常 青,周立群
(天津師范大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,天津 300387)
一類具變時(shí)滯細(xì)胞神經(jīng)網(wǎng)絡(luò)的全局漸近穩(wěn)定性
常 青,周立群
(天津師范大學(xué) 數(shù)學(xué)科學(xué)學(xué)院,天津 300387)
討論一類具變時(shí)滯細(xì)胞神經(jīng)網(wǎng)絡(luò)平衡點(diǎn)的唯一性和全局漸近穩(wěn)定性,利用矩陣不等式,通過構(gòu)造合適的Lyapunov泛函,得到了具變時(shí)滯細(xì)胞神經(jīng)網(wǎng)絡(luò)全局漸近穩(wěn)定性的新的充分條件.
細(xì)胞神經(jīng)網(wǎng)絡(luò);變時(shí)滯;全局漸近穩(wěn)定性;矩陣不等式;Lyapunov泛函
細(xì)胞神經(jīng)網(wǎng)絡(luò)模型于1988年由Chua L.O.等首次提出[1-2],它是一種能實(shí)時(shí)、高速并行處理信號(hào)的大規(guī)模非線性模擬電路模型,易于VLSI實(shí)現(xiàn),可描述三階以上的動(dòng)力學(xué)行為.1990年,Roska T.等提出了時(shí)滯細(xì)胞神經(jīng)網(wǎng)絡(luò)模型[3].細(xì)胞神經(jīng)網(wǎng)絡(luò)模型和時(shí)滯細(xì)胞神經(jīng)網(wǎng)絡(luò)模型在圖像處理、模式識(shí)別、聯(lián)想記憶等領(lǐng)域有廣泛應(yīng)用.近年來,許多學(xué)者對(duì)細(xì)胞神經(jīng)網(wǎng)絡(luò)的動(dòng)力學(xué)行為,尤其是網(wǎng)絡(luò)的動(dòng)態(tài)性,如網(wǎng)絡(luò)平衡點(diǎn)的存在性、唯一性以及全局漸近穩(wěn)定性和全局指數(shù)穩(wěn)定性,進(jìn)行了深入研究并取得了很多成果[4-12].文獻(xiàn)[12]利用矩陣不等式和Lyapunov泛函研究了激活函數(shù)為分段線性函數(shù)f(x)=0.5(|x+1|+|x-1|)的具常時(shí)滯細(xì)胞神經(jīng)網(wǎng)絡(luò)平衡點(diǎn)的唯一性和全局漸近穩(wěn)定性.在此基礎(chǔ)上,本研究擴(kuò)大激活函數(shù)的范圍,利用矩陣不等式和構(gòu)造合適的Lyapunov泛函研究了具變時(shí)滯細(xì)胞神經(jīng)網(wǎng)絡(luò)平衡點(diǎn)的唯一性和全局漸近穩(wěn)定性,得到了具變時(shí)滯細(xì)胞神經(jīng)網(wǎng)絡(luò)全局漸近穩(wěn)定性的新的充分條件.
考慮具變時(shí)滯細(xì)胞神經(jīng)網(wǎng)絡(luò)系統(tǒng)
所以原點(diǎn)是系統(tǒng)(2)的全局漸近穩(wěn)定點(diǎn).證畢.
注1 若在系統(tǒng)(1)中令D=I(單位矩陣),x(t-τ(t))=x(t-τ),則系統(tǒng)(1)就是文獻(xiàn)[12]討論的模型.定理1與定理2中當(dāng)τ′=0時(shí)就是文獻(xiàn)[12]中當(dāng)β=1時(shí)的結(jié)果.
圖1 tanh2(xi)≤xitanh(xi)Fig.1 tanh2(xi)≤xitanh(xi)
圖2 系統(tǒng)(15)的仿真圖Fig.2 Simulation of system (15)
[1] CHUA L O,YANG L.Cellular neural networks:theory[J].IEEE Transactions on Circuits and Systems,1988,35:1257-1272.
[2] CHUA L O,YANG L.Cellular neural networks:applications[J].IEEE Transactions on Circuits and Systems,1988,35:1273-1290.
[3] ROSKA T,CHUA L O.Cellular neural networks with nonlinear and delay-type template elements and nonuniform grids[J].International Journal of Circuit Theory and Applications,1992,20:469-481.
[4] ZHANG Q,WEI X P,XU J.Delay-dependent exponential stability of cellular neural networks with time-varying delays[J].Chaos,Solitons and Fractals,2005,23:1363-1369.
[5] SINGH V.Global asymptotic stability of cellular neural networks with unequal delays:LMI approach[J].Electronics Letters,2004,40:548-549.
[6] CAO J D,LI Q.On the exponential stability and periodic solutions of delayed cellular neural networks[J].Journal of Mathematical Analysis and Applications,2000,252:50-64.
[7] PENG J G,QIAO H,XU Z B.A new approach to stability of neural networks with time-varying delays[J].Neural Networks,2002,15:95-103.
[8] SUN C Y,F(xiàn)ENG C B.Exponential periodicity and stability of delayed neural networks[J].Mathematics and Computers in Simulation,2004,66:469-478.
[9] HUANG C X,HUANG L H,YUAN Z H.Global stability analysis of a class of delayed cellular neural networks[J].Mathematics and Computers in Simulation,2005,70:133-148.
[10] ZHOU L Q,HU G D.Global exponential periodicity and stability of cellular neural networks with variable and distributed delays[J].Applied Mathematics and Computation,2008,195:402-411.
[11] SONG X L,PENG J G.Exponential stability of a class of neural networks with discrete time-varying and distributed delays[J].Chinese Journal of Engineering Mathematics,2010,27:731-740.
[12] 劉靜.對(duì)延遲細(xì)胞神經(jīng)網(wǎng)絡(luò)全局漸近穩(wěn)定性一個(gè)結(jié)果的改進(jìn)[J].大學(xué)數(shù)學(xué),2010,26:26-29.
Global asymptotic stability of a class of cellular neural networks with variable delays
CHANGQing,ZHOULi-qun
(College of Mathematical Science,Tianjin Normal University,Tianjin 300387,China)
The uniqueness and the global asymptotic stability of the equilibrium point of a class of cellular neural networks with variable delays are studied.In virtue of constructing a linear matrix inequality and a suitable Lyapunov functional,new sufficient conditions are derived for the global asymptotic stability of the cellular neural networks with variable delay.
cellular neural networks;variable delays;global asymptotic stability;linear matrix inequality;Lyapunov functional
O175.13
A
1671-1114(2012)01-0006-04
2011-06-21
國家自然科學(xué)基金資助項(xiàng)目(60974144);天津市高等學(xué)??萍及l(fā)展基金計(jì)劃資助項(xiàng)目(20100813);天津師范大學(xué)博士基金資助項(xiàng)目(52LX34)
常 青(1988—),女,碩士研究生.
周立群(1972—),女,博士,副教授,主要從事神經(jīng)網(wǎng)絡(luò)穩(wěn)定性、隨機(jī)微分方程數(shù)值方法的穩(wěn)定性和收斂性方面的研究.
(責(zé)任編校 馬新光)