• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Underlying mechanism of protection from hypoxic injury seen with n-butanol extract of Potentilla anserine L. in hippocampal neurons***☆

    2012-01-04 09:58:20XiaojingQinLingzhiLiQiLvBaoguoYuShuwangYangTaoHeYongliangZhang

    Xiaojing Qin, Lingzhi Li, Qi Lv, Baoguo Yu, Shuwang Yang, Tao He, Yongliang Zhang,

    1 Department of Pathology, Affiliated Hospital of Logistics University of Chinese People’s Armed Police Forces, Tianjin 300162, China

    2 Department of Medicinal Chemistry, Logistics University of Chinese People’s Armed Police Forces, Tianjin 300162, China

    3 Tianjin Key Laboratory of Occupational and Environmental Hazard Biomarkers, Tianjin 300162, China

    4 Department of Central Laboratory, Logistics University of Chinese People’s Armed Police Forces, Tianjin 300162, China

    5 Department of Rescue Medicine, Logistics University of Chinese People’s Armed Police Forces, Tianjin 300162, China

    6 Department of Postgraduate, Logistics University of Chinese People’s Armed Police Forces, Tianjin 300162, China

    7 Ministry of Scientific Research, Logistics University of Chinese People’s Armed Police Forces, Tianjin 300162, China

    Underlying mechanism of protection from hypoxic injury seen with n-butanol extract ofPotentilla anserineL. in hippocampal neurons***☆

    Xiaojing Qin1, Lingzhi Li2,3, Qi Lv4, Baoguo Yu5, Shuwang Yang6, Tao He1, Yongliang Zhang3,7

    1Department of Pathology, Affiliated Hospital of Logistics University of Chinese People’s Armed Police Forces, Tianjin 300162, China

    2Department of Medicinal Chemistry, Logistics University of Chinese People’s Armed Police Forces, Tianjin 300162, China

    3Tianjin Key Laboratory of Occupational and Environmental Hazard Biomarkers, Tianjin 300162, China

    4Department of Central Laboratory, Logistics University of Chinese People’s Armed Police Forces, Tianjin 300162, China

    5Department of Rescue Medicine, Logistics University of Chinese People’s Armed Police Forces, Tianjin 300162, China

    6Department of Postgraduate, Logistics University of Chinese People’s Armed Police Forces, Tianjin 300162, China

    7Ministry of Scientific Research, Logistics University of Chinese People’s Armed Police Forces, Tianjin 300162, China

    The alcohol and n-butanol extract ofPotentilla anserineL. significantly protects myocardium from acute ischemic injury. However, its effects on rat hippocampal neurons and the mechanism of protection remain unclear. In this study, primary cultured hippocampal neurons from neonatal rats were incubated in 95% N2and 5% CO2for 4 hours. Results indicated that hypoxic injury decreased the viability of neurons, increased the expression levels of caspase-9 and caspase-3 mRNA, as well as cytochrome c, Caspase-9, and Caspase-3 protein. Pretreatment with 0.25, 0.062 5, 0.015 6 mg/mL n-butanol extract ofPotentilla anserineL. led to a significant increase in cell viability. Expression levels of caspase-9 and caspase-3 mRNA, as well as cytochrome c, Caspase-9, and Caspase-3 protein, were attenuated. The neuroprotective effect of n-butanol extract ofPotentilla anserineL. was equivalent to tanshinone IIA. Our data suggest that the n-butanol extract ofPotentilla anserineL.could protect primary hippocampal neurons from hypoxic injury by deactivating mitochondrial cell death.

    n-butanol extract ofPotentilla anserineL.; neuron; hypoxia; mitochondria injury; cytochrome c; caspase; neural regeneration

    Research Highlights

    (1) 0.25, 0.062 5, and 0.015 6 mg/mL n-butanol extract ofPotentilla anserineL. increased the viability ofin vitrohypoxic hippocampal neurons from neonatal rats.

    (2) 0.25, 0.062 5, and 0.015 6 mg/mL n-butanol extract ofPotentilla anserineL. attenuated the expression of caspase-9 and caspase-3 in hypoxic hippocampal neurons.

    (3) 0.25, 0.062 5, and 0.015 6 mg/mL n-butanol extract ofPotentilla anserineL. decreased the release of cytochrome c in hypoxic hippocampal neurons.

    Abbreviations

    MAP2, microtubule-associated protein 2; MPTP, mitochondrial permeability transition pore

    lNTRODUCTlON

    Neurons die from hypoxia or hypoxia-ischemia much faster than other cell types[1]. Extensive studies have indicated that mitochondrial injury is the central cause of hypoxic brain injury[2-4]. After hypoxia, cytochrome c in the mitochondria is released, and results in the opening of the mitochondrial permeability transition pore[5-6], thus triggering the caspase cascade. Caspase-9 is the major initiator caspase of the intrinsic mitochondrial apoptotic pathway[7-8]. Caspase-3 acts as the final executor of cell death and is also activated in hypoxic neurons[9-10]. Caspase inhibitors can reduce hypoxia or hypoxia-ischemia induced neuronal death[11-13].

    Potentilla anserinaL., commonly called the monorchid herminium herb, belongs to the Rosaceae family and contains polysaccharides, amylum, fatty acids, essential amino acids, and vitamins.Potentilla anserinaL. possesses a high medical and nutritional value, and has been used as a crude drug and a Chinese herbal medicine in Tibet, China. Recent studies have shown thatPotentilla anserinaL. strengthens immunity, exhibits anti-oxidative activity, and anti-hypoxic properties[14-16]. A previous study showed that the alcohol extract ofPotentilla anserinaL. could protect myocardium cells from ischemic or ischemic/reperfusion injuryin vitroandin vivo[17-19]. In particular its n-butanol extract, an effective part of the alcohol extract, could remarkably protect the myocardium from acute ischemic injury[20-21].

    However, its effects on rat hippocampal neurons and the mechanism of this protection are not yet well understood. In the present study, we investigated the effects of the n-butanol extract ofPotentilla anserinaL. on hypoxic injury induced by low oxygen density in primary hippocampal neurons. The effects ofPotentilla anserinaL. were then compared with tanshinone IIA, which has been shown to be neuroprotective[22-27].

    RESULTS

    Morphology of primary cultured hippocampal neurons

    After 7 days in culture, neurons were plump, strongly refractory, displayed central cell nuclei and nucleoli were clearly visible. Neuronal processes were interwoven into a thick network (Figure 1A).

    Microtubule-associated protein 2 (MAP2) is an abundant neuronal cytoskeletal protein that binds to tubulin and stabilizes microtubules[28]. MAP2 is essential for the development and maintenance of neuronal morphology[29]. MAP2 was abundantly expressed in hippocampal neurons, and seldom expressed in gliocytes. The purity of primary cultured hippocampal neurons was identified by immunocytochemistry using MAP2. Results showed that the proportion of positively stained cells reached 75.2 ± 8.1% (Figure 1B). These cells were then used for subsequent research.

    Figure 1 Effects of the n-butanol fraction of Potentilla anserine L. on the viability of hypoxic hippocampal neurons. Primary cultured hippocampal neurons were pre-incubated with different concentrations of Potentilla anserine L. (0, 0.25, 0.062 5, 0.015 6 mg/mL) for 24 hours and then exposed to 0.1% desired oxygen concentration for 4 hours. The neurons in the control group were not treated with Potentilla anserine L. and hypoxia.

    Pretreatment with n-butanol extract of Potentilla anserine L. significantly increased cell viability in hypoxic hippocampal neurons

    Cell viability was verified by MTT assay. Hypoxia led to a decrease in neuron cell viability (P< 0.01,versusthe control group). Decreased neuronal viability was suppressed by pretreatment with the n-butanol extract ofPotentilla anserineL. (P< 0.01,versusthe model group). The 0.25 mg/mL dosage group showed increasing viability compared with 0.062 5 mg/mL dosage groups (P< 0.05). Moreover, pretreatment with tanshinone IIA could also increase the viability of hippocampal neurons under hypoxia (P< 0.01,versusthe model group; Figure 1C).

    n-butanol extract of Potentilla anserine L. significantly decreased the release of cytochrome c and attenuated the expression of caspase-9 and caspase-3 in hypoxic hippocampal neurons

    Reverse transcription-PCR results showed that the expression levels of caspase-9 and caspase-3 mRNA were very low in the control group. Hypoxia strongly induced the activation of caspase-9 and caspase-3 mRNA in hippocampal neurons (P< 0.01,versusthe control group). Each dosage ofPotentilla anserineL. extract could significantly reduce the expression of caspase-9 and caspase-3 mRNA in hypoxic-neurons (P< 0.01,versusthe model group; Figure 2). pretreatment with tanshinone did not decrease the expression of cytochrome c (P< 0.01; Figure 3).

    Figure 2 Change in caspase-9 (A) and caspase-3 (B) mRNA levels in hippocampal neurons.

    Western blot revealed that protein expression levels of cytochrome c, Caspase-9 and Caspase-3 were very low in the control group. Hypoxia strongly induced the expressions of cytochrome c, Caspase-9 and Caspase-3 in hippocampal neurons (P< 0.01,versusthe control group). Pretreatment withPotentilla anserineL. extract or tanshinone IIA could significantly decrease the expression of Caspase-9 and Caspase-3 (P< 0.01 or 0.05,versusthe model group; Figure 3). However,

    Figure 3 Change in cytochrome c, Caspase-9 and Caspase-3 expression in hippocampal neurons analyzed using western blot assay.

    DlSCUSSlON

    Mitochondrial injury is a major contributor to hypoxic brain injury as it connects upstream and downstream signal transmission. After hypoxia, electron transfer in the mitochondrial respiratory chain is hindered and energy metabolism is obstructed. Cytochrome c in the mitochondria is released and reactive oxygen species are generated, resulting in the opening of the mitochondrial permeability transition pore. The released cytochrome c from the mitochondria induces cell death in two ways. First, it triggers the caspase cascade.

    Caspases, cysteine-dependent protein kinases, are the most important enzymes in cell death. Cytochrome c can associate with apoptosis protease activating factor and pro-caspase 9, and triggers the activation of caspase-3 and apoptosis[30-31]. Caspase-3 can specifically cleave Bcl-2, resulting in the loss of inhibitory effect on mitochondrial permeability transition pore, thus releasing more cytochrome c[32-34]. Second, it interrupts the electron transport chain, and thereby inhibits oxidative phosphorylation; this generates oxygen free radicals and results in a lack of ATP and eventually cell death. The caspase-dependent pathway is the faster process leading to cell death. In addition, hypoxic stress also leads to activation of caspase-8, which elicits the release of cytochrome c into the cytosol and activates the release of other caspases. This process initiates internucleosomal DNA fragmentation and results in apoptosis[35-36].

    Mitochondrial cell death can occur due to apoptosis and necrosis. Hypoxic/ischemic brain injury induces cell death in neurons by apoptotic and necrotic mechanisms[37].

    Apoptosis and necrosis are initially identified by two different modes, based on the morphological criteria. Caspases are essential for the execution steps in apoptosis[38]. Caspase-9 is the major initiator caspase of the intrinsic mitochondrial apoptotic pathway, and its inhibition in the brain by LEHD-CHO (Caspase-9 inhibitor) has been demonstrated to have a neuroprotective effect. Caspase-9 is important in the pathophysiology of hypoxic/ischemic neuronal destruction in newborn rats[39].

    Caspase-3 acts as the final executor of cell death and is also activated in hypoxic neurons. Caspases may also be expressed in the context of necrotic cell death[40]. Necrosis is generally considered to occur because of an external stimulus (changes in ion flux), but recent studies have shown that neuronal death after oxygen ion flux is far from passive cell swelling and dissolution, but requires an orderly activated cell death program. Necrosis may be triggered by mitochondrial dysfunction, subsequently leading to the release of cytochrome c and the activation of the caspase system. This means that apoptosis and necrosis have the same final pathway. This involves mitochondrial dysfunction caused by cytochrome c release followed by the activation of Caspase-9 and Caspase-3 by cytochrome c, along with apoptosis protease activating factor-1. This activation is followed by hydrolysis, and finally the activation of the caspase kinase system occurs. However, in the process of apoptosis, gene expression and protein synthesis requires a large of amount energy. During hypoxia, ischemia, or any other low-energy state, the huge amount of energy required for protein synthesis cannot be met. By contrast, caspases exist in normal cells, and activation requires only a small amount of energy; therefore, in hypoxia, necrosis may be the main cause of cell death[41].

    In this study, expression levels of caspase-9 mRNA and caspase-3 mRNA were very low in the control group. Hypoxia strongly induced the activation of caspase-9 and caspase-3 in neurons. However, pretreatment withPotentilla anserineL. extract significantly reduced the expression of caspase-9 mRNA and caspase-3 mRNA in hypoxic-neurons. Likewise, similar results were observed for the expression of Caspase-9 and Caspase-3 protein. Pretreatment withPotentilla anserineL. extract also significantly decreased the release of cytochrome c into the cytosol. These findings suggested that the n-butanol extract ofPotentilla anserineL.could protect primary hippocampal neurons from hypoxic injury by attenuating mitochondrial cell death. Oxygen free radicals are a main cause of mitochondrial injury. Our previous studies demonstrate thatPotentilla anserinaL. exhibits anti-oxidative activity[16,20]. This activity may contribute to the mitochondrial protective effect ofPotentilla anserinaL.

    In summary, our findings demonstrate that the n-butanol extract ofPotentilla anserineL. has a neuroprotective effect on hypoxic injury in primary hippocampal neurons. The possible mechanism is as follows: the n-butanol extract ofPotentilla anserineL. protects mitochondrial function by attenuating the release of cytochrome c into the cytosol, and thereby inhibits the caspase cascade pathway. This prevents cell death. These findings provide a theoretical basis for developing the n-butanol extract ofPotentilla anserineL. as a neuroprotective agent.

    MATERlALS AND METHODS

    Design

    A cytological comparison study.

    Time and setting

    Experiments were performed at the Department of Medicinal Chemistry, Medical College of Chinese People’s Armed Police Forces, Tianjin, China from May 2008 to January 2011.

    Materials

    Animals

    Fifty pregnant Sprague-Dawley clean grade rats were purchased from the Laboratory Animal Center of Academy of Military Medical Sciences, China, permission No. SCXK (Army) 2002-001. Neonatal mice (within 24 hours of birth) were used for this study. All experiments were performed in accordance with theGuidance Suggestions for the Care and Use of Laboratory Animals, issued by the Ministry of Science and Technology of China[42].

    Drugs

    Potentilla anserine L.was purchased from Qinghai Institute of Chinese Medicine, China. The n-butanol extract ofPotentilla anserineL.was extracted as previously described[20].Five compounds have been isolated from the extract, which were considered as contributors to the protective function of anti-hypoxia in neurons. They are adenosine, daidzin, puerarin, 3’-methoxypuerarin and daidzein 8-C-apiosyl glucoside.

    Tanshinone IIA (Huike Botanical Development Co., Shaanxi, China) with a purity of more than 98%, was dissolved in 0.1% dimethyl sulfoxide and made up to a concentration of 20 mg/mL in D-Hank’s medium (Gibco, Grand Island, NY, USA).

    Methods

    Primary hippocampal neuron cultures

    Sprague-Dawley neonatal rats were anesthetized with diethyl ether and disinfected with 75% alcohol. Primary hippocampal neurons were prepared from the hippocampus under sterile conditions[43]. Neurons were suspended in a culture medium that contained DMEM-F12 (Gibco), fetal bovine serum, mycillin, and glucose (4 × 105cell/mL), and then plated onto poly-D-lysine-coated 60 mm dishes. The medium was changed after 48 hours by replacing the fetal bovine serum with N2 (Gibco), and half of the medium was replaced every 3 days. The cells were cultured in a CO2incubator at 37°C and 5% CO2. After 7 days in culture, observation under a phase-contrast microscope (Olympus, Tokyo, Japan) demonstrated that cells were predominantly neurons (> 96%). All experiments were performed after cells were cultured for 7 days.

    The purity of primary cultured hippocampal neurons identified by immunocytochemical analysis

    Cultured cells were fixed in 4% paraformaldehyde, permeabilized in 0.1% Triton X-100, and blocked in 5% bovine serum albumin. MAP2 was detected with rabbit anti-MAP2 polyclonal antibody (1:100; Cell Signaling Technology, Beverly, MA, USA), and primary antibodies were incubated overnight at 4°C, followed by goat anti-rabbit secondary antibodies (Invitrogen, Grand Island, NY, USA). 3,3-diaminobenzidine was then used to visualize immunohistochemical staining. Cell nuclei were then counterstained with hematoxylin. Images were obtained with an Olympus BX51 microscope (Olympus) and the proportion of positive staining cells was analyzed with Image-Pro plus 5.1 software (Bethesda, MD, USA)[28-29].

    Grouping and intervention

    Culture dishes were randomly divided into the control, hypoxic injury model, and the 0.25, 0.062 5, and 0.015 6 mg/mL of n-butanol extract ofPotentilla anserineL. groups. These concentrations were chosen based on previous studies[20]. Tanshinone IIA, a positive control, was preincubated before hypoxia at a working concentration of 0.2 mg/mL. After 7 days of culture, control dishes were kept in normoxic conditions.

    D-Hank’s medium with different concentrations of the extract was used for the hypoxic injury model group and the intervention group. D-Hank’s medium with extract was initially placed in a hypoxic environment (95% N2, 5% CO2) for 30 minutes and then replaced with normal medium. The model and intervention groups were then exposed to a 95% N2, 5% CO2air mixture for 4 hours.

    Viability of hippocampal neurons determined using MTT assay

    Neuronal viability was assessed using MTT assay as previously described[44], with some modifications. The yellow MTT was reduced to a purple formazan by mitochondrial dehydrogenase in live cells. Briefly, a total of 5 mg/mL MTT was added to each well (final concentration was 1 mg/mL) and another 4 hours of incubation at 37°C was conducted. The assay was stopped by the addition of a 100 μL lysine buffer (20% SDS in 50% N, N-dimethylformamide, pH 4.7). Absorbance value was measured at 570 nm with ELX-800 microplate assay reader (BioTek, Winooski, VT, USA).

    Determination of caspase-9, caspase-3 mRNA inhippocampal neurons by reverse transcription-PCR

    The total RNA were extracted from neurons using TRIzol reagent (Gibco), and its purity and integrity were measured. The primers (Invitrogen) were as follows:caspase-9, F: 5’-CCC GTG AAG CAA GGA TTT-3’, R:5’-TCT GTG GGT CTG GGA AGC-3’; caspase-3, F:5’-GCA CTG GAA TGT CAG CTC GCA A-3’, R:5’-GCC ACC TTC CGG TTA ACA CGA C-3’; β-actin, F: 5’-TGA TGA CAT CAA GAA GGT GGT GAA G-3’, R: 5’-TCC TTG GAG GCC ATG TAG GCC AT-3.’

    Reverse transcription-PCR was performed using a TaKaRa RNA PCR Kit (AMV) Version 3.0 (TaKaRa, Otsu, Japan). Products were visualized with ethidium bromide staining. The relative expression of caspase-9, and caspase-3 mRNA was given as the ratio of the target mRNA absorbance value to the β-actin absorbance value. The absorbance of each band was analyzed with Gel-pro 3.0 (Bethesda).

    Western blot analysis of cytochrome c, Caspase-9, and Caspase-3 protein expression in hippocampal neurons

    Cells were lysed in ice-cold lysis buffer. After centrifugation, the supernatants were collected. Protein samples were then run on sodium dodecyl sulfate polyacrylamide gel electrophoresis and transferred to a polyvinylidene difluoride container. Membranes were blocked with 5% fat-free milk powder in Tris-buffered saline, incubated at 4°C overnight with mouse anti-rat cytochrome c (1:1 000), Caspase-3 (1:1 000), Caspase-9 (1:1 000), and β-actin (1:1 000) monoclonal antibodies (Santa Cruz Biotechnology, Santa Cruz, CA, USA). This incubation was followed by probing with goat anti-mouse secondary antibody (1:1 000, Santa Cruz) at 37°C for 1 hour. The protein was visualized with enhanced chemiluminescence solution, scanned, photographed, and the target protein absorbance value to the β-actin absorbance value was analyzed with a gel-image analytical system, Gel-pro 3.0 (Bethesda).

    Statistical analysis

    Statistical analyses were performed using SPSS 10.0 (SPSS, Chicago, IL, USA) and the results were expressed as mean ± SEM. Differences between the means were determined by one-way analysis of variance followed by a Student-Newman-Keuls test for multiple comparisons. A value ofP <0.05 was considered significant.

    Funding: This research was supported by the National Natural Science Foundation of China, No. 30672774 and No. 81073152, and the Great Program of Science Foundation of Tianjin, No. 10JCZDJC21100.

    Author contributions: Lingzhi Li and Yongliang Zhang were in charge of funding and authorized this study. Xiaojing Qin conducted experiments, conceived and designed the study, and wrote the manuscript draft. Qi Lv contributed to the data analysis and revised the manuscript. Baoguo Yu, Shuwang Yang and Tao He assisted with the experiments.

    Conflicts of interest: None declared.

    Ethical approval: This study received permission from the Animal Care and Research Committee of Tianjin, China.

    Author statements: The manuscript is original, has not been submitted to or is not under consideration by another publication, has not been previously published in any language or any form, including electronic, and contains no disclosure of confidential information or authorship/patent application disputations.

    [1] Yakovlev AG, Faden AI. Mechanisms of neural cell death:implications for development of neuroprotective treatment strategies. NeuroRx. 2004;1(1):5-16.

    [2] Tamm C, Sabri F, Ceccatelli S. Mitochondrial-mediated apoptosis in neural stem cells exposed to manganese. Toxicol Sci. 2008;101(2):310-320.

    [3] Soustiel JF, Larisch S. Mitochondrial damage: a target for new therapeutic horizons. Neurotherapeutics. 2010;7(1):13-21.

    [4] Zhu M, Li MW, Tian XS, et al. Neuroprotective role of delta-opioid receptors against mitochondrial respiratory chain injury. Brain Res. 2009;1252:183-191.

    [5] Lim ML, Lum MG, Hansen TM, et al. On the release of cytochrome c from mitochondria during cell death signaling. J Biomed Sci. 2002;9(6 Pt 1):488-506.

    [6] Li S, Dong P, Wang J, et al. Icariin, a natural flavonol glycoside, induces apoptosis in human hepatoma SMMC-7721 cells via a ROS/JNK-dependent mitochondrial pathway. Cancer Lett. 2010;298(2):222-230.

    [7] Kuida K. Caspase-9. Int J Biochem Cell Biol. 2000;32(2):121-124.

    [8] Delivoria-Papadopoulos M, Ashraf QM, Mishra OP. Effect of hypoxia on the expression of procaspase-9 and procaspase-3 in neuronal nuclear, mitochondrial and cytosolic fractions of the cerebral cortex of newborn piglets. Neurosci Lett. 2008;438(1):38-41.

    [9] Parikh NA, Katsetos CD, Ashraf QM, et al. Hypoxia-induced caspase-3 activation and DNA fragmentation in cortical neurons of newborn piglets: role of nitric oxide. Neurochem Res. 2003;28(9):1351-1357.

    [10] Springer JE, Nottingham SA, McEwen ML, et al. Caspase-3 apoptotic signaling following injury to the central nervous system. Clin Chem Lab Med. 2001;39(4):299-307.

    [11] Peng H, Sola A, Moore J, et al. Caspase inhibition by cardiotrophin-1 prevents neuronal death in vivo and in vitro. J Neurosci Res. 2010;88(5):1041-1051.

    [12] Chiang MC, Ashraf QM, Mishra OP, et al. Mechanism of DNA fragmentation during hypoxia in the cerebral cortex of newborn piglets. Neurochem Res. 2008;33(7):1232-1237.

    [13] Lang-Rollin IC, Rideout HJ, Noticewala M, et al. Mechanisms of caspase-independent neuronal death:energy depletion and free radical generation. J Neurosci. 2003;23(35):11015-11025.

    [14] Wei W, Li GC, Gong HY, et al. The anti-hypoxia effects ofpotentilla anserineL. polysaccharide. Wujing Yixueyuan Xuebao. 2010;19(5):345-347.

    [15] Hui J, Shang DJ, Li QW. Effect of Potentilla anserina L.in xizang on anti-fatigue and hypoxia tolerance in mice. Yingyang Xuebao. 2003;25(2):218-219.

    [16] Li LZ, Zhang L, Gong HY, et al. Study on anti-hypoxia and anti-oxidation effects ofPoteutilla anserinaL. alcohol extract. Zhongguo Shipin Weisheng Zazhi. 2005;17(4):306-309.

    [17] Li JY, Li LZ, Zhang YL, et al. Protective effect of Poteutilla anserina . on hypoxia injury in neonatal rats cardiomyocytes. Zhongguo Xinyao Zazhi. 2007;16(12):944-946.

    [18] Ye L, Chen Y, Li LZ, et al. Protective effect of alcohol extract of Poteutilla anserina L. on acute myocardial ischemin/reperfusion injury in mice. Zhongcaoyao. 2009; 40(5):774-777.

    [19] Lv Q, Qin XJ, Zhang XN, et al. Effects of Poteutilla anserina L. on acute ischemic myocardiac muscle and the differerntially expressed proteins in serum in rats. Wujing Yixueyuan Xuebao. 2011;20(6):429-433,444.

    [20] Li JY, Li Y, Gong HY, et al. Protective effects of n-butanol extract of Potentilla anserina on acute myocardial ischemic injury in mice. Zhong Xi Yi Jie He Xue Bao. 2009; 7(1):48-52.

    [21] Li JY, Li Y, Gong HY, et al. Effects of n-butanol extract of Potentilla anserina L. on expressions of caspase-9/3 mRNA in mice injured by acute myocardial ischemi. Zhongguo Zhongxiyi Jiehe Jijiu Zazhi. 2009;16(1):18-21.

    [22] Han JY, Fan JY, Horie Y, et al. Ameliorating effects of compounds derived from Salvia miltiorrhiza root extract on microcirculatory disturbance and target organ injury by ischemia and reperfusion. Pharmacol Ther. 2008;117(2):280-295.

    [23] Wang X, Morris-Natschke SL, Lee KH. New developments in the chemistry and biology of the bioactive constituents of Tanshen. Med Res Rev. 2007;27(1):133-148.

    [24] Takahashi K, Ouyang X, Komatsu K, et al. Sodium tanshinone IIA sulfonate derived from Danshen (Salvia miltiorrhiza) attenuates hypertrophy induced by angiotensin II in cultured neonatal rat cardiac cells. Biochem Pharmacol. 2002;64(4):745-749.

    [25] Wu TW, Zeng LH, Fung KP, et al. Effect of sodium tanshinone IIA sulfonate in the rabbit myocardium and on human cardiomyocytes and vascular endothelial cells. Biochem Pharmacol. 1993;46(12):2327-2332.

    [26] Lam BY, Lo AC, Sun X, et al. Neuroprotective effects of tanshinones in transient focal cerebral ischemia in mice. Phytomedicine. 2003;10(4):286-291.

    [27] Dong K, Xu W, Yang J, et al. Neuroprotective effects of Tanshinone IIA on permanent focal cerebral ischemia in mice. Phytother Res. 2009;23(5):608-613.

    [28] Burtelow MA, Longacre TA. Utility of microtubule associated protein-2 (MAP-2) immunohistochemistry for identification of ganglion cells in paraffin-embedded rectal suction biopsies. Am J Surg Pathol. 2009;33(7):1025-1030.

    [29] Kühn J, Meissner C, Oehmichen M. Microtubuleassociated protein 2 (MAP2)--a promising approach to diagnosis of forensic types of hypoxia-ischemia. Acta Neuropathol. 2005;110(6):579-586.

    [30] Zou H, Henzel WJ, Liu X, et al. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell. 1997;90(3):405-413.

    [31] Zou H, Li Y, Liu X, et al. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem. 1999;274(17):11549-11556.

    [32] Chen Q, Gong B, Almasan A. Distinct stages of cytochrome c release from mitochondria: evidence for a feedback amplification loop linking caspase activation to mitochondrial dysfunction in genotoxic stress induced apoptosis. Cell Death Differ. 2000;7(2):227-233.

    [33] Liu WB, Zhou J, Qu Y, et al. Neuroprotective effect of osthole on MPP+-induced cytotoxicity in PC12 cells via inhibition of mitochondrial dysfunction and ROS production. Neurochem Int. 2010;57(3):206-215.

    [34] de Moissac D, Gurevich RM, Zheng H, et al. Caspase activation and mitochondrial cytochrome C release during hypoxia-mediated apoptosis of adult ventricular myocytes. J Mol Cell Cardiol. 2000;32(1):53-63.

    [35] Nagarajah NS, Vigneswaran N, Zacharias W. Hypoxiamediated apoptosis in oral carcinoma cells occurs via two independent pathways. Mol Cancer. 2004;3(1):38.

    [36] Inaba S, Eguchi T, Motegi A, et al. The cytotoxic macrolide FD-891 induces caspase-8-dependent mitochondrial release of cytochrome c and subsequent apoptosis in human leukemia Jurkat cells. J Antibiot (Tokyo). 2009; 62(9):507-512.

    [37] Northington FJ, Ferriero DM, Martin LJ. Neurodegeneration in the thalamus following neonatal hypoxia-ischemia is programmed cell death. Dev Neurosci. 2001;23(3):186-191.

    [38] Cohen GM. Caspases: the executioners of apoptosis. Biochem J. 1997;326(Pt 1):1-16.

    [39] Feng Y, Fratkin JD, LeBlanc MH. Inhibiting caspase-9 after injury reduces hypoxic ischemic neuronal injury in the cortex in the newborn rat. Neurosci Lett. 2003;344(3): 201-204.

    [40] Graeber MB, Moran LB. Mechanisms of cell death in neurodegenerative diseases: fashion, fiction, and facts. Brain Pathol. 2002;12(3):385-390.

    [41] Niquet J, Baldwin RA, Allen SG, et al. Hypoxic neuronal necrosis: protein synthesis-independent activation of a cell death program. Proc Natl Acad Sci U S A. 2003; 100(5):2825-2830.

    [42] The Ministry of Science and Technology of the People’s Republic of China. Guidance Suggestions for the Care and Use of Laboratory Animals. 2006-09-30.

    [43] May PC, Robison PM. GYKI 52466 protects against non-NMDA receptor-mediated excitotoxicity in primary rat hippocampal cultures. Neurosci Lett. 1993;152(1-2):169-172.

    [44] Xu Y, Zhang Q, Yu S, et al. The protective effects of chitooligosaccharides against glucose deprivationinduced cell apoptosis in cultured cortical neurons through activation of PI3K/Akt and MEK/ERK1/2 pathways. Brain Res. 2011;1375:49-58.

    10.3969/j.issn.1673-5374.2012.33.002 [http://www.crter.org/nrr-2012-qkquanwen.html]

    Qin XJ, Li LZ, Lv Q, Yu BG, Yang SW, He T, Zhang YL. Underlying mechanism of protection from hypoxic injury seen with

    n-butanol extract of Potentilla anserine L. in hippocampal neurons. Neural Regen Res. 2012;7(33):2576-2582.

    Xiaojing Qin☆, M.D., Department of Pathology, Affiliated Hospital of Logistics University of Chinese People’s Armed Police Forces, Tianjin 300162, China

    Yongliang Zhang, M.D., Professor, Tianjin Key Laboratory of Occupational and Environmental Hazard Biomar kers, Tianjin 300162, China;Ministry of Scientific Research, Logistics University of Chinese People’s Armed Police Forces, Tianjin 300162, China ; Lingzhi Li, M.D., Professor, Department of Medicinal Chemistry, Logistics University of Chinese People’s Armed Police Forces, Tianjin 300162, China; Tianjin Key Laboratory of Occupational and Environmental Hazard Biomarkers, Tianjin 300162, China

    zhang78127@tom.com;

    llzhx@yahoo.cn

    2012-03-31

    2012-07-26

    (N20111013001/YJ)

    (Edited by Liu ZX, Yang WM/Yang Y/Wang L)

    黄色女人牲交| 亚洲精品在线美女| 亚洲精品在线观看二区| 国产成人福利小说| 美女cb高潮喷水在线观看 | 网址你懂的国产日韩在线| 亚洲精品在线美女| 午夜免费观看网址| 久久亚洲真实| 校园春色视频在线观看| 中文资源天堂在线| 亚洲乱码一区二区免费版| 十八禁网站免费在线| 久久天躁狠狠躁夜夜2o2o| 亚洲第一欧美日韩一区二区三区| 香蕉久久夜色| 日韩欧美国产一区二区入口| 亚洲国产欧美人成| 欧美日韩一级在线毛片| www.熟女人妻精品国产| 黑人巨大精品欧美一区二区mp4| 午夜影院日韩av| 色综合站精品国产| 国产美女午夜福利| 久久久久久久久免费视频了| 不卡一级毛片| 美女高潮喷水抽搐中文字幕| 真人一进一出gif抽搐免费| 级片在线观看| 日本黄大片高清| 精品国产美女av久久久久小说| 狠狠狠狠99中文字幕| 亚洲人成网站高清观看| 日本成人三级电影网站| 国产三级在线视频| 日本a在线网址| 成人性生交大片免费视频hd| 免费观看的影片在线观看| 欧美国产日韩亚洲一区| 岛国在线免费视频观看| 国产91精品成人一区二区三区| 亚洲av成人av| 丝袜人妻中文字幕| 久久久久久久久免费视频了| 国产一区二区三区视频了| 久久99热这里只有精品18| 最近最新中文字幕大全免费视频| 中出人妻视频一区二区| 成人高潮视频无遮挡免费网站| 国产野战对白在线观看| 久久中文字幕一级| 老司机午夜十八禁免费视频| 日本一本二区三区精品| 男人舔女人的私密视频| 国产精品自产拍在线观看55亚洲| 亚洲成av人片免费观看| 最近最新中文字幕大全电影3| 亚洲欧美精品综合一区二区三区| 国产高清激情床上av| 99在线人妻在线中文字幕| 中国美女看黄片| 国产成人啪精品午夜网站| 岛国在线观看网站| 亚洲国产看品久久| www.www免费av| 法律面前人人平等表现在哪些方面| 国产伦在线观看视频一区| 午夜福利在线在线| 一夜夜www| 美女高潮的动态| 中文字幕高清在线视频| 国产三级中文精品| 搡老妇女老女人老熟妇| 精品久久蜜臀av无| 精品不卡国产一区二区三区| 精品乱码久久久久久99久播| 精品一区二区三区视频在线 | 一区二区三区激情视频| 亚洲精品美女久久久久99蜜臀| 青草久久国产| 国产1区2区3区精品| 国产爱豆传媒在线观看| 精品免费久久久久久久清纯| 精品久久久久久成人av| 一区二区三区激情视频| 99热只有精品国产| 午夜福利视频1000在线观看| 精品久久久久久久人妻蜜臀av| 999久久久国产精品视频| 19禁男女啪啪无遮挡网站| 久9热在线精品视频| 国产高清三级在线| 国产三级中文精品| 啪啪无遮挡十八禁网站| 国产精品一区二区免费欧美| 黄色 视频免费看| 床上黄色一级片| 国产成人一区二区三区免费视频网站| 国产午夜精品论理片| 国产三级在线视频| av视频在线观看入口| www.精华液| 久久久久国产精品人妻aⅴ院| 国产真人三级小视频在线观看| 91av网站免费观看| 亚洲欧美日韩高清专用| 中文字幕久久专区| 亚洲人成网站在线播放欧美日韩| 亚洲 国产 在线| 欧美性猛交黑人性爽| 非洲黑人性xxxx精品又粗又长| 看免费av毛片| 亚洲精品在线观看二区| 日日干狠狠操夜夜爽| 亚洲欧美日韩高清专用| 搞女人的毛片| 亚洲美女视频黄频| 禁无遮挡网站| 波多野结衣巨乳人妻| 国产精品久久久久久亚洲av鲁大| 黄色视频,在线免费观看| 特大巨黑吊av在线直播| 中文亚洲av片在线观看爽| 又粗又爽又猛毛片免费看| 色综合站精品国产| 国产成人啪精品午夜网站| 亚洲中文字幕日韩| 综合色av麻豆| 女人被狂操c到高潮| 久久精品亚洲精品国产色婷小说| www日本黄色视频网| 国产精品 国内视频| 伦理电影免费视频| 午夜福利高清视频| 午夜亚洲福利在线播放| 伦理电影免费视频| 又粗又爽又猛毛片免费看| 中文字幕熟女人妻在线| 校园春色视频在线观看| 国产高清视频在线播放一区| 男女之事视频高清在线观看| 亚洲在线观看片| 国内少妇人妻偷人精品xxx网站 | 白带黄色成豆腐渣| 国产精品免费一区二区三区在线| 18禁黄网站禁片午夜丰满| 国产伦在线观看视频一区| 国产主播在线观看一区二区| 欧美日韩一级在线毛片| 亚洲国产精品合色在线| 88av欧美| 婷婷丁香在线五月| 午夜福利在线观看免费完整高清在 | 看免费av毛片| 中文字幕人成人乱码亚洲影| 麻豆成人午夜福利视频| 99国产精品一区二区三区| 一a级毛片在线观看| 性色avwww在线观看| 国产激情偷乱视频一区二区| 国产男靠女视频免费网站| 男女之事视频高清在线观看| 久久国产精品人妻蜜桃| 国产三级中文精品| 亚洲精华国产精华精| 国产单亲对白刺激| 国产一区二区三区视频了| 黄色视频,在线免费观看| 国产久久久一区二区三区| 999久久久精品免费观看国产| 亚洲精品美女久久av网站| 好男人在线观看高清免费视频| 超碰成人久久| 久久人人精品亚洲av| 性色av乱码一区二区三区2| 久久伊人香网站| 久久国产精品影院| 精品国产乱码久久久久久男人| 女警被强在线播放| 国产精品一区二区三区四区免费观看 | 国产精品香港三级国产av潘金莲| 亚洲精华国产精华精| 成人欧美大片| 久久亚洲精品不卡| 国产成人一区二区三区免费视频网站| 国产视频一区二区在线看| 欧美黑人欧美精品刺激| 国产精品美女特级片免费视频播放器 | 99re在线观看精品视频| 一级作爱视频免费观看| 老司机在亚洲福利影院| 亚洲无线在线观看| a在线观看视频网站| 精品久久久久久久人妻蜜臀av| 午夜影院日韩av| 国产成人影院久久av| 精品久久久久久久人妻蜜臀av| 亚洲自拍偷在线| 日本免费a在线| 国产又黄又爽又无遮挡在线| 日韩成人在线观看一区二区三区| 麻豆国产av国片精品| 久久久久免费精品人妻一区二区| 国产精品一及| 国产精品亚洲av一区麻豆| 岛国在线观看网站| 午夜影院日韩av| 一本久久中文字幕| 国产午夜精品论理片| 18禁国产床啪视频网站| www国产在线视频色| 亚洲人成网站在线播放欧美日韩| 岛国在线免费视频观看| 成人一区二区视频在线观看| 亚洲乱码一区二区免费版| 免费观看的影片在线观看| 国产伦一二天堂av在线观看| 99热只有精品国产| 亚洲国产精品久久男人天堂| 欧美一区二区精品小视频在线| 午夜亚洲福利在线播放| 亚洲 欧美一区二区三区| 亚洲国产看品久久| 欧美丝袜亚洲另类 | 啪啪无遮挡十八禁网站| 91九色精品人成在线观看| 久久99热这里只有精品18| 国内精品久久久久久久电影| 在线国产一区二区在线| 在线永久观看黄色视频| 亚洲人成伊人成综合网2020| 99视频精品全部免费 在线 | 少妇的逼水好多| 久久人人精品亚洲av| 欧美乱妇无乱码| 搞女人的毛片| 长腿黑丝高跟| 亚洲国产中文字幕在线视频| 日韩欧美国产一区二区入口| 国产真实乱freesex| 在线国产一区二区在线| 日韩三级视频一区二区三区| 日韩欧美国产在线观看| 精品久久久久久,| 欧美成人一区二区免费高清观看 | 亚洲国产欧美人成| 久久久精品大字幕| 亚洲乱码一区二区免费版| 麻豆av在线久日| 国产亚洲精品一区二区www| 99精品欧美一区二区三区四区| 97超级碰碰碰精品色视频在线观看| 成年女人看的毛片在线观看| 一个人观看的视频www高清免费观看 | 真人一进一出gif抽搐免费| 激情在线观看视频在线高清| 99国产综合亚洲精品| 欧美大码av| 一级a爱片免费观看的视频| a级毛片在线看网站| 脱女人内裤的视频| 丰满的人妻完整版| 国产单亲对白刺激| 亚洲真实伦在线观看| 国产亚洲精品久久久com| 香蕉久久夜色| 久久精品影院6| 色尼玛亚洲综合影院| 人人妻,人人澡人人爽秒播| 高清毛片免费观看视频网站| 一个人看视频在线观看www免费 | 国内精品久久久久久久电影| ponron亚洲| 中国美女看黄片| 日韩国内少妇激情av| 97超视频在线观看视频| 色尼玛亚洲综合影院| 亚洲欧美日韩无卡精品| 亚洲人成伊人成综合网2020| 又粗又爽又猛毛片免费看| 禁无遮挡网站| 日韩中文字幕欧美一区二区| 岛国在线免费视频观看| 老司机深夜福利视频在线观看| 久久久久久国产a免费观看| 亚洲男人的天堂狠狠| 午夜影院日韩av| 在线观看日韩欧美| 12—13女人毛片做爰片一| 老汉色av国产亚洲站长工具| 夜夜躁狠狠躁天天躁| 国产蜜桃级精品一区二区三区| 亚洲精品456在线播放app | 91麻豆av在线| 欧美一区二区精品小视频在线| 一本久久中文字幕| 婷婷精品国产亚洲av| 黄频高清免费视频| 国产成人精品久久二区二区免费| 国产精品久久久久久精品电影| 首页视频小说图片口味搜索| 好男人电影高清在线观看| 性色avwww在线观看| 国产精品国产高清国产av| 舔av片在线| 两个人看的免费小视频| av欧美777| 欧美3d第一页| 日韩人妻高清精品专区| tocl精华| 1000部很黄的大片| 麻豆成人午夜福利视频| 两个人的视频大全免费| 男人的好看免费观看在线视频| 欧美精品啪啪一区二区三区| 国产成年人精品一区二区| 成人18禁在线播放| 色综合亚洲欧美另类图片| 日本黄色片子视频| 久久久国产欧美日韩av| 99久久精品国产亚洲精品| 每晚都被弄得嗷嗷叫到高潮| 国产精品99久久久久久久久| 老汉色av国产亚洲站长工具| 欧美一级a爱片免费观看看| 国产又色又爽无遮挡免费看| 国产亚洲欧美98| 日韩免费av在线播放| 俺也久久电影网| 日韩精品中文字幕看吧| 欧美在线一区亚洲| 在线十欧美十亚洲十日本专区| 亚洲狠狠婷婷综合久久图片| 日日摸夜夜添夜夜添小说| 在线免费观看的www视频| 欧美另类亚洲清纯唯美| 日韩 欧美 亚洲 中文字幕| 亚洲成a人片在线一区二区| 久久精品91蜜桃| 国产精品久久视频播放| 亚洲精品一卡2卡三卡4卡5卡| 在线观看美女被高潮喷水网站 | 亚洲人与动物交配视频| 1000部很黄的大片| 久99久视频精品免费| 国产精品亚洲一级av第二区| 18美女黄网站色大片免费观看| 国产午夜精品论理片| 亚洲av日韩精品久久久久久密| 天堂网av新在线| 国产91精品成人一区二区三区| 国内久久婷婷六月综合欲色啪| 欧美日本亚洲视频在线播放| 久9热在线精品视频| 日本黄大片高清| 给我免费播放毛片高清在线观看| 九九在线视频观看精品| 欧美乱妇无乱码| 成年女人看的毛片在线观看| 麻豆国产av国片精品| 亚洲一区二区三区色噜噜| 毛片女人毛片| 午夜视频精品福利| av女优亚洲男人天堂 | 老司机午夜十八禁免费视频| 亚洲成人精品中文字幕电影| 中出人妻视频一区二区| avwww免费| 国产精品久久电影中文字幕| 色噜噜av男人的天堂激情| 成人亚洲精品av一区二区| 欧美av亚洲av综合av国产av| 女人被狂操c到高潮| 久久国产乱子伦精品免费另类| 国产精品亚洲av一区麻豆| 日韩成人在线观看一区二区三区| 亚洲av电影不卡..在线观看| 国产成人系列免费观看| 亚洲男人的天堂狠狠| av欧美777| 亚洲国产精品久久男人天堂| 18禁国产床啪视频网站| 高潮久久久久久久久久久不卡| 亚洲熟妇中文字幕五十中出| 一级毛片高清免费大全| 久久中文字幕一级| 成人国产综合亚洲| 这个男人来自地球电影免费观看| 欧美日韩黄片免| 两性夫妻黄色片| 我的老师免费观看完整版| 成人av在线播放网站| 亚洲中文字幕一区二区三区有码在线看 | 欧美乱码精品一区二区三区| 一个人免费在线观看的高清视频| 国产免费男女视频| 91在线精品国自产拍蜜月 | 18禁黄网站禁片免费观看直播| 精品日产1卡2卡| 久久亚洲精品不卡| 久久热在线av| 老汉色av国产亚洲站长工具| 色综合婷婷激情| 久久中文字幕人妻熟女| 成人国产综合亚洲| 久久久久九九精品影院| 国产高清视频在线播放一区| xxxwww97欧美| 久久国产乱子伦精品免费另类| 91麻豆av在线| 91麻豆精品激情在线观看国产| 午夜久久久久精精品| 国产精品久久久人人做人人爽| 久久午夜综合久久蜜桃| 久久香蕉国产精品| 亚洲av成人一区二区三| 日韩欧美免费精品| 久久久久国产精品人妻aⅴ院| 亚洲国产欧美一区二区综合| 午夜福利在线观看免费完整高清在 | 国产欧美日韩精品亚洲av| 国产伦精品一区二区三区四那| 99在线人妻在线中文字幕| 成人精品一区二区免费| 国产一区二区三区在线臀色熟女| 亚洲最大成人中文| 性色avwww在线观看| 国产一区二区三区视频了| 欧美日韩福利视频一区二区| 国产精品久久久久久亚洲av鲁大| 亚洲欧美精品综合久久99| 啦啦啦免费观看视频1| 国产激情久久老熟女| 国产精品,欧美在线| 久久久精品大字幕| 舔av片在线| www日本在线高清视频| 亚洲欧美一区二区三区黑人| 国产伦精品一区二区三区视频9 | 亚洲精品粉嫩美女一区| 精品99又大又爽又粗少妇毛片 | 我要搜黄色片| 中文字幕人妻丝袜一区二区| 国产伦人伦偷精品视频| 高清在线国产一区| 最新中文字幕久久久久 | 精品一区二区三区视频在线观看免费| 色播亚洲综合网| 又黄又爽又免费观看的视频| 久久久久久国产a免费观看| 人妻丰满熟妇av一区二区三区| 在线免费观看的www视频| 九色国产91popny在线| 黄片小视频在线播放| 最新美女视频免费是黄的| 久久婷婷人人爽人人干人人爱| 亚洲第一欧美日韩一区二区三区| 91av网一区二区| 成人亚洲精品av一区二区| 日本 av在线| svipshipincom国产片| 1000部很黄的大片| 麻豆成人午夜福利视频| 久久久久久人人人人人| 一本一本综合久久| 999精品在线视频| 亚洲精品久久国产高清桃花| 网址你懂的国产日韩在线| 精品乱码久久久久久99久播| 中文字幕最新亚洲高清| 中文字幕人成人乱码亚洲影| 亚洲avbb在线观看| 国产精品久久久久久久电影 | 日韩高清综合在线| 免费av不卡在线播放| 国产精品久久久久久人妻精品电影| 国产伦一二天堂av在线观看| 极品教师在线免费播放| 又黄又粗又硬又大视频| 综合色av麻豆| 99国产精品99久久久久| 嫩草影院精品99| 日韩欧美在线乱码| 久久久精品欧美日韩精品| 午夜日韩欧美国产| 国产精品一区二区三区四区久久| 日本一本二区三区精品| 国产私拍福利视频在线观看| 法律面前人人平等表现在哪些方面| 99re在线观看精品视频| 99久久综合精品五月天人人| 精品久久久久久,| 欧美黄色淫秽网站| 午夜影院日韩av| 首页视频小说图片口味搜索| 午夜影院日韩av| 欧美黄色淫秽网站| 欧美av亚洲av综合av国产av| 欧美中文日本在线观看视频| 日韩欧美精品v在线| 很黄的视频免费| 亚洲自拍偷在线| 欧美中文日本在线观看视频| 亚洲国产精品sss在线观看| 又爽又黄无遮挡网站| 国产精品久久久av美女十八| 在线看三级毛片| 亚洲美女黄片视频| 国产单亲对白刺激| 欧美在线黄色| 亚洲欧美精品综合久久99| 美女午夜性视频免费| 欧美日韩亚洲国产一区二区在线观看| 午夜福利欧美成人| 国产激情久久老熟女| 99久久精品热视频| 国产精品永久免费网站| 男人舔女人下体高潮全视频| 夜夜夜夜夜久久久久| 村上凉子中文字幕在线| 两个人看的免费小视频| 免费观看人在逋| 欧美三级亚洲精品| 国产精品亚洲av一区麻豆| 丰满人妻一区二区三区视频av | 成年版毛片免费区| 熟女人妻精品中文字幕| 美女大奶头视频| xxx96com| 一个人免费在线观看电影 | 又爽又黄无遮挡网站| 欧美黄色片欧美黄色片| 免费在线观看视频国产中文字幕亚洲| 亚洲成av人片免费观看| 97人妻精品一区二区三区麻豆| 99久久成人亚洲精品观看| 亚洲精品美女久久av网站| 岛国在线观看网站| 久99久视频精品免费| 国内揄拍国产精品人妻在线| 看片在线看免费视频| 性色av乱码一区二区三区2| 国产99白浆流出| 99久国产av精品| 99精品欧美一区二区三区四区| 欧美绝顶高潮抽搐喷水| 亚洲五月婷婷丁香| 亚洲国产精品sss在线观看| 久久久精品大字幕| 亚洲欧美日韩卡通动漫| 日韩免费av在线播放| 久久伊人香网站| 亚洲狠狠婷婷综合久久图片| 亚洲成人免费电影在线观看| 桃色一区二区三区在线观看| 欧美黑人欧美精品刺激| 岛国在线观看网站| 无人区码免费观看不卡| 久久天堂一区二区三区四区| 国产午夜精品论理片| 国产亚洲精品久久久com| 91av网一区二区| 成人一区二区视频在线观看| 天天躁日日操中文字幕| 日本五十路高清| 日本一本二区三区精品| av视频在线观看入口| 欧美一区二区精品小视频在线| 午夜成年电影在线免费观看| 视频区欧美日本亚洲| 一二三四在线观看免费中文在| 免费在线观看成人毛片| 国产精品一及| 日韩国内少妇激情av| 精品熟女少妇八av免费久了| 久久久成人免费电影| 欧美高清成人免费视频www| 欧美黑人巨大hd| 国产乱人视频| 欧美大码av| 亚洲精品中文字幕一二三四区| 国产高清视频在线播放一区| 丰满人妻熟妇乱又伦精品不卡| 久久中文字幕人妻熟女| 人妻夜夜爽99麻豆av| 国产激情久久老熟女| 亚洲狠狠婷婷综合久久图片| 999久久久精品免费观看国产| 一卡2卡三卡四卡精品乱码亚洲| 午夜福利免费观看在线| 亚洲中文字幕日韩| 人妻久久中文字幕网| 女生性感内裤真人,穿戴方法视频| 三级男女做爰猛烈吃奶摸视频| 日本撒尿小便嘘嘘汇集6| 五月玫瑰六月丁香| 婷婷亚洲欧美| 三级毛片av免费| 久久精品国产清高在天天线| 成人永久免费在线观看视频| 麻豆成人午夜福利视频| 他把我摸到了高潮在线观看| 老司机深夜福利视频在线观看| 可以在线观看的亚洲视频| 国产精品久久久人人做人人爽| 无限看片的www在线观看| 操出白浆在线播放| 日韩欧美一区二区三区在线观看| 老司机深夜福利视频在线观看| 女警被强在线播放| 日韩欧美三级三区| 亚洲av五月六月丁香网| 最新在线观看一区二区三区| 99热只有精品国产| 欧美日韩精品网址|