• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation of Pressure Fluctuations in a Large Francis Turbine Runner

    2012-01-20 04:46:12WANGFujunLIAOCuilinandTANGXuelin

    WANG Fujun *,LIAO Cuilin ,and TANG Xuelin

    1 College of Water Conservancy &Civil Engineering,China Agricultural University,Beijing 100083,China 2 China Institute of Water Resources and Hydropower Research,Beijing 100038,China

    1 Introduction

    Francis turbines usually experience unsteady pressure fluctuations,especially at partial loads.The pressure fluctuation is becoming more severe in large turbine units,and may cause the parts to flaw or even break,which substantially influences the steadiness of hydraulic turbine operation[1].

    Much attention has been occupied by these issues.Experimental and numerical methods are employed to study the unsteady feature.RUPRECHT,et al[2],compared numerical results with experimental data from model tests to show that the amplitudes and frequencies in draft tube agreed quite well.WANG,et al[3],compared simulation results with experimental data of a prototype hydraulic turbine,and indicated that the flow details in hydraulic turbine are well simulated.The authors also did similar research work by numerical and experimental approaches in large hydraulic turbines[4-5].

    However,until now,most investigations in this field have been mainly focused on the pressure pulsation induced by the vortex rope in draft tube[6].Prototype test and experimental measurements of pressure fluctuation in runner are difficult to carry out and cost too much since flow paths are rotating with the runner,transducer cannot be easily installed[7-8].The pressure pulsation in runner of a large Francis turbine usually could not be obtained by similarity law from model test[9].Therefore,numerical simulation is a good way to predict pressure pulsation in runner and improve understanding of the flow at part-load operation.

    The use of computational fluid dynamics(CFD) for the computation of turbomachinery flows has significantly increased in recent years[10-11].When simulating unsteady flows,such as the pressure fluctuations,large eddy simuation(LES) is usually the ideal method.However,the pressure fluctuations in a large hydraulic turbine runner are dominated by large turbulent scales.This special unsteady flow can not be resolved by LES without too fine meshes[12].Therefore,Reynolds-averaged Navier-Stokes(RANS) approach is a alternative method that could be used to obtain a resolution within a acceptable accuracy at an affordable cost.

    In this paper,a 3D geometry model including the full flow passage of a large Francis turbine is setup.The numerical method based on RANS for predicting the pressure fluctuation in runner is investigated and the numerical simulation is performed.The features of pressure fluctuations in runner are analysed in detail.

    2 Numerical Models and Computational Schemes

    2.1 Geometry and grid

    The hydraulic turbine investigated is a Francis turbine with a rated output of 710 MW.The outlet diameter of the turbine runner is 9.8 m.There are 24 stay vanes,24 guide vanes and 15 blades in the runner.X-shape blades are adopted for the runner,which is designed to adapt to a wide water head variation with stable operation and excellent cavitation performance.The rated speed is 75 r/min.

    The computational domain including the full passages of spiral case,stay vane,guide vane,runner and draft tube is built for the simulation.The meshes of five computational domains including the passages of spiral case,stay vane,guide vane,runner and draft tube are generated separately.The unstructured mesh with tetrahedral element is used in all three computational domains.A localized refinement of mesh is employed at regions close to runner blade leading and trailing edge in order to accurately capture the flow field structure.This is because the flow field properties variation such as pressure and velocity at these regions are expected to be substantial.Fig.1 shows the grid assembly of spiral case,stay vane,guide vane,runner and draft tube sections.The whole computational domain consists of 1 297 329 elements.

    Fig.1.Computational grid for the full passage

    2.2 Turbulence model and discretization scheme

    At present study,the commercial CFD code,CFX is used.The time-dependent RANS method with twoequation renormalization group (RNG)k-εand shear-stress transport (SST)k-ωmodels are adopted.The walls are modeled using a scalable wall function.Validation of this code can be found from the work done by LIAO[13]and other contributions[3,14].

    The governing equations are discretized using the control-volume technique with the semi-implicit method for pressure-linked equations consistent(SIMPLEC)scheme and pressure implicit with splitting of operators(PISO) scheme[12].A second-order upwind scheme is used for the convection terms with a central difference scheme for the diffusion terms in the momentum equations.And the second-order upwind scheme is also employed to discretize other equations,such as turbulent kinetic energykequation.

    2.3 Transient rotor-stator interaction and boundary conditions

    The current numerical computation is carried out with a multiple frame of reference approach because the runner flow field is within a rotating frame whereby the spiral case,stay vane,guide vane sections and draft tube are in stationary frame.The simulation is based on transient rotor-stator condition with the following boundary conditions imposed:at the inlet of the spiral case,the mass flow rate,the turbulence intensity and a reference pressure are specified.The absolute velocity at the inlet is defined in such a way that is perpendicular to the inlet mesh surface.Turbulent intensity is specified to be 5%.At the outlet of draft tube out flow condition is being specified as well.All the other variables are free to float.The passage walls for the spiral case,stay vane,guide vane sections and draft tube are in stationary frame and modeled using a no-slip boundary condition.It is also should be mentioned that the inlet boundary condition,the velocity condition,is obtained by a prior steady flow calculation for the turbine at given operation condition.

    In this numerical simulation,the meshes of the guide vane and the runner,also the meshes of the runner and the draft tube,are connected by means of a transient rotor-stator interface.The two frames of reference,rotating and stationary,are connected in such a way that for transient calculations the relative position of the runner and guide vane changes and updates through out the calculations for each time step.A total 5 revolutions or total time of 4 s is set for the computations.The time step is set as 0.008 s,corresponding to a rotating angle of 3.6°per time step,that is 100 steps for one revolution of the runner.The maximum iteration loops is set to 5 in order to reduce all the root means square residual.

    2.4 Recording points

    To observe the pressure distribution on the runner blade surfaces,9 recording points were set up on the pressure surface and suction surface of the runner blade respectively,as shown in Fig.2.Here,1,2,and 3 recording points are close to runner crown,and 3,6 and 9 recording points are close to blade trailing edge.

    3 Results and Discussions

    3.1 Pressure fluctuation with different numerical models

    To evaluate the effect of turbulence models and computational schemes on the simulation,two RANS models,RNGk-εand SSTk-ω,with two discretization schemes,SIMPLEC and PISO,are used.Fig.3,Fig.4 and Fig.5 show the pressure fluctuations on runner blade pressure surface points 1,5 and 9 with different numerical models under same part-load operation condition of headH=68 m,guide vane open angleα=19°.

    Fig.2.Recording points on the runner blade surface

    The results in Fig.3,Fig.4 and Fig.5 show no significant difference between RNGk-εand SSTk-ωturbulence models,while the effect of discretization schemes on simulation results is obvious.The PISO algorithm could capture more pressure pulsation information.

    The peak-to-peak values of the pressure fluctuations on pressure surface,which conducted from the above time-domain results,are shown in Table 1.For the reason of comparison,the peak-to-peak value is divided by local average pressure.The peak-to-peak value calculated by SSTk-ωwith PISO algorithm is the largest,while RNGk-εwith SIMPLEC algorithm smallest among all the peak-to-peak values whether for points 1,5 or 9.Since the peak-to-peak value reflects the dynamic load applied on the runner blade,this value is always be concerned by researchers and engineers.Usually we use this dynamic value to predict the fatigue life of blade.If the value with SSTk-ωand PISO algorithm is used to predict structure properties of a runner,a more safe prediction result would be carried out.Therefore,the SSTk-ωand PISO algorithm is adopted at the following simulations.

    Fig.3.Pressure fluctuations at point 1 on pressure surface

    Fig.4.Pressure fluctuations at point 5 on pressure surface

    Fig.5.Pressure fluctuation at point 9 on pressure surface

    Table 1.Peak-to-peak value of pressure fluctuations %

    To verify the simulation with SSTk-ωand PISO algorithm,a comparison between the simulation and experimental results[4,15]is made,as shown in Fig.6.The position concerning the pressure fluctuations is a point on the inlet section of the draft tube.The numerically calculated pressure fluctuation follows the trend very well as compared to the experimental ones.The dominant frequencies and their amplitudes for simulation and experimental results are 0.36 Hz,15 kPa,0.31 Hz,20 kPa,respectively.This indicates that the simulation with SSTk-ωand PISO algorithm could be used to predict the pressure fluctuation in the turbine in the view of engineering.

    Fig.6.Pressure fluctuations for a position in draft tube

    3.2 Frequency of pressure fluctuations

    To evaluate the pressure fluctuations at different positions under different operation conditions,the unsteady simulations under 4 typical operation conditions shown in Table 2 are performed.

    Table 2.Operation conditions for the simulations

    As typical results,the amplitude spectrum of pressure fluctuations at different recording points for case 2 and case 3 are shown in Fig.7 and Fig.8 respectively.At part load condition with low guide vane open angle,the dominant frequencies of pressure fluctuations for all the points on the blade surface are very close to that in draft tube,as shown in Fig.7.It has been proved that the low frequency pressure fluctuation with about 1/3 of the runner rotating frequency dominates the unsteady flow in the draft tube by whether the site tests or the numerical simulations[4-5].There are rich low frequencies in Fig.7,especially for points 3,6 and 9.Because these points locate near the trailing edge of the blade,the flow in this region may be significant affected by vortex rope in the draft tube.This result demonstrates that the vortex rope in the draft tube not only determine the flow structure in draft tube,but also affects the flow features in runner with upstream spreading.

    Fig.7.Amplitude spectrum of pressure fluctuations on pressure surface (for case 2)

    Fig.8.Amplitude spectrum of pressure fluctuations on suction surface (for case 3)

    With the guide vane open angle increases,the turbine output correspondingly changes to full load condition.The pattern of amplitude spectrum of pressure fluctuations in full load condition is different with that in part load condition.We can find the evident second dominant frequency that is close to 24 times of runner rotating frequency,as shown in Fig.8.This special frequency is exactly the runner passing frequency relative to stationary guide vane.We also find that the amplitudes of pressure fluctuations for points 1,4 and 7 are larger than other points.These three points locate near the leading edge of the blade.Therefore,we can conclude that the flow structure in the guide vane has more effects on runner flow at full load condition.On the other hand,the effects of draft tube also exist,in which the low frequencies are first dominant.

    According to the above discussion,it is could be concluded that the frequencies of pressure fluctuations in runner are affected by the flow in guide vane and the flow in draft tube.The first dominant frequency of pressure fluctuation in the runner is significantly determined by the flow in draft tube,especially at part load condition.This frequency is a low frequency that is approximately equal to 1/3 of the runner rotating frequency.The impact decreases from blade trailing edge to leading edge,e.g.,points 3,6,9 exhibit strong pulsations than points 1,4 and 7,also from runner band to crown,e.g.,point 9 exhibits strong pulsation than point 3.The evident high frequency of pressure fluctuation in the runner is determined by the flow in guide vane,especially at full load condition.The evident second dominant frequency is exactly equal to the guide vane passing frequency.This impact decreases from blade leading edge to trailing edge,e.g.,points 1,4 and 7 exhibit strong pulsation than points 3,6 and 9.

    3.3 Amplitude of pressure fluctuation

    The peak-to-peak amplitude of pressure fluctuation in the runner is the most concerned by engineers,since it directly determines the level of dynamic load applied on the runner.The amplitude also affects turbine operation stability and runner fatigue life.Fig.9 shows the peak-to-peak amplitude of pressure fluctuation on pressure surface and suction surface for 2 typical operating heads at 2 open angles.

    As shown in Fig.9,the amplitude of pressure fluctuation at small guide vane open angle (α=19°) is larger than that at large open angle (α=27°) at the same operating head.This result is caused by that the vortex rope in draft tube at small guide vane open angle is strong.On the other hand,the amplitudes of pressure fluctuations at points on blade pressure surface are generally greater than that on suction surface.One of the reasons is that the suction surface of the blade is more close to the inlet of draft tube.The pressure fluctuation resulted by vortex rope in draft tube has more influence on the flow near blade suction surface.Another reason is that a large attack angle causes vortex on blade suction surface,especially at low guide vane open angle.The vortex may results to more strong pressure fluctuations.

    Fig.9.Peak-to-peak amplitude of pressure fluctuation in runner

    4 Conclusions

    (1) The PISO algorithm could capture more pressure pulsation information than SIMPLEC algorithm.The peak-to-peak amplitudes of pressure fluctuations in the runner predicted by SSTk-ωmodel are greater than that by RNGk-εmodel.The combination of SSTk-ωmodel and PISO algorithm could be more suitable for predicting pressure fluctuations in turbine runner for the reason of safe prediction in the view of engineering.

    (2) The frequencies of pressure fluctuations in runner are affected by the flow in guide vane and the flow in draft tube.The first dominant frequency is significantly determined by the flow in draft tube,especially at part load condition.This frequency is a low frequency that is approximately equal to 1/3 of the runner rotating frequency.The impact decreases from blade trailing edge to leading edge,also from runner band to crown.The evident high frequency of pressure fluctuation in the runner is determined by the flow in guide vane,especially at full load condition.The evident second dominant frequency is exactly equal to the guide vane passing frequency.This impact decreases from blade leading edge to trailing edge.

    (3) The peak-to-peak amplitudes of pressure fluctuations in runner at small guide vane open angle are larger than that at large open angle at the same operating head.The amplitudes at points on blade pressure surface are generally greater than that on suction surface.

    [1]ARZOLA F,AZUAJE C,ZAMBRANO P,et al.Undesired power oscillations at high load in large Francis turbines:Experimental study and solution[C]//Proceedings of the 23rd IAHR Symposium on Hydraulic Machinery and Systems,Yokohama,Japan,October 17-21,2006:1-9.

    [2]RUPRECHT A,HELMRICH T,ASCHENBRENNER T,et al.Simulation of vortex rope in a turbine draft tube[C]//Proceedings of the 21st IAHR Symposium on Hydraulic Machinery and Systems,Lausanne,Switzerland,2002:257-264.

    [3]WANG Zhenwei,ZHOU Lingjiu.Simulations and measurements of pressure oscillations caused by vortex ropes[J].Journal of Fluid Engineering,Transactions of the ASME,2006,128(4):649-655.

    [4]WANG Fujun,LI Xiaoqin,MA Jiamei,et al.Experimental investigation of characteristic frequency in unsteady hydraulic behaviour of a large hydraulic turbine[J].Journal of Hydrodynamics,2009,21(1):804-812.

    [5]LIAO Cuilin,WANG Fujun,LI Xiaoqin.Numerical simulation of pressure fluctuation in draft tube of large Francis turbine[C]//Proceedings of the 5th Joint ASME/JSME Fluids Engineering Summer Conference,FEDSM2007,San Diego,USA,July 30-August 2,2007:873-878.

    [6]HELLSTROM J G I,MARJAVAARA B D,LUNDSTROM T S.Parallel CFD simulations of an original and redesigned hydraulic turbine draft tube[J].Advances in Engineering Software,2007,38(5):338-344.

    [7]LIAO Weili,JI Jinting,LU Peng,et al.Unsteady flow analysis of francis turbine[J].Journal of Mechanical Engineering,2009,45(6):134-140.(in Chinese)

    [8]PAIK J,SOTIROPOULOS F,SALE M J.Numerical simulation of swirling flow in complex hydro-turbine draft tube using unsteady statistical turbulence models[J].Journal of Hydraulic Engineering,2005,131(6):441-456.

    [9]ILIESCU M S,CIOCAN G D A.Analysis of the cavitating draft tube vortex in a Francis turbine using particle image velocimetry measurements in two-phase flow[J].Journal of Fluids Engineering,Transactions of ASME,2008,130(2):0211051-02110510.

    [10]WU Yulin,WU Xiaojing,LIU Shuhong.Correlation analysis of the internal vortex flow of hydro turbine with the pressure fluctuation inside draft tube[J].Journal of Hydroelectric Engineering,2007,26(5):122-127.(in Chinese)

    [11]NILSSON H,DAVIDSON L.Validations of CFD against detailed velocity and pressure measurements in water turbine runner flow[J].International Journal for Numerical Methods in Fluids,2003,41:863-879.

    [12]WANG Fujun.Computational fluid dynamics analysis—CFD principles &application[M].Beijing:Tsinghua University Press,2004.(in Chinese)

    [13]LIAO Cuilin.Study on hydraulic stability of large francis turbine[D].Beijing:China Agricultural University,2008.(in Chinese)

    [14]SUSAN-RESIGA R,CIOCAN G D,ANTON I.Analysis of the swirling flow downstream a Francis turbine runner[J].Journal of Fluids Engineering,Transactions of ASME,2006,128(1):177-189.

    [15]WANG Fujun,LI Xiaoqin,ZHU Yuliang.Experimental investigation of pressure fluctuation and vibration in a large francis turbine[C]//Proceedings of the 5th Joint ASME/JSME Fluids Engineering Summer Conference,FEDSM2007,San Diego,USA,July 30-August 2,2007:879-884.

    Biographical notes

    WANG Fujun,born in 1964,is currently a professor atCollege of Water Conservancy &Civil Engineering,China Agricultural University,China.He received his PhD degree fromTsinghua University,China,in 2000.His research interests include fluid machinery and computational fluid dynamics.

    Tel:+86-10-62 736972;E-mail:wangfj@cau.edu.cn

    LIAO Cuilin,born in 1982,is currently an engineer atChina Institute of Water Resources and Hydropower Research,China.She received her PhD degree fromChina Agricultural University,China,in 2008.Her research interests include Hydraulic turbine and computational fluid dynamics.

    Tel:+86-10-68781668,E-mail:liaocl@iwhr.com

    TANG Xuelin,born in 1969,is currently a professor atCollege of Water Conservancy &Civil Engineering,China Agricultural University,China.He received his PhD degree fromTsinghua University,China,in 2003.His research interests include hydraulic pumps and hydraulic turbines.

    Tel:+86-10-62 736578;E-mail:xl-tang@mail.tsinghua.edu.cn

    99香蕉大伊视频| 亚洲精品中文字幕在线视频| 亚洲国产看品久久| 欧美日韩亚洲综合一区二区三区_| a在线观看视频网站| 成人亚洲精品av一区二区| 精品卡一卡二卡四卡免费| 黄色 视频免费看| 精品一品国产午夜福利视频| 91av网站免费观看| 女人被狂操c到高潮| 亚洲av片天天在线观看| 国产精品影院久久| 丝袜美腿诱惑在线| 欧美黄色淫秽网站| 国产亚洲精品一区二区www| 亚洲专区中文字幕在线| 亚洲精品国产精品久久久不卡| 国产色视频综合| 亚洲男人的天堂狠狠| 搞女人的毛片| 波多野结衣av一区二区av| 亚洲人成77777在线视频| 亚洲成av人片免费观看| 黄色a级毛片大全视频| 亚洲人成网站在线播放欧美日韩| 男女下面进入的视频免费午夜 | 欧美激情 高清一区二区三区| 亚洲aⅴ乱码一区二区在线播放 | 国产熟女午夜一区二区三区| 久久影院123| 国产精品99久久99久久久不卡| 亚洲自拍偷在线| 极品教师在线免费播放| 狂野欧美激情性xxxx| 搡老熟女国产l中国老女人| 自线自在国产av| 在线天堂中文资源库| tocl精华| 波多野结衣巨乳人妻| 欧美一区二区精品小视频在线| 亚洲久久久国产精品| 午夜免费激情av| 黄色丝袜av网址大全| 午夜激情av网站| 在线观看一区二区三区| 男女下面插进去视频免费观看| 成年女人毛片免费观看观看9| 韩国av一区二区三区四区| 黑人巨大精品欧美一区二区蜜桃| 国产精品九九99| 中文字幕人妻熟女乱码| 麻豆一二三区av精品| 日本免费一区二区三区高清不卡 | 日韩国内少妇激情av| 久久人人精品亚洲av| 亚洲性夜色夜夜综合| 精品一区二区三区四区五区乱码| 波多野结衣巨乳人妻| 日本免费一区二区三区高清不卡 | 成人国产综合亚洲| 国产av一区二区精品久久| 老鸭窝网址在线观看| 熟女少妇亚洲综合色aaa.| 亚洲最大成人中文| 日韩欧美一区二区三区在线观看| 日韩高清综合在线| xxx96com| 亚洲中文字幕一区二区三区有码在线看 | 久久香蕉激情| 国产亚洲精品综合一区在线观看 | 不卡一级毛片| 国产成人精品在线电影| www国产在线视频色| 日韩国内少妇激情av| 99re在线观看精品视频| 高清黄色对白视频在线免费看| 欧美一级毛片孕妇| 欧美日韩瑟瑟在线播放| 精品国产美女av久久久久小说| 国产精品久久视频播放| 中文字幕最新亚洲高清| 一区二区三区高清视频在线| 亚洲精品粉嫩美女一区| 欧美中文日本在线观看视频| 99国产精品一区二区三区| 99re在线观看精品视频| 成人手机av| 岛国在线观看网站| 亚洲av美国av| av福利片在线| 不卡av一区二区三区| 国产xxxxx性猛交| 大型av网站在线播放| 免费久久久久久久精品成人欧美视频| 久久久久久免费高清国产稀缺| 日本精品一区二区三区蜜桃| 男人操女人黄网站| 欧美日本视频| 午夜福利一区二区在线看| 这个男人来自地球电影免费观看| 久久影院123| 亚洲精品国产区一区二| 俄罗斯特黄特色一大片| 一卡2卡三卡四卡精品乱码亚洲| 午夜激情av网站| 宅男免费午夜| 真人一进一出gif抽搐免费| 99精品在免费线老司机午夜| 亚洲精品中文字幕在线视频| 亚洲无线在线观看| 国产激情久久老熟女| 国产视频一区二区在线看| 日韩欧美三级三区| 国产97色在线日韩免费| 一级a爱视频在线免费观看| 1024香蕉在线观看| 国内精品久久久久久久电影| 久久精品亚洲熟妇少妇任你| 久久婷婷人人爽人人干人人爱 | 亚洲精品在线观看二区| 一个人观看的视频www高清免费观看 | 国产精品1区2区在线观看.| 一进一出好大好爽视频| 国产精品秋霞免费鲁丝片| 无限看片的www在线观看| 日韩 欧美 亚洲 中文字幕| 亚洲黑人精品在线| 日日夜夜操网爽| 午夜免费成人在线视频| 视频在线观看一区二区三区| 精品国产乱子伦一区二区三区| 成人国产一区最新在线观看| 黄频高清免费视频| 国内精品久久久久精免费| 91字幕亚洲| 香蕉丝袜av| 国产成人啪精品午夜网站| 日韩中文字幕欧美一区二区| 国产午夜精品久久久久久| 操美女的视频在线观看| 亚洲色图av天堂| 亚洲,欧美精品.| 中文字幕人妻熟女乱码| 欧美日韩精品网址| 亚洲av日韩精品久久久久久密| 可以免费在线观看a视频的电影网站| 午夜激情av网站| 99国产精品免费福利视频| 99久久国产精品久久久| 国产精品国产高清国产av| 国产私拍福利视频在线观看| 欧美日韩一级在线毛片| 美国免费a级毛片| 久久亚洲精品不卡| 国产国语露脸激情在线看| 久久精品亚洲精品国产色婷小说| 久久精品aⅴ一区二区三区四区| 亚洲五月婷婷丁香| 国产精品亚洲美女久久久| 黄色女人牲交| 亚洲成a人片在线一区二区| 欧美激情久久久久久爽电影 | 亚洲av片天天在线观看| 宅男免费午夜| 非洲黑人性xxxx精品又粗又长| 亚洲国产精品合色在线| av有码第一页| 欧洲精品卡2卡3卡4卡5卡区| 黄色 视频免费看| 丝袜美腿诱惑在线| 怎么达到女性高潮| 午夜a级毛片| 一区在线观看完整版| 成人永久免费在线观看视频| 少妇被粗大的猛进出69影院| 亚洲人成电影免费在线| 一级a爱视频在线免费观看| 亚洲精品粉嫩美女一区| 国产高清videossex| 少妇粗大呻吟视频| 亚洲国产欧美一区二区综合| 黄色毛片三级朝国网站| 18禁国产床啪视频网站| 99久久综合精品五月天人人| 成人特级黄色片久久久久久久| 90打野战视频偷拍视频| 欧美久久黑人一区二区| 一级a爱片免费观看的视频| 丝袜人妻中文字幕| 色播在线永久视频| 人人妻人人爽人人添夜夜欢视频| 亚洲一区高清亚洲精品| 悠悠久久av| 午夜亚洲福利在线播放| 91大片在线观看| av天堂在线播放| 一级,二级,三级黄色视频| 99国产精品99久久久久| 在线免费观看的www视频| e午夜精品久久久久久久| 变态另类成人亚洲欧美熟女 | 岛国在线观看网站| 一二三四社区在线视频社区8| av片东京热男人的天堂| 不卡一级毛片| 亚洲人成77777在线视频| bbb黄色大片| 国产成人免费无遮挡视频| 欧美+亚洲+日韩+国产| 男女下面插进去视频免费观看| 啦啦啦韩国在线观看视频| 中文字幕人成人乱码亚洲影| 99香蕉大伊视频| 激情在线观看视频在线高清| 一二三四社区在线视频社区8| 精品欧美一区二区三区在线| 免费在线观看影片大全网站| 免费搜索国产男女视频| 成人永久免费在线观看视频| 男女床上黄色一级片免费看| 可以免费在线观看a视频的电影网站| 国产一级毛片七仙女欲春2 | 亚洲av电影不卡..在线观看| 老熟妇仑乱视频hdxx| 男女下面插进去视频免费观看| 窝窝影院91人妻| 在线观看免费视频网站a站| 欧美日韩一级在线毛片| 久久精品91蜜桃| 欧美日韩亚洲综合一区二区三区_| 黑人欧美特级aaaaaa片| 婷婷六月久久综合丁香| 老司机午夜福利在线观看视频| 日韩中文字幕欧美一区二区| 久久人妻熟女aⅴ| 久久影院123| 色在线成人网| 18禁黄网站禁片午夜丰满| 一二三四在线观看免费中文在| 色综合站精品国产| 国产aⅴ精品一区二区三区波| 最好的美女福利视频网| 亚洲人成电影免费在线| 国产午夜福利久久久久久| а√天堂www在线а√下载| 亚洲 欧美一区二区三区| 亚洲片人在线观看| 亚洲人成伊人成综合网2020| 国产一级毛片七仙女欲春2 | 亚洲精品国产色婷婷电影| 午夜影院日韩av| 亚洲成av人片免费观看| 国产亚洲av高清不卡| 欧美日韩亚洲综合一区二区三区_| 欧美一级a爱片免费观看看 | 国产成人系列免费观看| 国内精品久久久久久久电影| 久久久久久免费高清国产稀缺| 国产成人精品无人区| 久久 成人 亚洲| 国产蜜桃级精品一区二区三区| aaaaa片日本免费| 日本黄色视频三级网站网址| 99国产精品一区二区蜜桃av| 精品高清国产在线一区| 天堂√8在线中文| www.熟女人妻精品国产| avwww免费| 亚洲欧美激情综合另类| 伊人久久大香线蕉亚洲五| 日韩大码丰满熟妇| 777久久人妻少妇嫩草av网站| 国产精品自产拍在线观看55亚洲| 91老司机精品| 欧美老熟妇乱子伦牲交| 国产av一区在线观看免费| 午夜福利18| 操出白浆在线播放| 免费在线观看影片大全网站| 日韩高清综合在线| 精品不卡国产一区二区三区| 久久久久久国产a免费观看| 桃色一区二区三区在线观看| xxx96com| 操出白浆在线播放| 亚洲色图综合在线观看| 自线自在国产av| 国产成人精品无人区| 久久影院123| 一进一出抽搐gif免费好疼| 满18在线观看网站| 日韩欧美国产在线观看| 嫩草影视91久久| 18禁美女被吸乳视频| 午夜久久久久精精品| 老汉色∧v一级毛片| 香蕉丝袜av| 欧美日韩亚洲国产一区二区在线观看| 亚洲成人精品中文字幕电影| 精品无人区乱码1区二区| 麻豆久久精品国产亚洲av| 电影成人av| 超碰成人久久| 51午夜福利影视在线观看| 中文字幕高清在线视频| 视频区欧美日本亚洲| 欧美一级a爱片免费观看看 | 亚洲一区二区三区色噜噜| 中亚洲国语对白在线视频| 两性午夜刺激爽爽歪歪视频在线观看 | 动漫黄色视频在线观看| 国产精华一区二区三区| 欧美成人午夜精品| 十八禁人妻一区二区| 激情在线观看视频在线高清| 亚洲av第一区精品v没综合| 亚洲午夜理论影院| 黄色视频,在线免费观看| 国产精品电影一区二区三区| 国产精品一区二区三区四区久久 | 真人做人爱边吃奶动态| 女性生殖器流出的白浆| 可以在线观看毛片的网站| 18禁国产床啪视频网站| 最近最新中文字幕大全电影3 | 久久精品影院6| 久久热在线av| 人人妻人人爽人人添夜夜欢视频| 欧美大码av| 在线观看免费视频网站a站| 欧美一级毛片孕妇| 国产不卡一卡二| 亚洲成国产人片在线观看| 亚洲少妇的诱惑av| 国产精品亚洲av一区麻豆| 亚洲精品在线观看二区| 亚洲成a人片在线一区二区| 神马国产精品三级电影在线观看 | 在线观看午夜福利视频| 在线观看66精品国产| 69av精品久久久久久| 亚洲自偷自拍图片 自拍| 亚洲人成77777在线视频| 精品久久久久久久人妻蜜臀av | 亚洲欧洲精品一区二区精品久久久| 日韩 欧美 亚洲 中文字幕| 久久久久国产一级毛片高清牌| 91成人精品电影| 精品国产一区二区久久| 亚洲精品一区av在线观看| 国产成人av教育| 男人舔女人的私密视频| aaaaa片日本免费| 国产精品久久久久久亚洲av鲁大| 国产麻豆成人av免费视频| 纯流量卡能插随身wifi吗| 后天国语完整版免费观看| 久久久久久免费高清国产稀缺| 高清毛片免费观看视频网站| 欧美成人午夜精品| 久久久久九九精品影院| 精品一区二区三区视频在线观看免费| 亚洲成av人片免费观看| 欧美一区二区精品小视频在线| 中文字幕人妻熟女乱码| 此物有八面人人有两片| 欧美色欧美亚洲另类二区 | 成熟少妇高潮喷水视频| 一区二区日韩欧美中文字幕| 午夜久久久在线观看| 在线观看免费视频网站a站| 欧美另类亚洲清纯唯美| 久久精品aⅴ一区二区三区四区| www.精华液| 日韩欧美一区视频在线观看| 亚洲国产中文字幕在线视频| 精品人妻在线不人妻| 免费久久久久久久精品成人欧美视频| 国产精品久久久久久精品电影 | 麻豆成人av在线观看| 又大又爽又粗| 国产一级毛片七仙女欲春2 | 99国产精品99久久久久| 国产精品爽爽va在线观看网站 | 九色亚洲精品在线播放| a在线观看视频网站| 精品国产亚洲在线| 久99久视频精品免费| 999久久久国产精品视频| 精品国产一区二区久久| 亚洲成人精品中文字幕电影| 自拍欧美九色日韩亚洲蝌蚪91| 免费少妇av软件| 成人亚洲精品av一区二区| 国产主播在线观看一区二区| 多毛熟女@视频| 国产精品久久久久久精品电影 | 精品国产亚洲在线| 免费在线观看黄色视频的| 97碰自拍视频| 午夜免费成人在线视频| a在线观看视频网站| 色婷婷久久久亚洲欧美| 搡老妇女老女人老熟妇| 欧美日韩瑟瑟在线播放| 一级片免费观看大全| 国产精品99久久99久久久不卡| 18美女黄网站色大片免费观看| 国产精品1区2区在线观看.| 十八禁人妻一区二区| 在线观看www视频免费| 久9热在线精品视频| 精品电影一区二区在线| 欧美黄色淫秽网站| 一区二区日韩欧美中文字幕| 两个人看的免费小视频| 欧美午夜高清在线| 啦啦啦韩国在线观看视频| 久久久国产精品麻豆| 国产亚洲精品一区二区www| 狠狠狠狠99中文字幕| 97人妻天天添夜夜摸| 日韩高清综合在线| 老熟妇仑乱视频hdxx| 亚洲人成伊人成综合网2020| 亚洲第一av免费看| 天堂影院成人在线观看| 亚洲精品粉嫩美女一区| 亚洲专区字幕在线| 18美女黄网站色大片免费观看| 亚洲电影在线观看av| 欧美人与性动交α欧美精品济南到| 97碰自拍视频| 色综合欧美亚洲国产小说| 久久亚洲精品不卡| 午夜免费鲁丝| 亚洲av电影在线进入| 一本综合久久免费| 亚洲精华国产精华精| 亚洲电影在线观看av| 欧美日韩福利视频一区二区| 久久国产乱子伦精品免费另类| 人妻久久中文字幕网| 欧美激情久久久久久爽电影 | 九色亚洲精品在线播放| 日本a在线网址| 人妻丰满熟妇av一区二区三区| 熟女少妇亚洲综合色aaa.| 国产一区二区三区视频了| 亚洲精品久久国产高清桃花| 午夜福利影视在线免费观看| 一二三四社区在线视频社区8| 中出人妻视频一区二区| 人人妻,人人澡人人爽秒播| 久久午夜亚洲精品久久| 女同久久另类99精品国产91| 国产成人精品无人区| 搞女人的毛片| 天天添夜夜摸| 亚洲 欧美一区二区三区| 午夜福利,免费看| 亚洲精品国产色婷婷电影| 在线观看免费视频网站a站| 精品午夜福利视频在线观看一区| 国产精品久久久久久亚洲av鲁大| 99香蕉大伊视频| 欧美日韩黄片免| www.www免费av| 精品福利观看| 日韩av在线大香蕉| 少妇熟女aⅴ在线视频| 免费看美女性在线毛片视频| 黑人操中国人逼视频| 亚洲av日韩精品久久久久久密| 精品国产乱子伦一区二区三区| 99热只有精品国产| 制服人妻中文乱码| 亚洲成人国产一区在线观看| 欧美大码av| 91麻豆精品激情在线观看国产| 欧美国产日韩亚洲一区| 两个人免费观看高清视频| 亚洲国产中文字幕在线视频| 日韩欧美一区视频在线观看| www.精华液| 久久国产精品男人的天堂亚洲| e午夜精品久久久久久久| 亚洲精品在线观看二区| 一进一出抽搐动态| 大型黄色视频在线免费观看| 国产极品粉嫩免费观看在线| 免费在线观看影片大全网站| 中文字幕人妻熟女乱码| 国产高清视频在线播放一区| 波多野结衣一区麻豆| 欧美日韩黄片免| 制服诱惑二区| 一区二区三区激情视频| 在线观看免费日韩欧美大片| 日韩中文字幕欧美一区二区| 亚洲五月婷婷丁香| 激情视频va一区二区三区| 亚洲人成电影观看| 在线观看免费视频日本深夜| 视频在线观看一区二区三区| 久久国产精品影院| 一级,二级,三级黄色视频| 一级黄色大片毛片| 大香蕉久久成人网| 激情视频va一区二区三区| 好男人在线观看高清免费视频 | 欧美一区二区精品小视频在线| 国产单亲对白刺激| 男女床上黄色一级片免费看| 国产免费男女视频| 久久午夜亚洲精品久久| 成人三级黄色视频| 国内精品久久久久精免费| 国产伦人伦偷精品视频| 精品少妇一区二区三区视频日本电影| 国产精品秋霞免费鲁丝片| 日韩欧美一区视频在线观看| 一区二区三区国产精品乱码| 一级片免费观看大全| 18禁观看日本| 亚洲avbb在线观看| 琪琪午夜伦伦电影理论片6080| 亚洲国产精品合色在线| av福利片在线| 欧美黑人精品巨大| 看片在线看免费视频| 久久久久久久久久久久大奶| 午夜精品国产一区二区电影| 亚洲avbb在线观看| 视频区欧美日本亚洲| 国产精品98久久久久久宅男小说| 非洲黑人性xxxx精品又粗又长| 男女做爰动态图高潮gif福利片 | 国产精品二区激情视频| 欧美性长视频在线观看| 男人操女人黄网站| 国产又色又爽无遮挡免费看| 久久国产亚洲av麻豆专区| 久久久久久久久久久久大奶| 此物有八面人人有两片| 日韩欧美国产在线观看| 久久中文字幕一级| 激情视频va一区二区三区| 欧美中文日本在线观看视频| 国产欧美日韩精品亚洲av| 欧美激情久久久久久爽电影 | 巨乳人妻的诱惑在线观看| 久久青草综合色| 久久久久久久精品吃奶| 好男人电影高清在线观看| 日本三级黄在线观看| 亚洲人成77777在线视频| 午夜两性在线视频| www国产在线视频色| 免费高清视频大片| 老司机在亚洲福利影院| 久久久精品国产亚洲av高清涩受| 亚洲激情在线av| 久久精品亚洲精品国产色婷小说| 精品欧美国产一区二区三| 久久狼人影院| 国产成人精品久久二区二区免费| 一边摸一边抽搐一进一小说| 久久久国产欧美日韩av| 人妻丰满熟妇av一区二区三区| 69av精品久久久久久| 韩国精品一区二区三区| 最近最新中文字幕大全电影3 | 国产亚洲av嫩草精品影院| 丁香欧美五月| 日日爽夜夜爽网站| 亚洲精品久久国产高清桃花| 波多野结衣av一区二区av| 啦啦啦观看免费观看视频高清 | 女人被躁到高潮嗷嗷叫费观| 国产亚洲欧美98| 午夜a级毛片| 久久久久久久久免费视频了| 嫩草影院精品99| 国产乱人伦免费视频| 在线观看日韩欧美| 亚洲美女黄片视频| 国内久久婷婷六月综合欲色啪| 欧美黑人欧美精品刺激| 精品久久久久久久人妻蜜臀av | 免费久久久久久久精品成人欧美视频| 日韩欧美一区视频在线观看| 精品久久久久久久久久免费视频| 女生性感内裤真人,穿戴方法视频| 国产熟女xx| 电影成人av| 老汉色∧v一级毛片| 欧美色欧美亚洲另类二区 | 欧美另类亚洲清纯唯美| 亚洲第一青青草原| 91精品国产国语对白视频| 在线观看免费视频网站a站| 黄片播放在线免费| 嫩草影院精品99| 国产乱人伦免费视频| 99在线视频只有这里精品首页| 国产男靠女视频免费网站| 老司机福利观看| 欧美黑人欧美精品刺激| 亚洲中文日韩欧美视频| 免费观看人在逋| 又紧又爽又黄一区二区| 国产成人av教育| 日韩欧美一区视频在线观看|