• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Electroacupuncture improves neuropathic pain Adenosine, adenosine 5’-triphosphate disodium and their receptors perhaps change simultaneously☆

    2012-01-04 09:58:20WenRenWenzhanTuSongheJiangRuidongChengYapingDu

    Wen Ren, Wenzhan Tu, Songhe Jiang, Ruidong Cheng, Yaping Du

    1 Institute of Social & Family Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China

    2 Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical College, Wenzhou 325000, Zhejiang Province, China

    Electroacupuncture improves neuropathic painAdenosine, adenosine 5’-triphosphate disodium and their receptors perhaps change simultaneously☆

    Wen Ren1, Wenzhan Tu2, Songhe Jiang2, Ruidong Cheng2, Yaping Du1

    1Institute of Social & Family Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China

    2Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital of Wenzhou Medical College, Wenzhou 325000, Zhejiang Province, China

    Applying a stimulating current to acupoints through acupuncture needles - known as electroacupuncture - has the potential to produce analgesic effects in human subjects and experimental animals. When acupuncture was applied in a rat model, adenosine 5’-triphosphate disodium in the extracellular space was broken down into adenosine, which in turn inhibited pain transmission by means of an adenosine A1 receptor-dependent process. Direct injection of an adenosine A1 receptor agonist enhanced the analgesic effect of acupuncture. The analgesic effect of acupuncture appears to be mediated by activation of A1 receptors located on ascending nerves. In neuropathic pain, there is upregulation of P2X purinoceptor 3 (P2X3) receptor expression in dorsal root ganglion neurons. Conversely, the onset of mechanical hyperalgesia was diminished and established hyperalgesia was significantly reversed when P2X3 receptor expression was downregulated. The pathways upon which electroacupuncture appear to act are interwoven with pain pathways, and electroacupuncture stimuli converge with impulses originating from painful areas. Electroacupuncture may actviapurinergic A1 and P2X3 receptors simultaneously to induce an analgesic effect on neuropathic pain.

    electroacupuncture; analgesia; adenosine; adenosine 5’-triphosphate disodium; A1 receptors; P2X purinoceptor 3 receptors; neuropathic pain; peripheral nervous system; central nervous system; regeneration; neural regeneration.

    Research Highlights

    (1) Previous studies addressing the analgesic effect of acupuncture mainly focused on purine and a single purine receptor; no studies have examined the possible influence of synergism or antagonism with other receptors.

    (2) Electroacupuncture may induce an analgesic effect in neuropathic pain by influencing both purinergic A1 and P2X purinoceptor 3 (P2X3) receptors simultaneously.

    (3) Electroacupuncture analgesia may also involve adenosine and adenosine 5’-triphosphate disodium receptors in the peripheral and central nervous systems. Electroacupuncture can inhibit purinergic A1 and P2X3 receptors and exert an analgesic effect on neuropathic pain.

    Abbreviations

    ATP, adenosine 5’-triphosphate disodium; P2X3, P2X purinoceptor 3

    INTRODUCTION

    Electroacupuncture is a procedure in which fine needles are inserted into an individual at discrete points and then electrical stimulation is applied, with the aim of relieving chronic pain[1-3]. Electroacupuncture analgesia is essentially a manifestation of integrative processes between afferent impulses from painful areas and impulses from acupoints within the peripheral nervous system and at different levels of the central nervous system. A complex network of numerous brain structures is involved in the mechanisms that mediate electroacupuncture analgesia[1]. Acupuncture triggers an increase in the extracellular concentration of adenosine 5’-triphosphate disodium (ATP), adenosine diphosphate, adenosine monophosphate and adenosine. Electroacupuncture also triggers an increase in the extracellular concentration of ATP and related nucleotides[4]. P2X purinoceptor 3 (P2X3) and P2X2/3 receptors are located in the central and peripheral nervous system. ATP plays a crucial role in facilitating pain transmission by acting at P2X3 and P2X2/3 receptors especially in acute, inflammatory, neuropathic and visceral pains[5-6]. Noxious or injurious stimuli damage cells, which release ATP. ATP then acts at P2X3 homomeric and P2X2/3 heteromeric receptors situated on the peripheral terminals of sensory neurons, such as those of dorsal root ganglia, to induce painful sensations[7-8]. ATP cannot be transported back into the cell but is rapidly degraded to adenosine by several ectonucleotidases before reuptake[9].

    Adenosine plays a complex role in mediating pain that is highly dependent on the site of administration and the receptor subtype activated[8]. Whereas the stimulation of A1 receptors results in analgesic effects in a wide range of animal models, in rats lacking the A1 receptor there is an enhanced response to nociceptive stimuli[10]. The actions of adenosine may be antagonistic or synergistic with ATP.

    HYPOTHESIS AND SUPPORTING EVIDENCE

    In clinical practice, acupuncture in itself is not painful, but traditional acupuncturists stress that it can elicit the

    ‘De-Qi’ feeling, a constellation of unique sensations that are essential for its clinical efficacy[1].

    In the model of neuropathic pain described above, ATP is released from damaged peripheral nerve tissue and plays an important role in the initiation of pain by sensitizing primary afferents. Neuropathic pain results in upregulation of P2X3 receptor expression on dorsal root ganglion neurons and causes primary sensory neurons to become hyperexcitable to ATP-evoked inward currents[11-12]. The increased amplitude of the currents evoked by ATP and its analogs has been shown to sensitize sensory afferents. After electroacupuncture treatment, pathological pain was relieved, previously upregulated expression of P2X3 receptors was reversed and the amplitudes of ATP-evoked inward currents at P2X3 receptors were suppressed[13-14]. This suggests that P2X3 receptors are critical in the development of neuropathic pain and that electroacupuncture treatment could likely cause analgesia by decreasing expression and sensitization of P2X3 receptors[13-14].

    Electroacupuncture treatment produces a long-lasting analgesic effect on neuropathic pain and increases expression of P2X3 receptors in the midbrain periaqueductal gray matter, which potentiates the function of the purinergic signaling system at the supraspinal level and provides a rational basis for explaining the analgesic effect of electroacupuncture[15].

    Similar to acupuncture, electroacupuncture can trigger a general increase in the extracellular concentration of ATP and its breakdown product adenosine near the acupuncture point[4]. As in electroacupuncture, adenosine may accumulate during these treatments and dampen pain in part by the activation of A1 receptors on the sensory afferents in ascending tracts. It is possible that ATP release from keratinocytes in response to skin stimulation results in an accumulation of adenosine that transiently reduces pain, as A1 receptors are likely to be expressed by nociceptive axon terminals in the epidermis[16-17]. However, this effect differs from the anti-nociceptive effect of acupuncture, which is independent of the afferent innervation of the skin[1-18]. In electroacupuncture, needles are typically applied to deeper tissues, including muscle and connective tissue, and these acupoints may be closer to ascending nerve tracts than the dense cutaneous afferents. The analgesic effects of peripheral, spinal and supraspinal A1 receptors are well established, and an A1 receptor agonist has been found to substantially reduce inflammatory and neurogenic pain; also, the suppression of pain mediated by electroacupuncture requires adenosine A1 receptor expression. These findings suggest that A1 receptor activation is both necessary and sufficient for the clinical benefits of electroacupuncture[4]. A1 receptors are widely distributed throughout the brain at synaptic and extrasynaptic sites, with high densities present in the hippocampus, cerebellum and cerebral cortex[19].

    Electroacupuncture preconditioning involves a mechanism related to the actions of an A1 receptorrelated pathway in the brain[20].

    Extracellular adenosine concentration rose following the release of ATP, which was dephosphorylated to adenosine diphosphate, adenosine monophosphate and adenosine by potent ectonucleotidases. Adenosine is only present in the extracellular space for a short time because of facilitated uptake by nucleoside transporters. After reuptake, adenosine is quickly converted back to ATP[21].

    Interaction between the adenosine receptor and P2 receptor systems has been shown to occur in neuronal and non-neuronal cells[22]. Both adenosine and ATP induce astroglial cell proliferation and formation of reactive astrocytes. In the hippocampus, adenosine and ATP are released on stimulation and are potent inhibitors of neuronal action potential transmission[23]. ATP must be converted to adenosine outside the cell to exert its inhibitory effects on hippocampal synaptic transmission[4].

    In summary, the analgesic role of electroacupuncture in neuropathic pain may involve purinergic A1 and P2X3 receptors simultaneously.

    DISCUSSION

    Although the analgesic effect of electroacupuncture is well documented, little is understood about its biological basis. Insertion of the acupuncture needles in itself is not sufficient to relieve pain. An acupuncture session typically lasts for 30 minutes, during which the needles may be electrically stimulated or, in some cases, heated. The patient’s pain threshold is reported to slowly increase, an observation that outlasts the treatment[1]. The primary mechanism implicated in the analgesic effect of electroacupuncture involves release of endogenous opioid peptides in response to the long-lasting activation of ascending sensory tracts during stimulation[24-25].

    Neuropathic pain typically occurs after nerve damage that can be induced by physical injury, nerve compression by tumors or intervertebral discs, diabetes, infection or autoimmune disease[26-29]. Evidence accumulated from neuropathic pain models suggests that neuropathic pain might involve abnormal excitability of the nervous system. Notably, in primary sensory ganglia and in the dorsal horn of the spinal cord, many functional and anatomical alterations occur in neurons after peripheral nerve injury[30]. Besides these changes in neurons, emerging lines of evidence suggest that they also occur in glial cells, especially microglia[31-32]. Also, it has been suggested that the analgesic effects of electroacupuncture are associated with its ability to counter-regulate spinal glial activation[31-33]. Tactile allodynia induced by nerve injury depends upon a unique pattern of activation of purinergic P2X3 and P2X2/3 receptors in damaged primary sensory neurons[31].

    The analgesic effect of electroacupuncture has been used widely to alleviate diverse pains in clinical practice, particularly chronic pain. Following the application of acupuncture, the pain threshold gradually increases in both humans and animals, indicating a delayed development of acupuncture analgesia. Moreover, there is a long-lasting analgesic effect after acupuncture stimulation has been completed[34-35]. Increasing attention has been paid to exploring the physiological and biochemical mechanisms that underlie electroacupuncture analgesia. The complex acupuncture-induced sensations of soreness, numbness, heaviness and distension in the tissue deep beneath the acupoint is essential to acupuncture analgesia[36-37]. The meridians are considered as a network system that transmits and relays electroacupuncture signalsviasensory nerves, through ganglia to the spinal cord and then onward to the brain stem, hypothalamus and higher centers[1]. Sensory nerve activity initiated by acupuncture has an inhibitory modulating effect on higher pain centers in the brain[38].

    Previous studies have shown that the P2X signaling system is associated with various pain mediators including opioid peptides, glutamate, γ-amino butyric acid and substance P in peripheral primary afferent terminals and areas of the central nervous system related to nociception and pain, while it is well documented that electroacupuncture analgesia is a complex physiological process modulated by the same mediators[14]. Therefore, electroacupuncture may influence these transmitters and modulators, which in turn act upon purinergic receptors to alleviate the symptoms of allodynia.

    Although ATP is released during electroacupuncture, extracellular ATP does not reach sufficiently high concentrations to activate P2X3 because of its rapid degradation, which explains the lack of direct pain during electroacupuncture[4]. Therefore, the ATP release induced by electroacupuncture does not activate P2X3 receptors and so does not exert an anti-analgesic effect. However, it has been demonstrated that ATP and adenosine mediate the analgesic role of electroacupuncture[4-14]. In neuropathic pain model, changes in the expression levels of A1 and P2X3 receptors can be observed before and after electroacupuncture treatment, an observation that can be used as a paradigm to explore the importance of the balance between each receptor system in the peripheral and central nervous systems[39-42]. For example, rats with deleted A1 receptors can be used to evaluate whether electroacupuncture treatment alters mechanical and thermal pain thresholds, and the influence of selective A1 and P2X3 receptor antagonists can be explored in rat models of neuropathic pain. Furthermore, new techniques allow the influence of ATP and adenosine upon electroacupuncture to be observed in the central nervous system.

    Adenosine and ATP have been shown to have a wide spectrum of unique pain-relieving properties in various clinical situations. In patients with chronic neuropathic pain, adenosine compounds appear to mediate their analgesic effects through A1 receptor-related modulation of central sensitization at spinal or supraspinal levels. Intravenous adenosine and ATP, intrathecal adenosine, or longer-acting analogs of these molecules may offer novel therapeutic interventions for the treatment of pain in the future[43].

    As described earlier, endogenous and exogenous ATP essentially acts as an algogenic substance. Local increases in ATP concentration may lead to the upregulation of an enzyme cascade that hydrolyzes the ATP and thus reduces its levels[44]. When administered intravenously or intrathecally, however, ATP may act like adenosine at sites in the peripheral and central nervous systems[45]. It has been suggested that in neuropathic pain there are disturbances in the endogenous adenosine system that lead to a deficiency of adenosine in the blood and cerebrospinal fluid, which may explain the potential therapeutic anti-neuropathic effects of adenosine or its analogs[46].

    Although adenosine, following ecto-enzymatic breakdown of ATP, is the predominant presynaptic modulator of neurotransmitter release in the central nervous system, ATP can also act presynaptically[8-46]. Coordinated purinergic regulatory systems in the central nervous system control the behavior of local networks by regulating the balance between the effects of ATP, adenosine and ectonucleotidases on synaptic transmission[8-47]. In addition, electroacupuncture signals combined with suppression of adenosine monophosphate deaminase activity[4], and promotion of the degradation of ATP to adenosine could increase the availability of adenosine in the peripheral and central nervous systems[48-50]. Although generally adenosine is produced by ecto-enzymatic breakdown of released ATP, there may be subpopulations of brain neurons and/or astrocytes that release adenosine directly[8].

    Chronic constriction injury of the sciatic nerve promotes the expression of P2X3 receptors[37]. Furthermore, the elevated expression of the P2X3 receptor is accompanied by an increase in receptor sensitivity. It has been shown that electroacupuncture treatment can decrease the expression of the P2X3 receptors and inhibit the sensitization of the P2X3 receptors in dorsal root ganglion neurons. The analgesic effect of adenosine and ATP is slow in onset and long-lasting. It may be possible to potentiate electroacupuncture treatment to prolong its pain-relieving effects.

    In the peripheral nervous system, electroacupuncture signals decrease the expression of P2X3 receptors, inhibit their activation and suppress their sensitization. On the other hand, electroacupuncture signals promote the degradation of ATP to adenosine, which may accumulate during electroacupuncture treatment and dampen pain in part by the activation of A1 receptors on the sensory afferents in ascending nerve tracts. At the same time, electroacupuncture signals promote trafficking of the A1 receptor to the cell surface and elevate the sensitization of A1 receptors to adenosine. In the central nervous system, electroacupuncture signals may modulate the release of adenosine and ATP, and increase the expression of the A1 receptor. Meanwhile, the activation of A1 receptors by adenosine may be enhanced by electroacupuncture treatment (Figure 1). Furthermore, if the synergistic effect of purinergic A1 and P2X3 receptors in electroacupuncture analgesia can be demonstrated experimentally, this may help to elucidate the possible molecular mechanisms that underpin adenosine and ATP receptors.

    Author contributions: Wen Ren and Wenzhan Tu had full access to the study conception and design, and wrote the manuscript. Ruidong Cheng was responsible for producing the figure. Yaping Du and Songhe Jiang validated the article, and supervised the study. All authors participated in manuscript development, oversight and instruction.

    Conflicts of interest: None declared.

    Author statements: The manuscript is original, has not been submitted to or is not under consideration by another publication, has not been previously published in any language or any form, including electronic, and contains no disclosure of confidential information or authorship/patent application disputations.

    Figure 1 Effect of electroacupuncture (EA) signals on adenosine and adenosine 5’-triphosphate disodium (ATP) receptors within the peripheral nervous system and central nervous system (CNS) in rats with neuropathic pain.

    [1] Zhao ZQ. Neural mechanism underlying acupuncture analgesia. Prog Neurobiol. 2008;85(4):355-375.

    [2] Kim JH, Min BI, Schmidt D, et al. The difference between electroacupuncture only and electroacupuncture with manipulation on analgesia in rats. Neurosci Lett. 2000;279 (3):149-152.

    [3] Lao L, Zhang RX, Zhang G, et al. A parametric study of electroacupuncture on persistent hyperalgesia and Fos protein expression in rats. Brain Res. 2004;1020(1-2):18-29.

    [4] Goldman N, Chen M, Fujita T, et al. Adenosine A1 receptors mediate local anti-nociceptive effects of acupuncture. Nat Neurosci. 2010;13(7):883-888.

    [5] Burnstock G. Historical review: ATP as a neurotransmitter. Trends Pharmacol Sci. 2006;27(3):166-176.

    [6] Burnstock G. Purinergic P2 receptors as targets for novel analgesics. Pharmacol Ther. 2006;110(3):433-454.

    [7] Burnstock G, Verkhratsky A. Evolutionary origins of the purinergic signalling system. Acta Physiol (Oxf). 2009; 195(4):415-447.

    [8] Burnstock G, Krügel U, Abbracchio MP, et al. Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol. 2011;95(2):229-274.

    [9] Burnstock G. Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev. 2007;87(2):659-797.

    [10] Johansson B, Halldner L, Dunwiddie TV, et al. Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc Natl Acad Sci U S A. 2001;98(16):9407-9412.

    [11] Burnstock G. Purinergic P2 receptors as targets for novel analgesics. Pharmacol Ther. 2006;110(3):433-454.

    [12] Ou S, Zhao YD, Xiao Z, et al. Effect of lappaconitine on neuropathic pain mediated by P2X3 receptor in rat dorsal root ganglion. Neurochem Int. 2011;58(5):564-573.

    [13] Zhang A, Xu C, Liang S, et al. Role of sodium ferulate in the nociceptive sensory facilitation of neuropathic pain injury mediated by P2X(3) receptor. Neurochem Int. 2008; 53(6-8):278-282.

    [14] Tu WZ, Cheng RD, Cheng B, et al. Analgesic effect of electroacupuncture on chronic neuropathic pain mediated by P2X3 receptors in rat dorsal root ganglion neurons. Neurochem Int. 2012;60(4):379-386.

    [15] Xiao Z, Ou S, He WJ, et al. Role of midbrain periaqueductal gray P2X3 receptors in electroacupuncture-mediated endogenous pain modulatory systems. Brain Res. 2010;1330:31-44.

    [16] Sawynok J. Adenosine receptor activation and nociception. Eur J Pharmacol. 1998;347(1):1-11.

    [17] Takakura N, Yajima H. Analgesic effect of acupuncture needle penetration: a double-blind crossover study. Open Med. 2009;3(2):e54-61.

    [18] Salter MW, Henry JL. Evidence that adenosine mediates the depression of spinal dorsal horn neurons induced by peripheral vibration in the cat. Neuroscience. 1987;22(2):631-650.

    [19] Fredholm BB, Arslan G, Halldner L, et al. Structure and function of adenosine receptors and their genes. Naunyn Schmiedebergs Arch Pharmacol. 2000;362(4-5):364-374.

    [20] Wang Q, Xiong L, Chen S, et al. Rapid tolerance to focal cerebral ischemia in rats is induced by preconditioning with electroacupuncture: window of protection and the role of adenosine. Neurosci Lett. 2005;381(1-2):158-162.

    [21] Fredholm BB. Adenosine, an endogenous distress signal, modulates tissue damage and repair. Cell Death Differ. 2007;14(7):1315-1323.

    [22] Sebasti?o AM, Ribeiro JA. Fine-tuning neuromodulation by adenosine. Trends Pharmacol Sci. 2000;21(9):341-346.

    [23] Sichardt K, Nieber K. Adenosine A1 receptor: Functional receptor-receptor interactions in the brain. Purinergic Signal. 2007;3(4):285-298.

    [24] Han JS. Acupuncture and endorphins. Neurosci Lett. 2004;361(1-3):258-261.

    [25] Huang C, Wang Y, Han JS, et al. Characteristics of electroacupuncture-induced analgesia in mice: variation with strain, frequency, intensity and opioid involvement. Brain Res. 2002;945(1):20-25.

    [26] Scholz J, Woolf CJ. Can we conquer pain? Nat Neurosci. 2002;5 Suppl:1062-1067.

    [27] Zimmermann M. Pathobiology of neuropathic pain. Eur J Pharmacol. 2001;429(1-3):23-37.

    [28] Gwak YS, Hulsebosch CE. Remote astrocytic and microglial activation modulates neuronal hyperexcitability and below-level neuropathic pain after spinal injury in rat. Neuroscience. 2009;161(3):895-903.

    [29] Trang T, Beggs S, Salter MW. ATP receptors gate microglia signaling in neuropathic pain. Exp Neurol. 2012; 234(2):354-361.

    [30] Costigan M, Scholz J, Woolf CJ. Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci. 2009;32:1-32.

    [31] Inoue K, Tsuda M. Purinergic systems, neuropathic pain and the role of microglia. Exp Neurol. 2012;234(2):293-301.

    [32] Tsuda M, Tozaki-Saitoh H, Inoue K. Purinergic system, microglia and neuropathic pain. Curr Opin Pharmacol. 2012;12(1):74-79.

    [33] Kang JM, Park HJ, Choi YG, et al. Acupuncture inhibits microglial activation and inflammatory events in the MPTP-induced mouse model. Brain Res. 2007;1131(1):211-219.

    [34] Cui KM, Li WM, Gao X, et al. Electro-acupuncture relieves chronic visceral hyperalgesia in rats. Neurosci Lett. 2005; 376(1):20-23.

    [35] Han JS, Zhou Z, Xuan Y. Acupuncture has an analgesic effect in rabbits. Pain. 1983;15(1-4):83-91.

    [36] Dibaj P, Steffens H, Nadrigny F, et al. Purinergic activation of dorsal root ganglion neurones in vivo. Neurosci Lett. 2011;487(1):107-109.

    [37] Zhuo M. Neuronal mechanism for neuropathic pain. Mol Pain. 2007;3:14.

    [38] Burnstock G. Acupuncture: a novel hypothesis for the involvement of purinergic signalling. Med Hypotheses. 2009;73(4):470-472.

    [39] Zylka MJ. Needling adenosine receptors for pain relief. Nat Neurosci. 2010;13(7):783-784.

    [40] Zylka MJ. Pain-relieving prospects for adenosine receptors and ectonucleotidases. Trends Mol Med. 2011; 17(4):188-196.

    [41] Wirkner K, Sperlagh B, Illes P. P2X3 receptor involvement in pain states. Mol Neurobiol. 2007;36(2):165-183.

    [42] Gu JG, Heft MW. P2X receptor-mediated purinergic sensory pathways to the spinal cord dorsal horn. Purinergic Signal. 2004;1(1):11-16.

    [43] Hayashida M, Fukuda K, Fukunaga A. Clinical application of adenosine and ATP for pain control. J Anesth. 2005; 19(3):225-235.

    [44] Braun N, Zhu Y, Krieglstein J, et al. Upregulation of the enzyme chain hydrolyzing extracellular ATP after transient forebrain ischemia in the rat. J Neurosci. 1998;18(13):4891-4900.

    [45] Hayashida M, Fukuda K, Fukunaga A, et al. Analgesic effect of intravenous ATP on postherpetic neuralgia in comparison with responses to intravenous ketamine and lidocaine. J Anesth. 2005;19(1):31-35.

    [46] Cunha RA, Ribeiro JA. ATP as a presynaptic modulator. Life Sci. 2000;68(2):119-137.

    [47] Matsuoka I, Ohkubo S. ATP- and adenosine-mediated signaling in the central nervous system: adenosine receptor activation by ATP through rapid and localized generation of adenosine by ecto-nucleotidases. J Pharmacol Sci. 2004;94(2):95-99.

    [48] Inoue K. P2 receptors and chronic pain. Purinergic Signal. 2007;3(1-2):135-144.

    [49] Jarvis MF, Burgard EC, McGaraughty S, et al. A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc Natl Acad Sci U S A. 2002;99(26):17179-17184.

    [50] Burrell HE, Wlodarski B, Foster BJ, et al. Human keratinocytes release ATP and utilize three mechanisms for nucleotide interconversion at the cell surface. J Biol Chem. 2005;280(33):29667-29676.

    10.3969/j.issn.1673-5374.2012.33.007 [http://www.crter.org/nrr-2012-qkquanwen.html]

    Ren W, Tu WZ, Jiang SH, Cheng RD, Du YP. Electroacupuncture improves neuropathic pain: adenosine, adenosine 5’-triphosphate disodium and their receptors perhaps change simultaneously. Neural Regen Res. 2012;7(33):2618-2623.

    Wen Ren☆, M.D., Institute of Social & Family Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China

    Wen Ren and Wenzhan Tu contributed equally to this article.

    Yaping Du, Ph.D., Professor, Institute of Social & Family Medicine, Zhejiang University, Hangzhou 310058, Zhejiang Province, China

    duyp@zju.edu.cn

    2012-08-20

    2012-10-15

    (N20120615005/YJ)

    We thank Bo Cheng from the Department of Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital of Wenzhou Medical College for his advice in this paper.

    (Edited by Bai WZ, Song XG/Qiu Y/Wang L)

    天天躁夜夜躁狠狠躁躁| 欧美亚洲日本最大视频资源| www国产在线视频色| 亚洲一码二码三码区别大吗| 午夜福利一区二区在线看| 白带黄色成豆腐渣| 午夜精品久久久久久毛片777| 一进一出好大好爽视频| 成人av一区二区三区在线看| 黑人欧美特级aaaaaa片| 满18在线观看网站| 成人三级黄色视频| 一本一本综合久久| 美女高潮到喷水免费观看| 国产精品久久久av美女十八| 国产午夜福利久久久久久| 一本大道久久a久久精品| 亚洲第一电影网av| 久久精品成人免费网站| 亚洲,欧美精品.| 国内少妇人妻偷人精品xxx网站 | 久久久久久久精品吃奶| 久久狼人影院| 搡老熟女国产l中国老女人| 在线播放国产精品三级| 久久久久久国产a免费观看| 亚洲一区中文字幕在线| 国产激情偷乱视频一区二区| 欧美乱妇无乱码| 日韩欧美免费精品| 欧美黑人欧美精品刺激| 欧美在线黄色| 在线观看一区二区三区| 久久亚洲精品不卡| 日韩欧美一区视频在线观看| 美女大奶头视频| 欧美精品啪啪一区二区三区| 欧美另类亚洲清纯唯美| 后天国语完整版免费观看| 女性生殖器流出的白浆| 国产91精品成人一区二区三区| 亚洲自拍偷在线| 好看av亚洲va欧美ⅴa在| 男人操女人黄网站| 亚洲精品中文字幕一二三四区| 欧美黑人精品巨大| 国产精品影院久久| 久久精品亚洲精品国产色婷小说| 亚洲欧洲精品一区二区精品久久久| 国产97色在线日韩免费| 亚洲成人久久性| 女性被躁到高潮视频| 怎么达到女性高潮| 午夜久久久在线观看| 欧美丝袜亚洲另类 | 无限看片的www在线观看| 日韩大尺度精品在线看网址| 午夜久久久在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 天堂动漫精品| www日本黄色视频网| 97碰自拍视频| 亚洲五月色婷婷综合| 观看免费一级毛片| 欧美日韩亚洲国产一区二区在线观看| 久久中文字幕人妻熟女| 亚洲av美国av| 久久精品夜夜夜夜夜久久蜜豆 | 免费在线观看成人毛片| 中文字幕另类日韩欧美亚洲嫩草| 淫秽高清视频在线观看| 欧美激情极品国产一区二区三区| 国产蜜桃级精品一区二区三区| 美女大奶头视频| 日韩成人在线观看一区二区三区| 91字幕亚洲| 变态另类成人亚洲欧美熟女| 又黄又爽又免费观看的视频| 中文资源天堂在线| 黑人操中国人逼视频| 啦啦啦韩国在线观看视频| 一级毛片女人18水好多| 精品第一国产精品| 熟女少妇亚洲综合色aaa.| 97超级碰碰碰精品色视频在线观看| 国产精品美女特级片免费视频播放器 | 一级毛片高清免费大全| 亚洲国产精品久久男人天堂| 熟女少妇亚洲综合色aaa.| 91麻豆av在线| 在线av久久热| 最新在线观看一区二区三区| 中文字幕精品亚洲无线码一区 | 91av网站免费观看| 91成年电影在线观看| 亚洲av日韩精品久久久久久密| 亚洲精品美女久久久久99蜜臀| 国产私拍福利视频在线观看| 一区二区日韩欧美中文字幕| 国产又色又爽无遮挡免费看| 韩国av一区二区三区四区| 2021天堂中文幕一二区在线观 | 精品国内亚洲2022精品成人| 国产一卡二卡三卡精品| 无人区码免费观看不卡| 日韩 欧美 亚洲 中文字幕| svipshipincom国产片| 国产91精品成人一区二区三区| 人人妻人人看人人澡| 99精品欧美一区二区三区四区| 搡老熟女国产l中国老女人| 国产黄色小视频在线观看| 久久久久久九九精品二区国产 | 久久热在线av| 搡老妇女老女人老熟妇| 黄色成人免费大全| 桃红色精品国产亚洲av| 久久国产精品男人的天堂亚洲| 一区二区三区激情视频| 一级毛片高清免费大全| 欧美国产日韩亚洲一区| 成人午夜高清在线视频 | 日韩 欧美 亚洲 中文字幕| 色播在线永久视频| 高清在线国产一区| 两性夫妻黄色片| 欧美不卡视频在线免费观看 | 国产主播在线观看一区二区| 男人舔女人的私密视频| 日本熟妇午夜| 亚洲男人的天堂狠狠| 久久久国产精品麻豆| 久久久国产欧美日韩av| 欧美成人午夜精品| 亚洲国产欧美网| √禁漫天堂资源中文www| av福利片在线| 男女视频在线观看网站免费 | 国产黄色小视频在线观看| 欧美黄色片欧美黄色片| 男女午夜视频在线观看| 身体一侧抽搐| 可以在线观看毛片的网站| 正在播放国产对白刺激| 制服诱惑二区| 母亲3免费完整高清在线观看| 一个人观看的视频www高清免费观看 | 亚洲熟妇熟女久久| 久久香蕉精品热| 制服人妻中文乱码| 最近在线观看免费完整版| 露出奶头的视频| 国产av不卡久久| 久久精品国产清高在天天线| 老司机在亚洲福利影院| 搞女人的毛片| 欧美久久黑人一区二区| 69av精品久久久久久| 欧美日韩中文字幕国产精品一区二区三区| 久久婷婷人人爽人人干人人爱| 伊人久久大香线蕉亚洲五| 亚洲全国av大片| 不卡一级毛片| 久久香蕉精品热| 国产午夜福利久久久久久| 国产成人av激情在线播放| 欧美中文日本在线观看视频| 叶爱在线成人免费视频播放| 成人亚洲精品一区在线观看| 日韩欧美三级三区| 日韩成人在线观看一区二区三区| 此物有八面人人有两片| 亚洲中文字幕一区二区三区有码在线看 | 神马国产精品三级电影在线观看 | 男女床上黄色一级片免费看| 午夜a级毛片| 久久欧美精品欧美久久欧美| 国产亚洲精品综合一区在线观看 | 精品欧美一区二区三区在线| 在线观看免费午夜福利视频| 满18在线观看网站| 国产av不卡久久| www.999成人在线观看| 亚洲国产精品sss在线观看| 12—13女人毛片做爰片一| 少妇 在线观看| 老司机在亚洲福利影院| 成人国产综合亚洲| 午夜激情av网站| 老熟妇乱子伦视频在线观看| 精品福利观看| 在线观看66精品国产| 侵犯人妻中文字幕一二三四区| 夜夜看夜夜爽夜夜摸| ponron亚洲| 久久久久亚洲av毛片大全| 国产男靠女视频免费网站| 波多野结衣高清无吗| 天天躁狠狠躁夜夜躁狠狠躁| 久久久国产欧美日韩av| 午夜福利欧美成人| 少妇被粗大的猛进出69影院| 一区二区三区高清视频在线| 亚洲 欧美 日韩 在线 免费| 丝袜在线中文字幕| 亚洲av成人不卡在线观看播放网| 国产午夜福利久久久久久| 久热爱精品视频在线9| 亚洲国产欧美日韩在线播放| 一级毛片精品| 男女那种视频在线观看| 国产激情欧美一区二区| 黄色 视频免费看| 国产欧美日韩一区二区三| 亚洲欧美一区二区三区黑人| 国产成人欧美在线观看| 中文资源天堂在线| 精品电影一区二区在线| 18禁黄网站禁片免费观看直播| 俄罗斯特黄特色一大片| 97超级碰碰碰精品色视频在线观看| 窝窝影院91人妻| 亚洲 国产 在线| 欧美黄色片欧美黄色片| 十八禁人妻一区二区| www.熟女人妻精品国产| 国产精品乱码一区二三区的特点| 亚洲美女黄片视频| 国内毛片毛片毛片毛片毛片| 国产亚洲欧美98| 国产一级毛片七仙女欲春2 | 美女高潮喷水抽搐中文字幕| 成人免费观看视频高清| 精品久久久久久久末码| 欧美日韩乱码在线| 国产精华一区二区三区| 一边摸一边抽搐一进一小说| 久久午夜亚洲精品久久| 可以免费在线观看a视频的电影网站| 91麻豆av在线| 精品久久久久久久久久久久久 | 老鸭窝网址在线观看| 两个人视频免费观看高清| 91国产中文字幕| 制服诱惑二区| 色av中文字幕| 亚洲男人的天堂狠狠| 亚洲色图av天堂| 久久 成人 亚洲| 亚洲av中文字字幕乱码综合 | 亚洲人成网站高清观看| 中文字幕久久专区| 国产精品乱码一区二三区的特点| 中文字幕精品免费在线观看视频| 777久久人妻少妇嫩草av网站| 国产爱豆传媒在线观看 | a级毛片在线看网站| 高清毛片免费观看视频网站| 亚洲狠狠婷婷综合久久图片| 最近最新中文字幕大全免费视频| 丝袜人妻中文字幕| 国产极品粉嫩免费观看在线| 午夜久久久在线观看| 国产av一区在线观看免费| 中文字幕最新亚洲高清| 麻豆一二三区av精品| 国语自产精品视频在线第100页| 色哟哟哟哟哟哟| 波多野结衣av一区二区av| 国产又色又爽无遮挡免费看| 国产黄a三级三级三级人| 久久久久久久精品吃奶| 男女之事视频高清在线观看| bbb黄色大片| 欧美丝袜亚洲另类 | 国产区一区二久久| 男人操女人黄网站| 麻豆成人午夜福利视频| 99久久国产精品久久久| 久久中文看片网| 18禁国产床啪视频网站| 精品高清国产在线一区| 91国产中文字幕| 国产精品久久视频播放| 亚洲黑人精品在线| 午夜免费激情av| 这个男人来自地球电影免费观看| 99久久精品国产亚洲精品| 亚洲成av人片免费观看| 欧美成狂野欧美在线观看| 久久精品国产99精品国产亚洲性色| 别揉我奶头~嗯~啊~动态视频| 人成视频在线观看免费观看| 高清在线国产一区| 国产乱人伦免费视频| 日韩欧美一区二区三区在线观看| 国产精品久久久久久人妻精品电影| 国产精品永久免费网站| 亚洲成人免费电影在线观看| 国产精品二区激情视频| 禁无遮挡网站| 怎么达到女性高潮| 午夜福利在线在线| 黑丝袜美女国产一区| 精品久久蜜臀av无| 亚洲午夜精品一区,二区,三区| 丰满的人妻完整版| 亚洲精华国产精华精| 级片在线观看| 国产亚洲精品久久久久久毛片| 99热只有精品国产| 两性夫妻黄色片| 看黄色毛片网站| 91成人精品电影| 老鸭窝网址在线观看| 日本一本二区三区精品| 国产99白浆流出| 视频区欧美日本亚洲| 久久久久国产一级毛片高清牌| 精品福利观看| 丰满的人妻完整版| 在线观看日韩欧美| 在线观看舔阴道视频| 日韩成人在线观看一区二区三区| 啪啪无遮挡十八禁网站| 色尼玛亚洲综合影院| www.自偷自拍.com| 日本免费a在线| 成人18禁在线播放| 国产精品综合久久久久久久免费| 亚洲精品美女久久av网站| 午夜激情福利司机影院| 99国产精品一区二区三区| 久热这里只有精品99| 亚洲一卡2卡3卡4卡5卡精品中文| 9191精品国产免费久久| 美女午夜性视频免费| 成年人黄色毛片网站| 一区二区三区国产精品乱码| 无遮挡黄片免费观看| 一边摸一边抽搐一进一小说| 窝窝影院91人妻| 精品国产一区二区三区四区第35| 久久九九热精品免费| av电影中文网址| 亚洲精品久久成人aⅴ小说| 久9热在线精品视频| 久久国产亚洲av麻豆专区| 女性被躁到高潮视频| 亚洲成人国产一区在线观看| av超薄肉色丝袜交足视频| 熟女少妇亚洲综合色aaa.| 精品国产亚洲在线| 亚洲狠狠婷婷综合久久图片| 国内久久婷婷六月综合欲色啪| 午夜福利高清视频| 日韩av在线大香蕉| 国产又黄又爽又无遮挡在线| 欧美亚洲日本最大视频资源| 国产伦人伦偷精品视频| 久久久久精品国产欧美久久久| 国产高清视频在线播放一区| 国产精品av久久久久免费| 日韩欧美在线二视频| 18禁观看日本| 人成视频在线观看免费观看| 久久青草综合色| 成人三级黄色视频| 一本一本综合久久| 美国免费a级毛片| 久久中文看片网| 国产精品亚洲av一区麻豆| 久久久久国产精品人妻aⅴ院| 亚洲精品美女久久av网站| 成人三级做爰电影| 成人av一区二区三区在线看| 国产精品精品国产色婷婷| 在线播放国产精品三级| 999久久久国产精品视频| 国产成人精品无人区| 久久热在线av| 亚洲国产毛片av蜜桃av| 禁无遮挡网站| 天天一区二区日本电影三级| 丰满的人妻完整版| 久久这里只有精品19| 又紧又爽又黄一区二区| 免费高清在线观看日韩| 男女那种视频在线观看| 亚洲自拍偷在线| 国产av又大| 国产精品乱码一区二三区的特点| 深夜精品福利| 成年女人毛片免费观看观看9| 99久久久亚洲精品蜜臀av| 国产精品久久久久久人妻精品电影| 精品国产乱子伦一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 久久香蕉激情| 曰老女人黄片| 天天添夜夜摸| 精品国产乱子伦一区二区三区| 在线观看一区二区三区| 国产精品美女特级片免费视频播放器 | 亚洲 欧美一区二区三区| 女人高潮潮喷娇喘18禁视频| 中国美女看黄片| 一级毛片高清免费大全| 草草在线视频免费看| 日本撒尿小便嘘嘘汇集6| 中文亚洲av片在线观看爽| 日日干狠狠操夜夜爽| 一级毛片高清免费大全| 亚洲激情在线av| 性欧美人与动物交配| 国产高清视频在线播放一区| 亚洲av成人不卡在线观看播放网| 国产精品av久久久久免费| 黄片播放在线免费| 国产主播在线观看一区二区| av片东京热男人的天堂| 日本成人三级电影网站| av在线天堂中文字幕| 国产精品亚洲av一区麻豆| 亚洲 欧美 日韩 在线 免费| 亚洲av熟女| 观看免费一级毛片| 午夜福利18| 日韩大码丰满熟妇| 亚洲专区字幕在线| 18禁国产床啪视频网站| 久久久久国产一级毛片高清牌| 伊人久久大香线蕉亚洲五| 青草久久国产| 天天一区二区日本电影三级| 久久中文看片网| aaaaa片日本免费| 熟女电影av网| 亚洲欧美一区二区三区黑人| 精品高清国产在线一区| 亚洲精品色激情综合| 色av中文字幕| 99国产极品粉嫩在线观看| 一区二区三区精品91| 免费在线观看视频国产中文字幕亚洲| 亚洲熟妇熟女久久| 日本三级黄在线观看| 在线视频色国产色| 别揉我奶头~嗯~啊~动态视频| 白带黄色成豆腐渣| 黄频高清免费视频| 久久久久久久久中文| 长腿黑丝高跟| 午夜久久久久精精品| 久久狼人影院| 十分钟在线观看高清视频www| 午夜福利高清视频| 欧美+亚洲+日韩+国产| 丝袜美腿诱惑在线| 亚洲欧美日韩高清在线视频| avwww免费| 国内精品久久久久久久电影| 麻豆久久精品国产亚洲av| 久久精品成人免费网站| 两性午夜刺激爽爽歪歪视频在线观看 | 99国产精品99久久久久| 宅男免费午夜| 熟女少妇亚洲综合色aaa.| 亚洲欧美日韩无卡精品| 午夜激情福利司机影院| 悠悠久久av| 久久九九热精品免费| 国产视频一区二区在线看| 国产高清有码在线观看视频 | 人妻久久中文字幕网| 精品久久久久久,| 99久久国产精品久久久| 麻豆久久精品国产亚洲av| 丝袜人妻中文字幕| 老司机在亚洲福利影院| 欧美日韩乱码在线| 搡老熟女国产l中国老女人| videosex国产| 中文字幕av电影在线播放| 波多野结衣高清作品| 色综合欧美亚洲国产小说| 亚洲色图av天堂| 淫秽高清视频在线观看| 国产在线精品亚洲第一网站| 亚洲专区中文字幕在线| 亚洲五月天丁香| 色婷婷久久久亚洲欧美| 欧美激情高清一区二区三区| 窝窝影院91人妻| 久久中文看片网| 午夜成年电影在线免费观看| 国产在线观看jvid| 国产国语露脸激情在线看| 黑人巨大精品欧美一区二区mp4| 精品免费久久久久久久清纯| 在线国产一区二区在线| 国产亚洲欧美在线一区二区| 免费一级毛片在线播放高清视频| 亚洲成人国产一区在线观看| 日本三级黄在线观看| 久久精品夜夜夜夜夜久久蜜豆 | 亚洲国产精品成人综合色| 白带黄色成豆腐渣| 欧美zozozo另类| 亚洲va日本ⅴa欧美va伊人久久| 90打野战视频偷拍视频| 午夜日韩欧美国产| 欧美性猛交黑人性爽| 中文字幕av电影在线播放| 国产一区二区激情短视频| 午夜免费鲁丝| 黄片小视频在线播放| 日韩欧美国产在线观看| 91麻豆精品激情在线观看国产| 成人18禁在线播放| 男女做爰动态图高潮gif福利片| 亚洲国产中文字幕在线视频| 啦啦啦免费观看视频1| 亚洲第一欧美日韩一区二区三区| 亚洲成人精品中文字幕电影| 可以免费在线观看a视频的电影网站| 色在线成人网| 久久精品国产99精品国产亚洲性色| 色在线成人网| 可以免费在线观看a视频的电影网站| 亚洲国产精品sss在线观看| 国产成人欧美在线观看| 成人三级黄色视频| 91麻豆av在线| 久久亚洲精品不卡| 国产精品 欧美亚洲| 久久天堂一区二区三区四区| 午夜久久久久精精品| 少妇被粗大的猛进出69影院| 黄色丝袜av网址大全| 午夜免费观看网址| 最近最新中文字幕大全电影3 | 99精品久久久久人妻精品| 老熟妇仑乱视频hdxx| 18禁黄网站禁片午夜丰满| 日本五十路高清| 亚洲欧美精品综合久久99| avwww免费| 正在播放国产对白刺激| 日韩欧美三级三区| 天堂影院成人在线观看| 1024香蕉在线观看| 黄色a级毛片大全视频| 国产一区二区在线av高清观看| 国产精品电影一区二区三区| 久久久久久久午夜电影| 国产亚洲精品av在线| 黄频高清免费视频| 亚洲色图av天堂| 嫁个100分男人电影在线观看| 麻豆久久精品国产亚洲av| 国产成人av教育| 久久久国产欧美日韩av| 色av中文字幕| 在线永久观看黄色视频| 最新美女视频免费是黄的| 波多野结衣高清作品| 波多野结衣巨乳人妻| 亚洲九九香蕉| 91在线观看av| 久久精品国产亚洲av高清一级| 美女国产高潮福利片在线看| 免费看十八禁软件| 黄色 视频免费看| 女警被强在线播放| 欧美三级亚洲精品| 久久性视频一级片| 老熟妇仑乱视频hdxx| 日韩一卡2卡3卡4卡2021年| 久久国产精品男人的天堂亚洲| www.熟女人妻精品国产| 十八禁网站免费在线| 看黄色毛片网站| 亚洲七黄色美女视频| 亚洲专区国产一区二区| 91国产中文字幕| 欧美+亚洲+日韩+国产| www国产在线视频色| 久久亚洲精品不卡| 国产高清videossex| 欧美黄色片欧美黄色片| 久久国产亚洲av麻豆专区| 少妇裸体淫交视频免费看高清 | 精品第一国产精品| 一二三四社区在线视频社区8| 一级毛片高清免费大全| 国产伦人伦偷精品视频| 欧美激情久久久久久爽电影| 这个男人来自地球电影免费观看| 少妇粗大呻吟视频| 国产精品亚洲av一区麻豆| 久久亚洲精品不卡| 国产成人av激情在线播放| 国产一区二区三区在线臀色熟女| 老司机深夜福利视频在线观看| 色精品久久人妻99蜜桃| 每晚都被弄得嗷嗷叫到高潮| 很黄的视频免费| 在线观看一区二区三区| 观看免费一级毛片| 成人免费观看视频高清| 中文资源天堂在线| 欧美黑人巨大hd| 动漫黄色视频在线观看| 中文字幕精品亚洲无线码一区 |