2 Zhejiang Province's Key Laboratory for Reliability Technology of Mechanical &Electrical Products,Zhejiang Sci-Tech University,Hangzhou 310018,China

    1 Introduction

    Constant stress accelerated life test(CSALT) is a common technique to assess product life rapidly in engineering[1-3].Comparing with single-stress CSALT,as multiple CSALT is closer to product's actual use condition and easier to stimulate product failure,it is more conducive to assess product life quickly and accurately;therefore,it is increasingly used widely in engineering[1,4-6].Designing an optimal test plan is an important part to assess product life accurately and economically[7-15].

    Currently,when designing two-stress CSALT,it is usually assumed that all the stress levels between normal stress and the highest stress could be loaded on test units.Accordingly,if one establishes a Cartesian coordinates system with the two stresses to be axes,the range of test stress,called test region,is a rectangular area[1,8-15].However,sometimes one stress is limited by the other stress in engineering practice,that will induce the two stresses not to reach the highest stress levels simultaneously,and the test region becomes non-rectangle.For example,in multiple CSALT of a certain type of electrical connectors under temperature and vibration,the allowed highest stress levels are 158 ℃ for temperature and 1.0 g2/Hz for vibration[15].Actually,as high temperature would reduce driving force of the vibra-bench,vibration stress could not achieve 1.0 g2/Hz when temperature is 158 ℃.

    For optimal CSALT design on non-rectangle test region,the wildly used design method based on rectangular region is inapplicable.To solve this problem,ESCOBAR and MEEKER[8]presented an optimal design method for a simple non-rectangle test region,the upper right corner of a rectangle test region being truncated by the life-stress relationship contour (e.g.the regionOBMNAin Fig.1).However,the research is only a special case of non-rectangular test region,and the optimization algorithm is simple and based on experience,which can not ensure to get the optimal plan.

    Generally,the boundary of non-rectangular test region is a complex curve,such as curveSABshown in Fig.1.In order to obtain the optimal CSALT plan on non-rectangular test region with complex boundaries,the widely used linear-extreme value model in CSALT of electromechanical products is considered in this paper,and design method for optimal plan on non-rectangular test region with arbitrary boundaries is presented,which generalizes design idea of ESCOBAR and MEEKER.

    Fig.1.General non-rectangular test region &the two categories of V-optimal plan

    2 Model Assumptions

    Currently,the statistical model of most electromechanical products can be transformed to linear-extreme value model,and the model assumptions are as follows.

    (1) For each stress level combination,called test points,the log-life of product follows the extreme value distribution,and the probability function is

    whereμis the location parameter,σis the scale parameter.

    (2) The relationship between the location parameterμand the standardized stressesxandysatisfies

    where 0 ≤x≤1,0 ≤y≤1,γ0,γ1andγ2are model parameters,γ1<0,γ2<0.

    (3) The scale parameterσis constant and independent withxandy.

    For example,under multiple effects of temperature and vibration,the electrical contact life of a certain type of electrical connectors follows two-parameter Weibull distribution[8]:

    wheremis the shape parameter,ηis the location parameter or character life.

    The shape parametermis a constant;the relationship between the location parameterηand environment temperatureT(℃) and random vibration stressS(g2/Hz),namely the life-stress relationship[5-6],satisfies where ΔEis the activation energy (eV),kis the Boltzmann constant (0.867 1×10-4eV/K),Aandαare unknown parameters.

    Letθ=lnt,the two-parameter Weibull distribution transforms to the Extreme value distribution[8];the probability distribution function shows as Eq.(1),where the location parameterμ=lnη,and the scale parameterσ=1/m.

    The scale parameterσis a constant.The relationship between the location parametersμand the transformed stresseswandvsatisfies[5]

    whereβ0=lnA,β1=ΔE/k,β2=-α,w=1/(T+273.15),v=lnS.

    Furthermore,letw0andv0be the normal operating stress levels andwmandvmbe the highest stress levels ofwandv,let

    thenwandvcan be transformed to standardized stressesxandy.Accordingly,Eq.(3) transforms to Eq.(2),and the paramesters in Eq.(2) satisfy

    3 Optimal Design Theory of CSALT on Non-Rectangular Test Region

    3.1 General non-rectangular test region

    As shown in Fig.1,in the Cartesian coordinates systemxOywith standardized stressesxandyas the axes,the coordinates of pointsAandBare (1,0) and (0,1)respectively,the boundaries of general non-rectangular test regionΩcontain segmentsOA,OBand an arbitrary curveSAB.IfSABis a broken line asBMNA,Ωbecomes the non-rectangular region discussed in Ref.[8].

    3.2 Optimization problem

    Considering type-? censored CSALT under the linearextreme value model,firstly,specify the censored time,the total sample size and the number of test points.The problem here is to determine the coordinates and the sample allocation ratios of test points,which minimize the asymptotic variance of the maximum likelihood estimate(MLE) of thepth quantile of product's life distribution under normal stress (V-optimality).

    3.3 Problem analysis

    The solution of the optimization problem has two properties[8].

    (1) The optimal test plans are not unique,and could be divided into two categories:①All the test points locate on a straight line through the origin of coordinate,such as the solid pointsH,MiandM1on linelsin Fig.1,where,the origin of coordinate represents the normal stress levels;② All the test points are non-collinear,such as the hollow pointsM11,M12andMijin Fig.1.Ref.[8]names the two categories of plans as optimal degenerate test plan and optimal non-degenerate test plan respectively.

    (2) Optimal non-degenerate test plan can be generated from the optimal degenerate test plan.As Fig.1 shows,let(xi,yi) be the coordinate andpibe the sample location ratio of theith (i=1,2,…,K) test pointMifor an optimal degenerate test plan;draw the life-stress relationship contourlithroughMiand select the test pointsMij(j=1,2,…,ri;Mij≠Mi) onli.Let (xij,yij) be the coordinates andpijbe the sample location ratio of pointMij.If (xij,yij) andpijsatisfies Eq.(4),then the corresponding optimal non-degenerate test plan could be obtained:

    On the basis of the above two properties,ESCOBAR and MEEKER[8]proposed a design idea.First,determine the V-optimality degenerate test plans;then,derive all the V-optimality non-degenerate test plans;finally,find out the D-optimality plan which provides the most accuracy estimates of model parameters from all the V-optimality non-degenerate plans.

    The above idea is not limited by the shape of test region boundary,and it can be extended to general non-rectangular test region,but there are two key problems need to be settled:

    a) How to determine the slope of the line on which the test points of V-optimality degenerate test plan locate(named optimal line).For this problem,if numerical method is used directly,principally it requires to determine the optimal degenerate test plans on all the straight lines through the origin of coordinate first,and then select the global optimal plan,which needs intensive calculation.

    b) If the V-optimality degenerate test plans are not unique,how to determine all the V-optimality plans and select the best non-degenerate test plan based on D-optimality.If the slopes of all optimal lines locate on an interval,the problem is difficult to be solved directly by numerical method.

    3.4 Two properties of optimal test plan on general non-rectangular test region

    It can be proved that,there are two properties for the optimal test plan on general non-rectangular test region:

    Property 1:LetHbe the point on test region boundary.If failure probability of pointHis maximum at censored timeτ,the test points of optimal degenerate test plan locate on segmentOH.PointHis called Maximum Failure Probability Point (MFPP),and it is corresponding to the highest stress levels.If MFPP is not unique,it is assumed that they all locate on the same contourlH;letΨbe the set of MFPP,then a line through the origin of coordinate and any point inΨis an optimal line.

    Property 2:If MFPP on the test region boundary is not unique,the optimal degenerate test plan is also not unique.Let (xi,yi) be the coordinates andpibe the sample location ratio of theith (i=1,2,…,K) test pointMifor an optimal degenerate test plan;draw the life-stress relationship contourlithroughMi,then:①the sample location ratio of theith test point of all the optimal degenerate test plans ispi;② theith test point of all the optimal degenerate test plans is on contourli.

    On the basis of the two properties,the slope of the optimal line and all the V-optimality plans could be determined theoretically,which avoids solving the optimization model directly and improves the efficiency and robustness of optimization.Property 1 can be used to determine the slope of the optimal line;Property 2 can be used to determine all the V-optimality plans.

    4 Optimal Design Method of CSALT on Non-Rectangular Test Region

    First,find out MFPPs on test region boundary.Generally,MFPPs locate on the curve segmentSAB,and the optimization problem can be written as follows:

    whereSAB(x,y)=0 is the equation of the curve segmentSAB.

    For the above optimization problem with linear objective function and nonlinear equality constraint,the numerical algorithm is mature;especially,for some relatively simple boundaries,MFPP can be determined by geometric method or analytical method directly.

    Secondly,design the optimal test plan.The problem can be divided into four cases based on the number and location of MFPPs.

    4.1 MFPP is unique (case 1)

    According to property 1,the unique optimal degeneration test plan locates on the segmentOH.The optimal plan can be determined according to the following steps.

    4.1.1Determine the V-optimality degeneration test plan on OH

    As shown in Fig.2,let (xH,yH) be the coordinates of pointH,andsHbe the slope ofOH.Rotate the coordinate systemOxyμaround the axisOμuntilOxcoincides withOH,which forms a new coordinate systemOξημ.In the new coordinate systemOξημ,the life-stress relationship Eq.(2) turns to Eq.(5):

    where cosα=

    Fig.2.Sketch map of test design method for case 1

    LetΠbe the plane corresponding to the life-stress relationship,andLbe the intersecting line betweenΠand the coordinate planeξOμ.In the new coordinate systemOξημ,the equation ofLis

    Eq.(6) is the life-stress relationship of single-stress optimal test plan in the coordinate planeξOμ.And the highest stress level is

    Eq.(7) is the standardized life-stress relationship.Then,the problem of determining V-optimality degenerate test plan onOHtransforms to determine single-stress optimal test plan inξOμ.Specify the censored timeτ,the total sampleNand the number of stress levelK;the stress leveland the sample location ratiospi(i=1,2,…,K) are solved by minimizing the asymptotic variance of MLE of thepth quantile of life distribution under normal stress.The optimization model can be described as follows:

    where

    When determining the optimal test plans,two or three stress levels could be selected.For test plan with three stress levels,equally spaced test stresses is adopted and the sample location ratios of the middle test point set to be 0.2[8].

    Letbe theith (i=1,2,…,K) level of the optimal single-stress test plan,andbe the sample location ratio of.The coordinates (xi,yi) of theith test pointsMiof V-optimality degenerate test plan onOHis,and the sample location ratio is.

    4.1.2Determine the D-optimal non-degenerate test plan from the V-optimal test plans

    As shown in Fig.2(b),draw a contourlithrough pointMi(i=1,2,…,K),the equation ofliis

    Derive the two intersection pointsMi1,Mi2betweenliand the test region boundary,let (xi1,yi1),(xi2,yi2) be the coordinate andpi1,pi2be the sample location ratio ofMi1andMi2,set[8]

    Then,the D-optimality non-degenerate test plan with V-optimality simultaneously is obtained as follows:the coordinates of test point are (xi1,yi1),(xi2,yi2) (i=1,2,…,K-1) and (xH,yH),and the corresponding sample ratios arepi1,pi2(i=1,2,…,K-1) and[8].

    4.2 MFPP is not unique:the set Ψ corresponds to the segment MN on the contour(case 2)

    As Fig.3(a) shows,V-optimal degenerate test plan is not unique.According to property 1,a line through the origin of coordinate and any point onMNis an optimal line,the non-rectangular region in Ref.[8]is a special case of this case.The optimal test plan could be obtained by the following steps.

    (1) Select a pointHonMNrandomly and determine the V-optimal test plan onOHaccording to step (1) in case 1.

    (2) Determine D-optimal non-degenerate test plan from V-optimality test plans obtained in step (1).

    According to step (2) in case 1,determine the contourlithrough the pointMi(i=1,2,…,K) and the two intersection pointsMi1andMi2ofliand the test region boundary.According to property 2,li,Mi1andMi2are independent with the location of pointH.Therefore,the optimization problem in this step can be described as follows.

    Determine the linefrom all the optimal lines,on which the corresponding optimal non-degenerate test plan is D-optimality.Let (xM,yM) and (xN,yN) be the coordinates of pointsMandN,the optimization model can be described as

    whereFu(s) is the Fisher information matrix of nondegenerate test plan,which can be described as

    where

    In this problem,there is only one decision variable,the slopesof the optimal line.Therefore,it becomes a continuous one-dimensional optimization problem,which is easy to be solved.

    4.3 MFPP is not unique:the set Ψ is a set of discrete points on the contour (case 3)

    As Fig.3(b) shows,the number of V-optimality degeneration test plan is limited,the optimal test plans could be obtained by the following steps.

    (1) For each MFPP,determine the corresponding optimal non-degenerate test plan according to step (1) in case 1.

    (2) Select the optimal non-degenerate test plan with best D-optimality from the plans obtained in step (1).

    4.4 MFPP is not unique:the set Ψ includes points on the segment and discrete points on the contour(case 4)

    As Fig.3(c) shows,the optimal plan can be obtained by the following steps.

    (1) Determine the optimal non-degenerate test plans corresponding with the points on the segment according to case 2.

    (2) Determine the optimal non-degenerate test plans corresponding with the discrete points according to case 3.

    (3) Select the optimal non-degenerate test plan with best D-optimality from the plans obtained in steps (1) and (2).

    Fig.3.Sketch map of optimal degradation test plan for case 2-4

    In the above four cases,the design methods of case 1 and case 2 are the foundation;case 3 is a combination of case 1;case 4 is a combination of case 2 and case 3,which is the most complex case.

    5 Example

    As shown in Fig.4,the boundary of test region includes the parabolaBM,the line segmentMN,NPand the arcPA.The coordinates of pointsM,NandPare (0.794 6,0.9),(0.874 8,0.484 5) and (0.874 8,0.6) respectively.The equation for each part is as follows.

    Fig.4.Sketch map of example

    Specify the model parametersγ0=15.808,γ1=-11.249,γ2=-3.006,σ=0.673 4,and the censored timeτ=1 000[8].The problem here is to determine the test plan by minimizing the variance of the 0.01 quantiley0.01of life distribution under normal stress.

    Theoretically,for two-stress test design,three test points are enough to estimate model parameters.Considering the deviations between the theoretical optimization model and the practice,four or five test points are adapted generally to ensure the test be successful.A plan with five test points is designed as follows.

    First,find out MFPP on the boundarySABand determine the type of problem.

    On the boundarySAB,from pointBtoM,failure probability is increasing monotonically.From pointMtoN,failure probability is constant as the slope ofMNis equal to the one of the life-stress relationship contour.From pointNtoP,failure probability is decreasing monotonically.From pointPtoA,the slope of the arc tangent changes from-1.458 0 to -∞,which includes the slope of the contour;therefore,failure probability of this part first increases and then decreases,and the maximum failure probability locates on pointH,the tangent point of the arc and the contour.It can be obtained that the coordinates ofHis(0.966 1,0.258 2) and the equation of contourlHthroughHisy=-3.742 2x+3.873 5.Obviously,MNis a segment onlH.Therefore,pointHand the points on segmentMNare all MFPPs,and the problem here belongs to case 4.

    Determine the optimal test plan according to 4.4.

    (1) According to step (1) of 4.1,determine the optimal degeneration plan on segmentOH.In this plan,the test points areM1,M2andH,the corresponding coordinates are(0.697 5,0.186 4),(0.831 8,0.222 3) and (0.966 1,0.258 2),and the sample allocation ratios are 0.52,0.20 and 0.28,respectively.The variance factor of this plan is 87.19.

    (2) Draw the contourslLandlMthrough the pointsM1andM2respectively;derive the intersection points oflLandlMwith test region boundary;determine the sample location ratios on these points according to Eq.(8);then,the non-degenerate test plan corresponding to pointHis obtained.In this plan,test points areM11,M12,M21,M22andH,the corresponding coordinates are(0.490 3,0.961 9),(0.747 4,0),(0.641 4,0.934 8),(0.891 2,0)and(0.966 1,0.258 2),and the sample allocation ratios are 0.10,0.42,0.05,0.15 and 0.28.The log-determinant of the Fisher information matrix of this plan is lg|FH|=-3.378.

    (3) According to step (2) of section 4.2,determine the optimal non-degenerate test plan corresponding to the points on segmentMN.It can be obtained that the optimal line is the line through the pointsOandM.In the corresponding optimal plan,test points areM11,M12,M21,M22andM,and the sample allocation ratios are 0.23,0.29,0.11,0.09 and 0.28,respectively.The log-determinant of the Fisher information matrix of this plan is lg|FMN|=-3.21.

    (4) As lg|FMN|>lg|FH|,the D-optimality of nondegenerate test plans corresponding to segmentMNis better,and it is selected to be the best test plan.

    The best test plan is listed in Table 1,and the solid dots in Fig.4 represent the location of test points.

    Table 1.Result of the best plan

    6 Conclusions

    (1) Two properties of optimal test plans are proved.They are as follows:1) Test points of optimal degradation test plan locate on the segments through the origin of coordinate and MFPPs on test region boundary.2) If optimal degradation test plan is not unique,the lowest stress points of all the optimal degradation test plans locate on the same life-stress relationship contour.

    (2) The optimal design method of two-stress CSALT plan on general non-rectangular test region is proposed.The proposed method simplifies the optimization problem and presents the optimal test planning on non-rectangular test regions with arbitrary boundaries.

    (3) A numerical example is adopted to illustrate the feasibility of the method.The result shows that the proposed method could obtain the optimal test plan on non-rectangular test regions with arbitrary boundaries.

    (4) The theory and method for two-stress optimal CSALT planning on non-rectangular test regions is provided.

    [1]NELSON W B.Accelerated testing:statistical models,test plans,data analyses[M].New York:Wiley,1990.

    [2]TAN Yuanyuan,ZHANG Chunhua,CHEN Xun.Analysis of incomplete data of accelerated life testing with competing failure modes[J].Chinese Journal of Mechanical Engineering,2009,22(6):883-889.

    [3]TAN Yuanyuan,ZHANG Chunhua,CHEN Xun,et al.Remaining life evaluation based on accelerated life testing[J].Chinese Journal of Mechanical Engineering,2010,46(2):150-154.(in Chinese)

    [4]CHEN Juan,WANG Zhanlin,WANG Shaoping.Constant stress accelerated life test method for pneumatic cylinders[J].Chinese Journal of Scientific Instrument,2006,27(6):91-92.(in Chinese)

    [5]CHEN Wenhua,LI Hongshi,LIAN Wenzhi et al.Accelerated life and statistical analysis of aerospace electrical connectors under multiple environmental stresses[J].Journal of Zhejiang University(Engineering Science),2006,40(2):349-351.(in Chinese)

    [6]QIAN Ping,CHEN Wenhua,MA Zikui,et al.Research of multiple stresses accelerated life model verification method[J].Journal of Mechanical Engineering,2010,46(24):156-161.(in Chinese)

    [7]CHEN Wenhua,LIU Junjun,PAN Jun,et al.Theory &method for optimum design of accelerated life test plan under step-stresses[J].Journal of Mechanical Engineering,2010,46(24):182-187.(in Chinese)

    [8]ESCOBAR L A,MEEKER W Q.Planning accelerated life tests with two or more experimental factors[J].Thchnometrics,1995,37(4):411-427.

    [9]PARK J W,YUM B J.Optimal design of accelerated life testing with two stress[J].Naval Research Logistics,1996,43:863-884.

    [10]GUO Huairui,PAN Rong.D-Optimal reliability test design for two-stress accelerated life tests[C]//Proceedings of the 2007 IEEE IEEM.Singapore,Dec.2-4,2007:1 236-1 240.

    [11]YANG Gangbin.Accelerated life tests at higher usage rates[J].IEEE Transactions on Reliability,2005,54(1):53-57.

    [12]FU Yongling,HAN Guohui,WANG Zhanlin,et al.Optimization design of twin-stress constant accelerated life test for cylinders[J].Journal of Mechanical Engineering,2009,45(11):288-294.(in Chinese)

    [13]CHEN Wenhua,FENG Hongyi,QIAN Ping,et al.Theory &method for optimum design of accelerated life test plan under multiple stresses[J].Journal of Mechanical Engineering,2006,42(12):101-105.(in Chinese)

    [14]CHEN Wenhua,QIAN Ping,MA Zikui,et al.Optimum design of multiple stress accelerated life test plan under periodic inspection[J].Chinese Journal of Scientific Instrument,2009,30(12):2 545-2 550.(in Chinese)

    [15]QIAN Ping.Research on multiple stresses accelerated life test and statistical analysis of aerospace electrical connector[D].Hangzhou:Zhejiang University,2010.(in Chinese)

    Biographical notes

    CHEN Wenhua,born in 1963,is currently a professor of mechanical design atZhejiang UniversityandZhejiang Sci-Tech University,and the director ofZhejiang Province's Key Laboratory for Reliability Technology of Mechanical &Electrical Products,Zhejiang Sci-Tech University,China.He received his PhD degree in mechanical manufacture fromZhejiang University,China,in 1997.He is mainly engaged in the research of reliability design and test,and statistical analysis.

    Tel:+86-571-87 952849;E-mail:chenwh@zstu.edu.cn

    GAO Liang,born in 1981,is currently a PhD candidate atDepartment of Mechanical Engineering,Zhejiang University,China.He is mainly engaged in the research of reliability design and testing,and statistical analysis.

    E-mail:gaoliangth@163.com

    LIU Juan,born in 1982,is currently a PhD candidate atZhejiang University,China.She received her bachelor degree fromNanjing University of Science and Technology,China,in 2006.Her research interests are concentrated on reliability testing and statistical analysis.

    E-mail:liuxjuan1983@163.com

    QIAN Ping,born in 1983,is a docent atSchool of Mechanical and Automatic Control,Zhejiang Sci-Tech University,China.She received his PhD degree fromZhejiang University,China,in 2010.Her research interests include modeling and statistic analyzing of accelerated life testing/degradation testing,design of Testing Plans,estimating of system reliability.

    Tel:+86-571-86 843368;E-mail:hustchampion@sohu.com

    PAN Jun,born in 1974,is an associate professor atZhejiang Sci-Tech University,China.He received his PhD degree fromZhejiang Sci-Tech University,China,in 2011.His research interests include modeling and statistic analyzing of accelerated life testing/degradation testing,design of testing plans,estimating of system reliability.

    Tel:+86-571-86 843742;E-mail:panjun@zstu.edu.cn

    一级a爱视频在线免费观看| 丁香六月天网| 久久精品aⅴ一区二区三区四区| 成人亚洲欧美一区二区av| 91国产中文字幕| 日本猛色少妇xxxxx猛交久久| 日韩欧美精品免费久久| 女的被弄到高潮叫床怎么办| 国产成人精品福利久久| 只有这里有精品99| 黑人欧美特级aaaaaa片| 青春草国产在线视频| 国产色婷婷99| 大话2 男鬼变身卡| 日韩中文字幕视频在线看片| 中文字幕色久视频| 制服丝袜香蕉在线| 在线观看www视频免费| 国产精品女同一区二区软件| 欧美精品av麻豆av| 欧美精品人与动牲交sv欧美| 老汉色av国产亚洲站长工具| 国产探花极品一区二区| 久久av网站| 深夜精品福利| 精品少妇黑人巨大在线播放| 午夜福利,免费看| 亚洲国产日韩一区二区| 国产亚洲最大av| 又大又黄又爽视频免费| 亚洲成人手机| 国产在线一区二区三区精| 国产在线免费精品| 亚洲欧洲国产日韩| 久久精品国产综合久久久| 中文字幕亚洲精品专区| 久久女婷五月综合色啪小说| e午夜精品久久久久久久| 午夜福利视频精品| 新久久久久国产一级毛片| 看十八女毛片水多多多| e午夜精品久久久久久久| 亚洲国产最新在线播放| 国产日韩欧美亚洲二区| 男女之事视频高清在线观看 | 制服丝袜香蕉在线| 熟女少妇亚洲综合色aaa.| 夜夜骑夜夜射夜夜干| 国产乱人偷精品视频| av有码第一页| 视频区图区小说| 一区二区三区四区激情视频| 丝瓜视频免费看黄片| www.av在线官网国产| 男人操女人黄网站| 王馨瑶露胸无遮挡在线观看| 一个人免费看片子| 母亲3免费完整高清在线观看| 又粗又硬又长又爽又黄的视频| 老司机亚洲免费影院| 午夜影院在线不卡| 国产精品 国内视频| 久久久精品94久久精品| 一级a爱视频在线免费观看| 国产av一区二区精品久久| 一级,二级,三级黄色视频| 欧美中文综合在线视频| 亚洲欧美激情在线| 亚洲,欧美,日韩| 免费人妻精品一区二区三区视频| 亚洲色图综合在线观看| 18禁观看日本| 国产在线免费精品| 大码成人一级视频| a 毛片基地| 一区福利在线观看| 国产精品成人在线| 少妇猛男粗大的猛烈进出视频| 国产爽快片一区二区三区| 女人久久www免费人成看片| 国产极品粉嫩免费观看在线| 日韩欧美精品免费久久| 美女午夜性视频免费| 高清黄色对白视频在线免费看| 亚洲国产欧美在线一区| av女优亚洲男人天堂| 久久精品熟女亚洲av麻豆精品| 母亲3免费完整高清在线观看| 激情五月婷婷亚洲| 热re99久久精品国产66热6| 高清视频免费观看一区二区| 精品国产一区二区久久| 中文乱码字字幕精品一区二区三区| 日韩视频在线欧美| 久久99精品国语久久久| 热re99久久国产66热| 极品少妇高潮喷水抽搐| 在线看a的网站| 久久久国产一区二区| 97人妻天天添夜夜摸| 亚洲人成网站在线观看播放| 欧美日韩一级在线毛片| 王馨瑶露胸无遮挡在线观看| 日韩欧美一区视频在线观看| 麻豆av在线久日| 久久午夜综合久久蜜桃| 亚洲伊人色综图| 欧美日韩亚洲综合一区二区三区_| 精品午夜福利在线看| av不卡在线播放| 国产色婷婷99| 午夜av观看不卡| 卡戴珊不雅视频在线播放| 亚洲av成人不卡在线观看播放网 | 午夜免费男女啪啪视频观看| 如日韩欧美国产精品一区二区三区| 亚洲 欧美一区二区三区| 欧美日韩亚洲高清精品| 免费观看av网站的网址| 久久ye,这里只有精品| 天堂俺去俺来也www色官网| 中文字幕人妻丝袜一区二区 | 天天躁狠狠躁夜夜躁狠狠躁| 婷婷色麻豆天堂久久| 黄片播放在线免费| 日本91视频免费播放| 制服丝袜香蕉在线| 制服人妻中文乱码| 韩国精品一区二区三区| 老鸭窝网址在线观看| 丰满迷人的少妇在线观看| 国产精品蜜桃在线观看| 亚洲欧美一区二区三区黑人| 国产人伦9x9x在线观看| 日韩制服丝袜自拍偷拍| 一级片免费观看大全| 9色porny在线观看| 熟妇人妻不卡中文字幕| 亚洲一码二码三码区别大吗| 国产成人av激情在线播放| 亚洲精品国产av蜜桃| 久久女婷五月综合色啪小说| 国产视频首页在线观看| 晚上一个人看的免费电影| 99国产综合亚洲精品| 熟女少妇亚洲综合色aaa.| 国产精品一二三区在线看| 日韩,欧美,国产一区二区三区| 极品人妻少妇av视频| 亚洲一区中文字幕在线| 久久av网站| 久久这里只有精品19| 一本大道久久a久久精品| 久久精品熟女亚洲av麻豆精品| 在线看a的网站| 女人精品久久久久毛片| 久久久久人妻精品一区果冻| 欧美国产精品va在线观看不卡| 亚洲少妇的诱惑av| 欧美日韩亚洲综合一区二区三区_| 七月丁香在线播放| 午夜福利视频精品| 亚洲三区欧美一区| 中文字幕av电影在线播放| 亚洲国产精品一区三区| av国产精品久久久久影院| 一级黄片播放器| 精品人妻在线不人妻| 香蕉丝袜av| 99热网站在线观看| 少妇猛男粗大的猛烈进出视频| 亚洲精品在线美女| 人妻一区二区av| 亚洲精品日韩在线中文字幕| 又粗又硬又长又爽又黄的视频| 日韩免费高清中文字幕av| 97在线人人人人妻| 国产成人精品福利久久| 亚洲天堂av无毛| 亚洲情色 制服丝袜| av电影中文网址| 亚洲五月色婷婷综合| 秋霞在线观看毛片| 欧美97在线视频| 亚洲国产毛片av蜜桃av| 宅男免费午夜| 亚洲欧美精品自产自拍| 国产精品国产三级专区第一集| 制服诱惑二区| 国产精品免费大片| 99久国产av精品国产电影| 精品少妇一区二区三区视频日本电影 | 毛片一级片免费看久久久久| 国产精品一二三区在线看| 欧美97在线视频| 欧美日本中文国产一区发布| 在线天堂中文资源库| 男女免费视频国产| 69精品国产乱码久久久| 美女扒开内裤让男人捅视频| 一本大道久久a久久精品| 久久久久久人妻| 亚洲精品美女久久av网站| 国产精品偷伦视频观看了| 毛片一级片免费看久久久久| 亚洲国产精品999| 极品人妻少妇av视频| 一二三四在线观看免费中文在| 欧美日本中文国产一区发布| 国产精品欧美亚洲77777| 久久久久久久大尺度免费视频| 狠狠婷婷综合久久久久久88av| 搡老乐熟女国产| 嫩草影视91久久| 亚洲国产欧美一区二区综合| 最近手机中文字幕大全| 老汉色av国产亚洲站长工具| 男女国产视频网站| 久久久国产欧美日韩av| 一区在线观看完整版| 老司机深夜福利视频在线观看 | 在线观看免费视频网站a站| 欧美日韩一级在线毛片| 久久人人爽人人片av| 成人亚洲欧美一区二区av| 久久影院123| 日日啪夜夜爽| 亚洲一卡2卡3卡4卡5卡精品中文| 国产片特级美女逼逼视频| 欧美激情极品国产一区二区三区| 在线观看国产h片| 日日啪夜夜爽| 别揉我奶头~嗯~啊~动态视频 | 国产黄频视频在线观看| 日本av免费视频播放| 99精品久久久久人妻精品| 男女免费视频国产| 成人国产av品久久久| 啦啦啦中文免费视频观看日本| 国产亚洲av高清不卡| 在线观看免费视频网站a站| 九草在线视频观看| 成人手机av| 亚洲欧洲精品一区二区精品久久久 | av电影中文网址| 伊人久久大香线蕉亚洲五| 欧美人与善性xxx| 街头女战士在线观看网站| 亚洲婷婷狠狠爱综合网| 亚洲国产日韩一区二区| 欧美另类一区| 精品视频人人做人人爽| 日韩中文字幕视频在线看片| 国产乱人偷精品视频| 国产黄频视频在线观看| 最近的中文字幕免费完整| 欧美最新免费一区二区三区| 国产精品女同一区二区软件| 久久天堂一区二区三区四区| 高清av免费在线| 国产在线一区二区三区精| 免费高清在线观看视频在线观看| 国产精品久久久久久精品电影小说| 色94色欧美一区二区| 丰满乱子伦码专区| 精品国产一区二区三区四区第35| 一本—道久久a久久精品蜜桃钙片| 国产无遮挡羞羞视频在线观看| 人成视频在线观看免费观看| 不卡av一区二区三区| 黄色一级大片看看| 日本爱情动作片www.在线观看| h视频一区二区三区| 午夜老司机福利片| 悠悠久久av| 伊人亚洲综合成人网| 9191精品国产免费久久| 在线精品无人区一区二区三| svipshipincom国产片| av在线app专区| 日本午夜av视频| 国产精品99久久99久久久不卡 | 一边摸一边抽搐一进一出视频| 女人久久www免费人成看片| 国产日韩一区二区三区精品不卡| 赤兔流量卡办理| 爱豆传媒免费全集在线观看| 精品亚洲乱码少妇综合久久| 久久久精品国产亚洲av高清涩受| 妹子高潮喷水视频| 久久性视频一级片| 一区二区三区激情视频| 十八禁人妻一区二区| 久久久久精品性色| 男女下面插进去视频免费观看| 精品卡一卡二卡四卡免费| 深夜精品福利| 国产精品女同一区二区软件| 免费在线观看完整版高清| 久久久国产一区二区| 新久久久久国产一级毛片| 9热在线视频观看99| 99精国产麻豆久久婷婷| 精品国产国语对白av| 亚洲在久久综合| svipshipincom国产片| 国产精品麻豆人妻色哟哟久久| 视频区图区小说| 亚洲成人一二三区av| 电影成人av| 亚洲四区av| 精品国产一区二区三区久久久樱花| 高清不卡的av网站| 大香蕉久久网| 亚洲色图综合在线观看| 国产欧美亚洲国产| 国产av国产精品国产| kizo精华| 亚洲av电影在线观看一区二区三区| 美女午夜性视频免费| 日韩大片免费观看网站| 无遮挡黄片免费观看| 亚洲av成人精品一二三区| 久久久久久免费高清国产稀缺| 日韩av不卡免费在线播放| 在线 av 中文字幕| 狠狠婷婷综合久久久久久88av| 丝袜美足系列| 国产精品一区二区在线观看99| 亚洲,一卡二卡三卡| 欧美人与善性xxx| 久久久久人妻精品一区果冻| 久久毛片免费看一区二区三区| 欧美日韩亚洲国产一区二区在线观看 | 黄网站色视频无遮挡免费观看| 母亲3免费完整高清在线观看| 免费日韩欧美在线观看| 久久99一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 国产成人精品福利久久| 男男h啪啪无遮挡| 老汉色av国产亚洲站长工具| 亚洲,一卡二卡三卡| 国产探花极品一区二区| 欧美久久黑人一区二区| 黄片小视频在线播放| 免费av中文字幕在线| 午夜福利视频在线观看免费| av又黄又爽大尺度在线免费看| 日本91视频免费播放| 操美女的视频在线观看| 日本91视频免费播放| 日日撸夜夜添| 一级爰片在线观看| 国产男人的电影天堂91| 欧美黑人精品巨大| 欧美国产精品一级二级三级| kizo精华| 精品一区二区三区av网在线观看 | 亚洲一级一片aⅴ在线观看| 十八禁高潮呻吟视频| 少妇人妻 视频| 免费黄网站久久成人精品| 哪个播放器可以免费观看大片| 蜜桃国产av成人99| 国产熟女午夜一区二区三区| 18禁动态无遮挡网站| 国产 一区精品| 免费黄色在线免费观看| 这个男人来自地球电影免费观看 | 少妇人妻 视频| 熟妇人妻不卡中文字幕| 亚洲av男天堂| 日韩视频在线欧美| 黑人猛操日本美女一级片| 一区福利在线观看| 搡老乐熟女国产| 宅男免费午夜| 最近中文字幕高清免费大全6| 十八禁网站网址无遮挡| 久久韩国三级中文字幕| 大陆偷拍与自拍| 一区二区三区乱码不卡18| 欧美激情高清一区二区三区 | 亚洲精品,欧美精品| 久久久久国产精品人妻一区二区| 国产精品一区二区在线观看99| 亚洲国产av影院在线观看| 七月丁香在线播放| 少妇 在线观看| 久久国产精品大桥未久av| 多毛熟女@视频| 国产乱来视频区| 亚洲成人av在线免费| 国产精品免费大片| 亚洲美女搞黄在线观看| 国产麻豆69| 涩涩av久久男人的天堂| 精品久久蜜臀av无| 赤兔流量卡办理| 国产高清国产精品国产三级| 欧美激情 高清一区二区三区| 久久影院123| 在线精品无人区一区二区三| 久久韩国三级中文字幕| 狠狠婷婷综合久久久久久88av| 国产精品嫩草影院av在线观看| 精品福利永久在线观看| 黄网站色视频无遮挡免费观看| 国产精品一国产av| www.自偷自拍.com| 中国三级夫妇交换| 日韩电影二区| 亚洲欧洲精品一区二区精品久久久 | 久久久久精品人妻al黑| 亚洲国产欧美网| 免费观看人在逋| av女优亚洲男人天堂| 亚洲精品自拍成人| 亚洲av综合色区一区| 免费观看a级毛片全部| 久久人人97超碰香蕉20202| 日本vs欧美在线观看视频| 国产成人系列免费观看| av一本久久久久| 欧美老熟妇乱子伦牲交| 最近中文字幕高清免费大全6| 国产精品.久久久| 啦啦啦视频在线资源免费观看| 久久久国产精品麻豆| 欧美日韩国产mv在线观看视频| 一级毛片黄色毛片免费观看视频| 97人妻天天添夜夜摸| 久久99精品国语久久久| 自线自在国产av| 一本色道久久久久久精品综合| 日韩精品免费视频一区二区三区| 亚洲情色 制服丝袜| 国产在线免费精品| 老司机深夜福利视频在线观看 | 在线天堂最新版资源| 久久精品亚洲熟妇少妇任你| 久久久亚洲精品成人影院| 国产精品一二三区在线看| 免费在线观看黄色视频的| 国产野战对白在线观看| svipshipincom国产片| 男女床上黄色一级片免费看| 国产成人a∨麻豆精品| 精品国产露脸久久av麻豆| 一边摸一边抽搐一进一出视频| 欧美日韩亚洲国产一区二区在线观看 | 中文字幕制服av| 色婷婷av一区二区三区视频| 精品视频人人做人人爽| 我的亚洲天堂| 欧美最新免费一区二区三区| 曰老女人黄片| av在线观看视频网站免费| 午夜精品国产一区二区电影| 国产一区亚洲一区在线观看| 赤兔流量卡办理| 免费观看性生交大片5| 久久久国产精品麻豆| 热99国产精品久久久久久7| 亚洲激情五月婷婷啪啪| 悠悠久久av| 国产97色在线日韩免费| 精品人妻在线不人妻| 黄色怎么调成土黄色| 99精国产麻豆久久婷婷| 久热爱精品视频在线9| 69精品国产乱码久久久| 欧美av亚洲av综合av国产av | 看十八女毛片水多多多| a级毛片黄视频| 成人手机av| 老熟女久久久| 多毛熟女@视频| 国产一区二区三区综合在线观看| 午夜福利影视在线免费观看| 亚洲伊人色综图| 欧美日韩亚洲国产一区二区在线观看 | 久久人人97超碰香蕉20202| 狂野欧美激情性xxxx| 人妻 亚洲 视频| 天堂8中文在线网| 亚洲人成77777在线视频| 男人爽女人下面视频在线观看| 国产精品成人在线| 91成人精品电影| 伦理电影免费视频| 90打野战视频偷拍视频| 777久久人妻少妇嫩草av网站| 两性夫妻黄色片| 极品少妇高潮喷水抽搐| 欧美精品av麻豆av| 黄色一级大片看看| 欧美 亚洲 国产 日韩一| 久久天躁狠狠躁夜夜2o2o | 成人免费观看视频高清| 国产精品久久久久久精品电影小说| 亚洲美女黄色视频免费看| 极品少妇高潮喷水抽搐| 中文字幕最新亚洲高清| 久久国产精品大桥未久av| 九色亚洲精品在线播放| av福利片在线| 国产又爽黄色视频| 校园人妻丝袜中文字幕| 亚洲欧美一区二区三区黑人| 亚洲精品中文字幕在线视频| 成年女人毛片免费观看观看9 | 看免费成人av毛片| 国产男人的电影天堂91| 国产99久久九九免费精品| 水蜜桃什么品种好| 久久久久精品人妻al黑| 青春草亚洲视频在线观看| 久久天堂一区二区三区四区| 国产高清国产精品国产三级| 亚洲男人天堂网一区| 午夜免费鲁丝| 亚洲精品一二三| 欧美精品av麻豆av| 另类亚洲欧美激情| 伦理电影免费视频| 啦啦啦 在线观看视频| 久久精品亚洲熟妇少妇任你| 一区在线观看完整版| 亚洲第一av免费看| 青青草视频在线视频观看| 最近中文字幕2019免费版| 亚洲欧美日韩另类电影网站| 国产成人91sexporn| 久久毛片免费看一区二区三区| 亚洲婷婷狠狠爱综合网| 日韩大码丰满熟妇| 国产在线一区二区三区精| √禁漫天堂资源中文www| 久久鲁丝午夜福利片| a级毛片黄视频| 操出白浆在线播放| 久久久精品免费免费高清| 嫩草影院入口| 国产极品天堂在线| 97在线人人人人妻| 精品第一国产精品| 51午夜福利影视在线观看| 妹子高潮喷水视频| 亚洲综合色网址| 大香蕉久久网| 久热爱精品视频在线9| 日韩一卡2卡3卡4卡2021年| 国产又色又爽无遮挡免| 一区二区三区乱码不卡18| 久久精品亚洲av国产电影网| 国产野战对白在线观看| 我的亚洲天堂| 亚洲精品aⅴ在线观看| 亚洲精品在线美女| 在线观看三级黄色| 亚洲在久久综合| 亚洲一区中文字幕在线| 人人妻人人澡人人看| 一区二区日韩欧美中文字幕| av国产久精品久网站免费入址| 视频在线观看一区二区三区| 日本91视频免费播放| 黄色怎么调成土黄色| 午夜福利网站1000一区二区三区| 男人舔女人的私密视频| 亚洲欧洲精品一区二区精品久久久 | 狠狠婷婷综合久久久久久88av| 蜜桃国产av成人99| 午夜久久久在线观看| 夫妻性生交免费视频一级片| 一区二区三区激情视频| 国产男人的电影天堂91| 伦理电影大哥的女人| 久久人人爽人人片av| 一本色道久久久久久精品综合| 精品人妻熟女毛片av久久网站| 久久久久网色| 亚洲国产av新网站| 午夜福利,免费看| 在线 av 中文字幕| 久久久精品国产亚洲av高清涩受| 欧美激情 高清一区二区三区| 日本欧美国产在线视频| 日韩伦理黄色片| 成人午夜精彩视频在线观看| 亚洲综合精品二区| av福利片在线| 久久天堂一区二区三区四区| 亚洲四区av| 成人国产麻豆网| 久久久欧美国产精品| av不卡在线播放| 成人国产麻豆网| 国产伦理片在线播放av一区| av不卡在线播放| 亚洲av成人精品一二三区| 尾随美女入室| 午夜激情久久久久久久| 精品视频人人做人人爽| 丰满少妇做爰视频| 国产熟女午夜一区二区三区| 考比视频在线观看| 老司机深夜福利视频在线观看 | 亚洲av国产av综合av卡| 亚洲欧美色中文字幕在线| 少妇猛男粗大的猛烈进出视频| 大香蕉久久成人网| 亚洲精品久久成人aⅴ小说|