• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    吲哚方酸菁半導(dǎo)體在場(chǎng)效應(yīng)晶體管中的應(yīng)用

    2011-12-11 09:08:08孫秋健董桂芳鄭海洋趙昊巖煉王立鐸張復(fù)實(shí)
    物理化學(xué)學(xué)報(bào) 2011年8期
    關(guān)鍵詞:晶體管吲哚器件

    孫秋健 董桂芳 鄭海洋 趙昊巖 喬 娟 段 煉王立鐸 張復(fù)實(shí) 邱 勇

    (有機(jī)光電子與分子工程教育部重點(diǎn)實(shí)驗(yàn)室,清華大學(xué)化學(xué)系,北京100084)

    吲哚方酸菁半導(dǎo)體在場(chǎng)效應(yīng)晶體管中的應(yīng)用

    孫秋健 董桂芳*鄭海洋 趙昊巖 喬 娟 段 煉王立鐸 張復(fù)實(shí) 邱 勇*

    (有機(jī)光電子與分子工程教育部重點(diǎn)實(shí)驗(yàn)室,清華大學(xué)化學(xué)系,北京100084)

    研究了2,3,3-三甲基-1-H-吲哚方酸菁的場(chǎng)效應(yīng)性質(zhì),通過X射線衍射證實(shí)了方酸菁分子內(nèi)電荷分離結(jié)構(gòu)以及分子間面面堆積模式,并在Si/SiO2基片上通過真空蒸鍍和旋涂的方法制備了p型晶體管器件.通過對(duì)器件性能與溝道形態(tài)的研究,我們發(fā)現(xiàn)退火處理能促進(jìn)方酸菁薄膜由無定形態(tài)向多晶態(tài)轉(zhuǎn)變,從而使薄膜晶體管的遷移率從10-5cm2·V-1·s-1量級(jí)提高到10-3cm2·V-1·s-1量級(jí).頂接觸結(jié)構(gòu)單晶器件獲得了7.8×10-2cm2·V-1·s-1的遷移率.未封裝的方酸菁晶體管在大氣中也表現(xiàn)出較好的穩(wěn)定性.

    方酸菁內(nèi)鹽;有機(jī)晶體管;旋涂;單晶;退火

    1 Introduction

    Organic semiconductors are the most important element in organic thin-film field-effect transistors(OTFTs).1-4Both experimental results and theoretical calculations have verified that the current magnification of gate bias in OTFTs results from the hopping process of field induced carriers between adjacent molecules,and thus close packing of the molecules can improve charge transport through the overlapping frontier orbital.5-8Hitherto,lots of π-conjugated organic small molecules and polymers with small energy gaps,such as pentacene,9-11copper phthalocyanine(CuPc),12-14perylene diimide,15oligothiophene,16,17and their derivatives,18,19have been investigated to realize high mobility.Since the initial status of these organic films by traditional processing techniques is usually less ordered,uniform and oriented polycrystallization of the film,especially at the first few layers near the semiconductor/dielec-tric interface,is the key to improve the performance of OTFTs. Thus post-processing such as annealing is frequently used to improve the microstructure of the semiconductor layer.20

    In order to facilitate the thermodynamic phase transition during annealing,squarylium inner salt,a kind of compounds with strong intendancy of self crystallization,was focused as the semiconductor in OTFTs.Though squarylium dyes have been widely used as photoconductors in printers and organic solar cells due to their fine stability and transport property,21,22they are less reported in organic transistors.23-25In this paper,1,3-bis [(3,3-dimethylindolin-2-ylidene)methyl]squaraine(ISQ,Fig.1 (a))was studied in both thermal vacuum deposited and solution processed transistors.This molecule is nearly planar and has a fine π-π packing along b direction in crystal phase(Fig.1 (b)),which is expected to benefit the field effect transport.

    2 Experimental

    2.1 Material synthesis

    ISQ was synthesized by a modified procedure according to reference.263,4-dihydroxy-3-cyclobutene-1,2-dione(99%)and octadecyltrichlorosilane(OTS,95%)were purchased from Acros.The 2,3,3-trimethyiindolenine(97%)was purchased from Alfa Aesar.The other chemicals and solvents were purchased from Sigma-Aldrich.All the chemicals were analytically pure and used as received without further purification unless otherwise stated.3,4-Dihydroxy-3-cyclobutene-1,2-dione and 2,3, 3-trimethyiindolenine in stoichiometric ratio were heated in refluxing mixture of toluene and n-butanol for 6 h.The byproduct,water,was removed azeotropically using a Dean-Stark trap.The precipitate was rinsed with petrol ether.Then it was sequently purified by column chromatography and recrystallization to get gold-shine needle-like crystals with a yield of 85%.The purity was assessed to be about 99.5%by high performance liquid chromatography(Agilent 1100,USA).

    2.2 X-ray crystallography

    Fig.1 (a)Chemical structure of ISQ and(b)its crystal packing along b direction

    A prism-shaped single crystal was grown by slow evaporation of the ISQ/dichloromethane solution at room temperature. Structural X-ray diffraction was performed on a CCD diffractometer(BrukerAPEX,Germany)equipped with graphite monchromatized Mo Kαradiation.Details of crystal parameters,data collection,and structure refinement are given in Table 1.Data collection was controlled by SMART program(Bruker, 1997).Computations were performed using the SHELXTL NT ver.5.10 program package(Bruker,1997)on an IBM PC 586 computer.Analytic expressions of atomic scattering factors were employed,and anomalous dispersion corrections were incorporated(International Tables for X-ray Crystallography, 1989).Crystal drawings were produced with XP(Bruker, 1998).

    2.3 Photochemical and electrochemical properties

    The ISQ film was deposited on a quartz glass from methanol solution.The absorption was recorded with a UV-Vis spectrophotometer(Agilent 8453,USA).The fluorescence emission was recorded with a uoro-spectrophotometer(Jobin Yvon Fluro Max-3,France).The maximum absorption and emission were observed at 644 and 664 nm respectively,with nearly symmetric shapes(Fig.2).From the absorption edge,the band gap of ISQ was calculated to be 1.83 eV.

    The electrochemical properties of ISQ were investigated by cyclic voltammetry.The measurement was performed on a voltammetric analyzer(Princeton Applied Research Potentiostat/Galvanostat model 283,USA)in dichloromethane at a scan rate of 100 mV·s-1.Ferrocene was added in as an internalreference.The oxidation potentials were 0.971 V for ISQ and 0.528 V for ferrocene(Fig.3).The highest occupied molecular orbital(HOMO)of ISQ was then calculated to be-5.24 eV versus vacuum.According to the spectrum data,the lowest unoccupied molecular orbital(LUMO)of ISQ was deduced to be-3.41 eV.

    Table 1 Data collection,processing and structure refinement for the structural X-ray diffraction of ISQ

    Fig.2 UV-Vis absorption and photoluminescence spectrum of ISQ film

    2.4 Fabrication of transistors

    Field-effect transistors were fabricated in a bottom-gate, top-contact architecture with a highly n-doped silicon wafer as the gate electrode and 300 nm thermally grown SiO2as the gate dielectric.The substrates were cleaned by sonication in organic solvents.Then the SiO2surface was treated in piranha solution and modified with OTS.ISQ was deposited onto the SiO2substrate at a rate of 1 nm·s-1under 10-4Pa.For solution process,the ISQ semiconductor was spin-coated from a 4 g·L-11,2-dichloroethane solution and then baked on a hot plate at 80°C in N2atmosphere.The thickness of ISQ thin film was controlled at 45 nm.For crystal transistors,the crystal strips were in-situ assembled on OTS modified Si/SiO2substrate by immersing the substrate into an ISQ/dichloromethane solution (10-3mol·L-1)and then slowly evaporating the solution in a saturated hexane atmosphere for two weeks.Finally,the source and drain contacts were formed by thermal vacuum deposition of Au thin film through shadow masks.Electrical characterization of the transistors was performed in air without encapsulation with a semiconductor characterization system(Keithley SCS 4200,USA).

    2.5 Surface morphology

    Fig.3 Cyclic voltammetry of ISQ with ferrocene included

    The dynamic atomic force microscopy(DAFM)of the ISQ film was taken by a scanning probe microscope(Seiko SPI 3800 Series SPA-400,Japan).The optical images of the thin films,the crystal strips,and the top view of the transistors were recorded with a microscope(Olympus BX51M,Japan).

    3 Results and discussion

    The classical structure of ISQ is shown in Fig.1(a).Because of the isomerous effect of squaric acid,opposite charges are located in oxygen and nitrogen atoms separately.A near flat configuration of ISQ is kept with only 7°distortion in the crystal, according to the crystal packing data(Fig.1(b)).The optimized structure was given by geometrical optimization with Gaussian98 at B3LYP/6-311+G(d,p)level(Fig.4).Symmetrical frontier orbital is delocalized among the whole molecule for both HOMO and LUMO due to the fast resonance with charge exchange.

    The electron density contour map in the molecular plane was calculated by“EDEN”command of Shelxtl XP program (Fig.5).FoFourier method was chosen to process the crystal diffractional data.By counting the electron numbers per each carbon atom,it is found that the electron density decreases from the central part to the side groups.In order to clarify the transport property of ISQ,the inner reorganization energy was calculated based on the result of static energy and geometry optimization for positive and negative ISQ ions at B3LYP/6-311+ G(d,p)level.The reorganization energy was 0.168 and 0.271 eV for hole and electron,respectively.The relatively smaller value for hole carriers suggests that ISQ is mainly a p-type transporter.

    According to thermal gravity analysis,mass loss of ISQ occurred at 287.8°C.The attached methyls also enable ISQ to solve in most halohydrocarbon.Thus,ISQ thin films could be prepared by both thermal evaporation and solution process. The morphology of films was characterized by dynamic atomic force microscopy(DAFM)(Fig.6).The root mean square roughness(RRMS)was generally less than 0.5 nm.

    Top contact bottom gate architecture was employed in ISQ transistors(Fig.7).Since the HOMO of ISQ are-5.24 eV,gold was used as the source and drain electrodes to achieve energy level matching.As expected before,ISQ TFTs performed hole-transport properties with saturated output curves.However,the initial mobility of vacuum evaporated and spin-coated devices ranged from 10-6to 10-5cm2·V-1·s-1with a low on/off current ratio.

    Fig.4 HOMO and LUMO of the singlet ground-state ISQ

    Fig.5 Contour map of crystal electron density in the molecular plane

    Fig.6 DAFM morphologies in the area of 5 μm×5 μm of(a)thermal evaporation film,(b)spin coated film from C2H4Cl2and(c)single crystal strip on SiO2substrate

    In order to accelerate the polycrystallization of the semiconducting layer,the devices were then annealed in the N2-filled glove box at 80°C for 8 h.As a result,crystal-like patterns were observed on the surface of the semiconductor layer,and the mobility increased to 10-4-10-3cm2·V-1·s-1,about two orders of magnitudes higher than initial devices.To explore the structure of the annealed film,X-ray diffraction was applied with a diffractometer(Rigaku-2500,Japan)equipped with a Cu target.2θ scan ranged from 3°to 100°at a speed of 6(°)·min-1. The diffraction pattern proved the presence of polycrystalline phase(Fig.8).The major electrical parameters of various transistors were summarized in Table 2.For each kind of transistors,the data were averaged for effective channels in a batch of 11 devices.Transfer and output characteristics of the best device were shown in Fig.9.The on/off ratio was defined as the current of-120 V over that of 30 V in transfer curves.

    Fig.7 Architecture of the ISQ thin film transistor

    Generally,the performance of ISQ transistors was enhanced by both OTS modification and annealing.However,the effect of annealing was largely dependent on channel morphology.In about 40%of the spin coated devices,ISQ film aggregated into irregular polycrystalline particles(Fig.10(c)).The amplified inset shows the microscopic film continuity is completely destroyed,which resulted in noneffective devices.In rest devices, although channel smoothness was somewhat decreased,the polycrystalline film still kept connectivity between source and drain electrodes(Fig.10(b)).In this case,the improvement of performance further proves the mobility and on/off ratio of polycrystalline film is higher than amorphous one.For vacuum evaporation,the percentage of noneffective devices resulting from the channel discontinuity was 5%.The difference in success rate indicates the residual solvent in solution processed film facilitated excessive crystallization in annealing,and induced larger polycrystalline particles and rougher surface. Therefore annealing condition needs to be properly controlled to improve the quality of the semiconductor layer.

    Fig.8 X-ray diffraction patterns of 200 nm ISQ film after annealing

    Table 2 Electrical characterization of various ISQ transistors

    Fig.9 Transfer and output curves of ISQ thin-film transistors by(a,b)thermal evaporation and(c,d)spin coating with a W/Lof 20Idrain:drain current,Vdrain:drain voltage,Vgate:gate voltage

    Fig.10 Channel images of spin coated ISQ film(a)before annealing,(b)enhanced device after annealing, (c)noneffective device after annealing

    Since the mobility of ISQ thin film transistors is not as high as ordinary organic semiconductors,further optimization is necessary.Firstly,the interaction between the dielectric surface and the organic semiconductor affects the assembly of the initial ISQ layers,so the selection and modification of dielectric are important.Secondly,as the crystallinity and crystal orientation were uncontrolled in present process,inducing ordered packing along the channel is expected to greatly improve the performance.Thereby ISQ single crystal was evaluated on Si/ SiO2substrate.Fig.11 illustrates the process of the crystal deposition by diffusion of good and poor solvents.OTS-modified Si/SiO2substrate was firstly immersed into the ISQ/dichloromethane solution of 1×10-3mol·L-1and then the solvent was evaporated slowly in a saturated hexane atmosphere for two weeks.The precipitation of single crystal strips was found to adhere to the SiO2surface.Extra crystal precipitation was rinsed from the substrate by hexane.100 nm gold was deposited onto the crystal strips as source and drain electrodes.Fig.12 (a,b)is the top view of channel in the crystal transistor.Fig.12 (c,d)shows the characteristic curves of the crystal transistor. The highest mobility,the corresponding on/off ratio,and threshold voltage were calculated to be 7.8×10-2cm2·V-1·s-1, 102,and-37 V,respectively.

    Fig.11 Illustration of the growth of ISQ single crystal on Si/SiO2substrate

    In comparison to thin films,the mobility of ISQ single crystal increased by only 10×,but the on/off ratio decreased by 100×and threshold voltage increased.It was noteworthy that the thickness of the crystal strips was about 30 μm while the filed effect thickness was normally less than 10 nm.For bottom gate top contact structure,large thickness shields the function of gate electric field and brings high threshold voltage. The extra thickness had negligible contribution to the on-current but greatly affected the off-current.In an approximate analysis,the channel along direction of thickness could be treated as parallel connection between source and drain.Therefore compared to a crystal strip with 30 nm-thickness,the off-current would increase 1000×and result in a 3-magnitude drop of on/off ratio.Thinner crystal strip and bottom contact structure are promising to solve these problems.

    The stability of OTS treated ISQ transistors after annealing was also investigated(Fig.13).The devices were stored in air without encapsulation and measured each month.Six months later,no obvious break down was observed for single crystal and spin-coated devices.The mobility value of thermal vacuum deposition device decayed about 70%at first few months and became relatively stable for the rest time.As H2O and O2traps in the channel were thought to be the predominant physical reasons for the degradation of OTFT in ambient.27This result suggests that the crystal phase with compact structure may serve as a passivation layer and effectively prevents the permeation of H2O and O2from ambient.

    Fig.12 (a)Top view of the ISQ single crystal transistor,(b)self-assembled single crystal strips and source drain electrodes on the substrate, (c)output and(d)transfer curves of the ISQ single crystal transistor with a W/Lof 2

    Fig.13 Stability of ISQ transistors in air

    4 Conclusions

    In summary,this work explored the potentiality of a flat structured organic inner salt,ISQ,as semiconductor in field-effect transistor via thermal evaporation and solution process. The performance improvement via post annealing was found to be associated with the spontaneous crystallization process of ISQ film.Single crystal of ISQ was also self-assembled on Si/ SiO2substrate.The highest mobility of 7.8×10-2cm2·V-1·s-1was achieved without optimization.This research indicated that 1,3-substituted squarine is a promising field-effect material and the performance may be further improved via more effective molecular design.

    Acknowledgement: The authors greatly appreciate the help from Professor WANG Ru-Ji and Dr.LI Zhong-Yu in the analysis of crystal structure and synthesis.

    (1) Horowitz,G.Adv.Mater.1998,10,365.

    (2) Bao,Z.N.;Lovinger,A.J.Chem.Mater.1999,11,2607.

    (3) Dimitrakopoulos,C.D.;Mascaro,D.J.IBM J.Res.Dev.2001, 45,11.

    (4) Forrest,S.R.Nature 2004,428,911.

    (5)Koren,A.B.;Curtis,M.D.;Francis,A.H.;Kampf,J.W.J.Am. Chem.Soc.2003,125,5040.

    (6) Bredas,J.L.;Calbert,J.P.;da Silva,D.A.;Cornil,J.Proc.Natl. Acad.Sci.U.S.A.2002,99,5804.

    (7) Choi,H.Y.;Kim,S.H.;Jang,J.Adv.Mater.2004,8,732.

    (8) Lan,L.F.;Peng,J.B.;Sun,M.L.;Zhou,J.L.;Zou,J.H.; Wang,J.;Cao,Y.Organ.Electr.2009,10,346.

    (9) Virkar,A.;Mannsfeld,S.;Oh,J.H.;Toney,M.F.;Tan,Y.H.; Liu,G.Y.;Scott,C.;Miller,R.;Bao,Z.N.Adv.Func.Mater. 2009,19,1962.

    (10) Liang,Y.;Dong,G.F.;Hu,Y.;Wang,L.D.;Qiu,Y.Appl.Phys. Lett.2005,86,132101.

    (11) Gundlach,D.J.;Lin,Y.Y.;Jackson,T.N.;Nelson,S.F.; Schlom,D.G.IEEE Electron Device Lett.1997,18,87.

    (12)Wang,J.;Wang,H.B.;Yan,S.J.;Huang,H.H.;Yan,D.H. Appl.Phys.Lett.2005,87,093507.

    (13)Wu,W.P.;Zhang,H.L.;Wang,Y.;Ye,S.H.;Guo,Y.L.;Di,C. G.;Yu,G.;Zhu,D.B.;Liu,Y.Q.Adv.Funct.Mater.2008,18, 2593.

    (14)Zhang,J.;Wang,H.B.;Yan,X.J.;Wang,J.;Shi,J.W.;Yan,D. H.Adv.Mater.2005,17,1191.

    (15) Cai,X.;Qi,D.D.;Zhang,Y.X.;Bian,Y.Z.;Jiang,J.Z.Acta Phys.-Chim.Sin.2010,26,1059.[蔡 雪,齊冬冬,張躍興,邊永忠,姜建壯.物理化學(xué)學(xué)報(bào),2010,26,1059.]

    (16) Ie,Y.;Nitani,M.;Tada,H.;Aso,Y.Organ.Electr.2010,11, 1740.

    (17)Ahmed,M.O.;Wang,C.M.;Keg,P.;Pisula,W.;Lam,Y.M.; Ong,B.S.;Ng,S.C.;Chen,Z.K.;Mhaisalkar,S.G.J.Mater. Chem.2009,19,3449.

    (18) Sonar,P.;Singh,S.P.;Leclere,P.;Surin,M.;Lazzaroni,R.;Lin, T.T.;Dodabalapur,A.;Sellinger,A.J.Mater.Chem.2009,19, 3228.

    (19)Zhou,Y.;Liu,W.J.;Ma,Y.G.;Wang,H.L.;Qi,L.M.;Cao,Y.; Wang,J.;Pei,J.J.Am.Chem.Soc.2007,129,12386.

    (20)Wang,X.Y.;Dong,G.F.;Qiao,J.;Wang,L.D.;Qiu,Y.Acta Phys.-Chim.Sin.2010,26,249.[王小燕,董桂芳,喬 娟,王立鐸,邱 勇.物理化學(xué)學(xué)報(bào),2010,26,249.]

    (21)Burke,A.;Schmidt-Mende,L.;Ito,S.;Gr?tzel,M.Chem. Commun.2007,3,234.

    (22) Pandey.S.;Inoue,T.;Fujikawa,N.;Yamaguchi,Y.;Hayase,S. J.Photochem.Photobiol.A 2010,214,269.

    (23) Smits,E.C.P.;Setayesh,S.;Anthopoulos,T.D.;Buechel,M.; Nijssen,W.;Coehoorn,R.;Blom,P.W.M.;Boer,B.;Leeuw, D.M.Adv.Mater.2007,19,734.

    (24) Wobkenberg,P.H.;Labram,J.G.;Swiecicki,J.M.; Parkhomenko,K.;Sredojevic,D.;Gisselbrecht,J.P.;Leeuw,D. M.;Bradley,D.D.C.;Djukic,J.P.;Anthopoulos,T.D. J.Mater.Chem.2010,20,3673.

    (25) Sreejith,S.;Carol,P.;Chithra,P.;Ajayaghosh,A.J.Mater. Chem.2008,18,264.

    (26) Miltsov,S.;Encinas,C.;Alonso,J.Tetrahedron Lett.1999,40, 4067.

    (27)Qiu,Y.;Hu,Y.C.;Dong,G.F.;Wang,L.D.;Xie,J.F.;Ma,Y. N.Appl.Phys.Lett.2003,83,1644.

    May 11,2011;Revised:June 15,2011;Published on Web:June 24,2011.

    Indolium Squarine Semiconductor for Field-Effect Transistors

    SUN Qiu-Jian DONG Gui-Fang*ZHENG Hai-Yang ZHAO Hao-Yan QIAO Juan DUAN Lian WANG Li-Duo ZHANG Fu-Shi QIU Yong*
    (Key Laboratory of Organic Optoelectronics&Molecular Engineering of Ministry of Education,Department of Chemistry, Tsinghua University,Beijing 100084,P.R.China)

    An indolium squarine 1,3-bis[(3,3-dimethylindolin-2-ylidene)methyl]squaraine was investigated as a semiconductor for use in organic field-effect transistors.Intramolecular charge separation and face to face packing were found by X-ray crystallography.p-Type thin film transistors were fabricated on Si/SiO2substrates by thermal evaporation and spin-coating.By channel state research we found that annealing could improve the polycrystallization of the semiconductor film from the amorphous state and device mobility improved from 10-5to 10-5cm2·V-1·s-1.The highest mobility of 7.8×10-2cm2·V-1·s-1was achieved in a top contact single crystal device.ISQ transistors were also stable in air without encapsulation.

    Squarylium inner salt;Organic transistor;Spin coating;Single crystal;Annealing

    O646;O649

    ?Corresponding authors.DONG Gui-Fang,Email:donggf@mail.tsinghua.edu.cn.QIU Yong,Email:qiuy@mail.tsinghua.edu.cn.

    The project was supported by the National Natural Science Foundation of China(60877026,50990062)and National Key Basic Research and Development Program of China(973)(2009CB930602).

    國家自然科學(xué)基金(60877026,50990062)和國家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃(973)(2009CB930602)資助項(xiàng)目

    猜你喜歡
    晶體管吲哚器件
    吲哚美辛腸溶Eudragit L 100-55聚合物納米粒的制備
    2.6萬億個(gè)晶體管
    大自然探索(2021年7期)2021-09-26 01:28:42
    HPV16E6與吲哚胺2,3-二氧化酶在宮頸病變組織中的表達(dá)
    氧代吲哚啉在天然產(chǎn)物合成中的應(yīng)用
    山東化工(2019年11期)2019-06-26 03:26:44
    吲哚胺2,3-雙加氧酶在結(jié)核病診斷和治療中的作用
    旋涂-蒸鍍工藝制備紅光量子點(diǎn)器件
    一種新型的耐高溫碳化硅超結(jié)晶體管
    電子器件(2015年5期)2015-12-29 08:42:07
    碳納米管晶體管邁出商用關(guān)鍵一步
    面向高速應(yīng)用的GaN基HEMT器件
    一種加載集總器件的可調(diào)三維周期結(jié)構(gòu)
    精品国产三级普通话版| 久久久久性生活片| 亚洲久久久久久中文字幕| 免费一级毛片在线播放高清视频| 免费在线观看影片大全网站| 九色成人免费人妻av| 高清毛片免费观看视频网站| 小说图片视频综合网站| 国产精品 国内视频| 欧美丝袜亚洲另类 | 午夜福利免费观看在线| 午夜免费激情av| 欧美极品一区二区三区四区| 国产av麻豆久久久久久久| 757午夜福利合集在线观看| 神马国产精品三级电影在线观看| 久久久久久久午夜电影| 非洲黑人性xxxx精品又粗又长| 国产成人av激情在线播放| 欧美不卡视频在线免费观看| 无遮挡黄片免费观看| 露出奶头的视频| 久久久国产成人免费| 久久国产精品人妻蜜桃| 每晚都被弄得嗷嗷叫到高潮| 丰满乱子伦码专区| 日韩有码中文字幕| 国产av麻豆久久久久久久| 亚洲一区二区三区色噜噜| 18禁国产床啪视频网站| 久久九九热精品免费| 精品久久久久久久久久久久久| 手机成人av网站| 国产野战对白在线观看| 亚洲av一区综合| 久久精品综合一区二区三区| 午夜精品久久久久久毛片777| 在线播放国产精品三级| 国产精品99久久99久久久不卡| 在线观看一区二区三区| 午夜老司机福利剧场| 国产成人啪精品午夜网站| 久久久久国产精品人妻aⅴ院| 无遮挡黄片免费观看| 免费大片18禁| 色av中文字幕| 国产精品亚洲一级av第二区| 中文字幕人妻丝袜一区二区| 无人区码免费观看不卡| 国产伦在线观看视频一区| 亚洲精品一区av在线观看| 综合色av麻豆| 色视频www国产| 99久久99久久久精品蜜桃| 日韩精品青青久久久久久| 麻豆国产97在线/欧美| 亚洲国产色片| a级一级毛片免费在线观看| 每晚都被弄得嗷嗷叫到高潮| 听说在线观看完整版免费高清| 中文字幕精品亚洲无线码一区| 可以在线观看毛片的网站| 亚洲成人久久性| 天堂√8在线中文| 最近在线观看免费完整版| 丰满人妻熟妇乱又伦精品不卡| 国产伦在线观看视频一区| 精品久久久久久,| 欧美日韩乱码在线| 日本 av在线| 女人十人毛片免费观看3o分钟| 蜜桃亚洲精品一区二区三区| 婷婷亚洲欧美| 日韩欧美三级三区| 久久久色成人| 人妻丰满熟妇av一区二区三区| 亚洲 欧美 日韩 在线 免费| 亚洲av日韩精品久久久久久密| 美女 人体艺术 gogo| 小蜜桃在线观看免费完整版高清| 亚洲国产精品999在线| 免费观看人在逋| 成年女人毛片免费观看观看9| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品夜夜夜夜夜久久蜜豆| 久久久久久久精品吃奶| 男女那种视频在线观看| 国产乱人视频| 中文字幕熟女人妻在线| 亚洲男人的天堂狠狠| 精品福利观看| 中文字幕人妻丝袜一区二区| 欧美色欧美亚洲另类二区| 久久久久免费精品人妻一区二区| 一a级毛片在线观看| 欧美黑人巨大hd| 丰满人妻熟妇乱又伦精品不卡| 在线观看免费视频日本深夜| 成年女人永久免费观看视频| 国产成人欧美在线观看| 欧美日韩瑟瑟在线播放| 色综合亚洲欧美另类图片| 日韩高清综合在线| 精品久久久久久久人妻蜜臀av| 神马国产精品三级电影在线观看| 啪啪无遮挡十八禁网站| 怎么达到女性高潮| 欧美日本亚洲视频在线播放| 中亚洲国语对白在线视频| 国产av一区在线观看免费| 九九在线视频观看精品| 日本精品一区二区三区蜜桃| 成人鲁丝片一二三区免费| 天天一区二区日本电影三级| 午夜免费观看网址| 少妇人妻精品综合一区二区 | 欧美日韩国产亚洲二区| 久久亚洲精品不卡| 久久午夜亚洲精品久久| 午夜免费男女啪啪视频观看 | 母亲3免费完整高清在线观看| 成人18禁在线播放| ponron亚洲| 窝窝影院91人妻| 成人国产一区最新在线观看| 极品教师在线免费播放| 中文字幕人妻熟人妻熟丝袜美 | 国产亚洲欧美98| 日韩精品中文字幕看吧| 黄片小视频在线播放| 国产欧美日韩一区二区精品| 免费看光身美女| 国产精品av视频在线免费观看| 久久久久国内视频| 丰满人妻熟妇乱又伦精品不卡| 欧美三级亚洲精品| 久久久久久久午夜电影| 国产久久久一区二区三区| 国产亚洲精品久久久久久毛片| 波多野结衣高清作品| 午夜激情福利司机影院| 中文资源天堂在线| www.色视频.com| 麻豆国产av国片精品| 午夜日韩欧美国产| 伊人久久精品亚洲午夜| 欧美黑人欧美精品刺激| 美女高潮的动态| 真人做人爱边吃奶动态| 国产高潮美女av| 淫秽高清视频在线观看| 亚洲欧美日韩高清专用| 一区二区三区国产精品乱码| 男女做爰动态图高潮gif福利片| 嫁个100分男人电影在线观看| 国产探花在线观看一区二区| 午夜福利欧美成人| 亚洲成人久久爱视频| 搞女人的毛片| 国产欧美日韩精品亚洲av| 国产视频内射| 黄色日韩在线| 久久香蕉国产精品| 人妻久久中文字幕网| 夜夜看夜夜爽夜夜摸| 亚洲精品粉嫩美女一区| 免费看日本二区| 日本成人三级电影网站| 最近视频中文字幕2019在线8| 亚洲av不卡在线观看| 午夜两性在线视频| 少妇裸体淫交视频免费看高清| 日本在线视频免费播放| 亚洲成a人片在线一区二区| 手机成人av网站| 十八禁网站免费在线| 老司机午夜十八禁免费视频| 亚洲人成网站在线播放欧美日韩| 叶爱在线成人免费视频播放| 日本一本二区三区精品| 美女免费视频网站| 久99久视频精品免费| 久久精品国产亚洲av涩爱 | 18美女黄网站色大片免费观看| 国产探花在线观看一区二区| 久久99热这里只有精品18| 精品一区二区三区视频在线 | 国产97色在线日韩免费| 一级黄色大片毛片| 午夜福利免费观看在线| 两个人看的免费小视频| 国产真实伦视频高清在线观看 | 亚洲欧美一区二区三区黑人| 国产精品野战在线观看| 香蕉av资源在线| 少妇人妻精品综合一区二区 | 身体一侧抽搐| 我要搜黄色片| 国产色婷婷99| 亚洲自拍偷在线| 国产成人影院久久av| 人人妻人人看人人澡| 午夜a级毛片| 麻豆成人午夜福利视频| 国产黄a三级三级三级人| 精品一区二区三区视频在线 | 国产精华一区二区三区| 亚洲无线观看免费| 亚洲精品456在线播放app | 18+在线观看网站| av欧美777| 亚洲国产色片| 亚洲中文字幕日韩| 亚洲av熟女| 中文字幕久久专区| 99久久精品热视频| 女人被狂操c到高潮| 久久精品91蜜桃| av在线天堂中文字幕| 欧美大码av| 日本与韩国留学比较| 午夜老司机福利剧场| 韩国av一区二区三区四区| 丰满的人妻完整版| 久久草成人影院| 身体一侧抽搐| 高清毛片免费观看视频网站| 99久久九九国产精品国产免费| 哪里可以看免费的av片| 高清在线国产一区| 97人妻精品一区二区三区麻豆| 1024手机看黄色片| 九九在线视频观看精品| 免费观看人在逋| 国产探花在线观看一区二区| 久久中文看片网| 欧美黄色淫秽网站| 好男人电影高清在线观看| 精品久久久久久久末码| 老司机深夜福利视频在线观看| 深夜精品福利| 99久久成人亚洲精品观看| 女人高潮潮喷娇喘18禁视频| 熟女人妻精品中文字幕| 成年女人看的毛片在线观看| 国产精品 国内视频| 欧美日本视频| 天堂动漫精品| 色尼玛亚洲综合影院| 免费看a级黄色片| 美女cb高潮喷水在线观看| 日韩国内少妇激情av| 国产国拍精品亚洲av在线观看 | 国产精品野战在线观看| 男女床上黄色一级片免费看| 色尼玛亚洲综合影院| 男女午夜视频在线观看| 1024手机看黄色片| 亚洲电影在线观看av| 亚洲人成伊人成综合网2020| 国产爱豆传媒在线观看| 一本一本综合久久| 欧美区成人在线视频| 日本免费a在线| 国产探花在线观看一区二区| 国产蜜桃级精品一区二区三区| 日本撒尿小便嘘嘘汇集6| 亚洲av二区三区四区| 亚洲性夜色夜夜综合| 男女那种视频在线观看| avwww免费| 两人在一起打扑克的视频| 日本黄大片高清| 免费人成视频x8x8入口观看| 日韩欧美在线乱码| 国产一区二区在线av高清观看| 色尼玛亚洲综合影院| 无遮挡黄片免费观看| 亚洲成人久久爱视频| 中文亚洲av片在线观看爽| 午夜亚洲福利在线播放| 午夜视频国产福利| 久久香蕉国产精品| 最近最新中文字幕大全电影3| 美女大奶头视频| 亚洲成人久久爱视频| 久久精品91蜜桃| 母亲3免费完整高清在线观看| 国产伦一二天堂av在线观看| 欧美性猛交╳xxx乱大交人| 高潮久久久久久久久久久不卡| 午夜a级毛片| 欧美丝袜亚洲另类 | h日本视频在线播放| 免费大片18禁| 日韩欧美在线乱码| a级毛片a级免费在线| 亚洲av成人精品一区久久| 男女做爰动态图高潮gif福利片| 成人鲁丝片一二三区免费| 中文字幕av成人在线电影| 黄片大片在线免费观看| 在线a可以看的网站| 女人十人毛片免费观看3o分钟| 国产熟女xx| 国产一区二区激情短视频| 一本精品99久久精品77| 男人舔女人下体高潮全视频| 精品午夜福利视频在线观看一区| 在线视频色国产色| 亚洲精品456在线播放app | a级一级毛片免费在线观看| 岛国视频午夜一区免费看| 成人18禁在线播放| 在线观看66精品国产| 国产伦人伦偷精品视频| 国产伦一二天堂av在线观看| 99国产综合亚洲精品| 天堂av国产一区二区熟女人妻| 黄片小视频在线播放| 国产精品永久免费网站| 久久99热这里只有精品18| 亚洲av不卡在线观看| 日韩欧美精品v在线| x7x7x7水蜜桃| 女人高潮潮喷娇喘18禁视频| e午夜精品久久久久久久| 久久精品人妻少妇| 免费在线观看成人毛片| 国产男靠女视频免费网站| 亚洲人成电影免费在线| 国内少妇人妻偷人精品xxx网站| 久久久色成人| 日韩欧美 国产精品| 禁无遮挡网站| 国产精品久久久久久久电影 | 又粗又爽又猛毛片免费看| 美女cb高潮喷水在线观看| 久久国产精品影院| 日韩高清综合在线| 女同久久另类99精品国产91| 嫁个100分男人电影在线观看| 久久国产精品影院| 一本久久中文字幕| 不卡一级毛片| 午夜精品久久久久久毛片777| 国产99白浆流出| 性色avwww在线观看| 黄色成人免费大全| 中国美女看黄片| av福利片在线观看| a在线观看视频网站| 黄色日韩在线| 18美女黄网站色大片免费观看| 欧美日韩精品网址| 中国美女看黄片| 变态另类成人亚洲欧美熟女| 高清毛片免费观看视频网站| 午夜福利在线观看免费完整高清在 | 国产午夜福利久久久久久| 中国美女看黄片| 三级男女做爰猛烈吃奶摸视频| 日韩av在线大香蕉| 在线观看66精品国产| 免费看美女性在线毛片视频| www日本黄色视频网| av视频在线观看入口| 欧美黄色淫秽网站| 看片在线看免费视频| 国内精品美女久久久久久| 婷婷六月久久综合丁香| 免费观看人在逋| 一卡2卡三卡四卡精品乱码亚洲| 精品福利观看| 午夜福利高清视频| 深爱激情五月婷婷| 久久久国产成人免费| 国产 一区 欧美 日韩| 女人高潮潮喷娇喘18禁视频| 制服丝袜大香蕉在线| 真实男女啪啪啪动态图| 亚洲专区国产一区二区| 九九久久精品国产亚洲av麻豆| 免费看美女性在线毛片视频| 51国产日韩欧美| 精品一区二区三区av网在线观看| 精品福利观看| av天堂在线播放| 国模一区二区三区四区视频| 别揉我奶头~嗯~啊~动态视频| 精品久久久久久久久久久久久| 久久久久国产精品人妻aⅴ院| 久久中文看片网| 一进一出抽搐动态| 91九色精品人成在线观看| 国产午夜精品久久久久久一区二区三区 | 99国产精品一区二区三区| 一a级毛片在线观看| 一夜夜www| 人妻久久中文字幕网| 亚洲 欧美 日韩 在线 免费| 我要搜黄色片| 特大巨黑吊av在线直播| 中文亚洲av片在线观看爽| 最近视频中文字幕2019在线8| 成人亚洲精品av一区二区| 三级国产精品欧美在线观看| 性色av乱码一区二区三区2| 老司机福利观看| 身体一侧抽搐| 日韩欧美三级三区| 亚洲欧美激情综合另类| 色老头精品视频在线观看| 欧美黑人欧美精品刺激| 欧美色欧美亚洲另类二区| 久久精品国产综合久久久| 亚洲激情在线av| 久久久久久久精品吃奶| 午夜视频国产福利| 啦啦啦免费观看视频1| 一个人观看的视频www高清免费观看| 99久久综合精品五月天人人| ponron亚洲| 舔av片在线| 黑人欧美特级aaaaaa片| 人妻夜夜爽99麻豆av| 黄色视频,在线免费观看| 亚洲av电影不卡..在线观看| 国产99白浆流出| 成年女人永久免费观看视频| 老司机福利观看| 国产精品综合久久久久久久免费| 成人午夜高清在线视频| 国产激情欧美一区二区| 大型黄色视频在线免费观看| 高清毛片免费观看视频网站| 在线国产一区二区在线| 午夜免费观看网址| 久99久视频精品免费| 亚洲最大成人中文| 国产91精品成人一区二区三区| 国产成人欧美在线观看| 12—13女人毛片做爰片一| 最后的刺客免费高清国语| 内射极品少妇av片p| 久久精品影院6| 国产单亲对白刺激| 亚洲av成人不卡在线观看播放网| 18美女黄网站色大片免费观看| 亚洲国产日韩欧美精品在线观看 | 法律面前人人平等表现在哪些方面| 久久欧美精品欧美久久欧美| 国产成人影院久久av| 老司机在亚洲福利影院| 有码 亚洲区| 蜜桃久久精品国产亚洲av| 国产高清视频在线播放一区| 我要搜黄色片| 人人妻人人看人人澡| 美女免费视频网站| 丁香欧美五月| 午夜老司机福利剧场| 日本熟妇午夜| 叶爱在线成人免费视频播放| 色尼玛亚洲综合影院| 男人舔奶头视频| 最近在线观看免费完整版| 手机成人av网站| 久久久久久久久久黄片| 黄色片一级片一级黄色片| 韩国av一区二区三区四区| 一级a爱片免费观看的视频| 中亚洲国语对白在线视频| 国产探花在线观看一区二区| 日本与韩国留学比较| 亚洲人成电影免费在线| av片东京热男人的天堂| 欧美区成人在线视频| 亚洲内射少妇av| 天堂影院成人在线观看| 91久久精品电影网| 欧美成人性av电影在线观看| 精品国内亚洲2022精品成人| 亚洲成人免费电影在线观看| 免费无遮挡裸体视频| 久久久精品欧美日韩精品| 特大巨黑吊av在线直播| 国产高潮美女av| 国产黄色小视频在线观看| 成熟少妇高潮喷水视频| 在线观看66精品国产| 国产精品一区二区三区四区久久| 国产97色在线日韩免费| 欧美成狂野欧美在线观看| 国产av一区在线观看免费| 国产99白浆流出| 亚洲熟妇中文字幕五十中出| 很黄的视频免费| 少妇高潮的动态图| 午夜影院日韩av| 精品久久久久久久久久免费视频| 中文资源天堂在线| 高清日韩中文字幕在线| 别揉我奶头~嗯~啊~动态视频| 久久精品国产亚洲av涩爱 | 一本精品99久久精品77| 国产伦精品一区二区三区视频9 | 少妇高潮的动态图| 女人十人毛片免费观看3o分钟| 韩国av一区二区三区四区| 哪里可以看免费的av片| 亚洲欧美日韩高清在线视频| 一进一出好大好爽视频| 高清在线国产一区| 男女做爰动态图高潮gif福利片| 婷婷丁香在线五月| 欧美日本亚洲视频在线播放| 禁无遮挡网站| 变态另类成人亚洲欧美熟女| 欧美黑人巨大hd| 18+在线观看网站| 亚洲精品粉嫩美女一区| 丁香六月欧美| 欧美日韩乱码在线| 黑人欧美特级aaaaaa片| 久久久久久久久久黄片| 黑人欧美特级aaaaaa片| 97超视频在线观看视频| 亚洲人成网站高清观看| 欧美午夜高清在线| 亚洲精品乱码久久久v下载方式 | 国产美女午夜福利| 不卡一级毛片| 欧美乱妇无乱码| 成年女人看的毛片在线观看| 99riav亚洲国产免费| 一区二区三区激情视频| 亚洲av免费高清在线观看| 三级国产精品欧美在线观看| 好男人在线观看高清免费视频| 精品福利观看| 国产成人影院久久av| 一区二区三区激情视频| 男人和女人高潮做爰伦理| 日本黄大片高清| 亚洲国产色片| 国产高清视频在线播放一区| 女警被强在线播放| 亚洲av成人不卡在线观看播放网| xxxwww97欧美| 精品久久久久久,| 欧美成人免费av一区二区三区| 男人舔女人下体高潮全视频| 国产久久久一区二区三区| 国产蜜桃级精品一区二区三区| 一级毛片女人18水好多| 国产高清有码在线观看视频| 12—13女人毛片做爰片一| 熟女少妇亚洲综合色aaa.| 国产黄a三级三级三级人| 成年版毛片免费区| 国产麻豆成人av免费视频| 国产高清激情床上av| 99久久99久久久精品蜜桃| 成人无遮挡网站| 午夜免费成人在线视频| 九色国产91popny在线| 免费观看人在逋| 亚洲成人久久性| 国产精品久久电影中文字幕| 国产精品爽爽va在线观看网站| 亚洲精品一卡2卡三卡4卡5卡| 免费在线观看成人毛片| 国产91精品成人一区二区三区| 欧美乱色亚洲激情| 偷拍熟女少妇极品色| 亚洲电影在线观看av| 亚洲精品456在线播放app | 九九久久精品国产亚洲av麻豆| 9191精品国产免费久久| 日本一二三区视频观看| 97人妻精品一区二区三区麻豆| 国产色婷婷99| 久久久久久久精品吃奶| 神马国产精品三级电影在线观看| 中文字幕人妻熟人妻熟丝袜美 | 小说图片视频综合网站| 99久久精品国产亚洲精品| 亚洲18禁久久av| 国产精品一区二区三区四区免费观看 | 两性午夜刺激爽爽歪歪视频在线观看| 久久久色成人| 最新中文字幕久久久久| 亚洲人与动物交配视频| 亚洲欧美日韩无卡精品| 免费在线观看日本一区| 夜夜爽天天搞| 亚洲精品一区av在线观看| 国产精品一区二区免费欧美| 51午夜福利影视在线观看| 好男人电影高清在线观看| 日韩欧美国产在线观看| 免费看美女性在线毛片视频| 久久久久久人人人人人| 久久伊人香网站| 国产精品自产拍在线观看55亚洲| 亚洲电影在线观看av| 精品久久久久久成人av| av在线天堂中文字幕| 亚洲电影在线观看av| 国产精品久久电影中文字幕| 欧美性猛交╳xxx乱大交人| 精品一区二区三区视频在线观看免费| 特大巨黑吊av在线直播| 久久久久久久午夜电影|