• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    吲哚方酸菁半導(dǎo)體在場(chǎng)效應(yīng)晶體管中的應(yīng)用

    2011-12-11 09:08:08孫秋健董桂芳鄭海洋趙昊巖煉王立鐸張復(fù)實(shí)
    物理化學(xué)學(xué)報(bào) 2011年8期
    關(guān)鍵詞:晶體管吲哚器件

    孫秋健 董桂芳 鄭海洋 趙昊巖 喬 娟 段 煉王立鐸 張復(fù)實(shí) 邱 勇

    (有機(jī)光電子與分子工程教育部重點(diǎn)實(shí)驗(yàn)室,清華大學(xué)化學(xué)系,北京100084)

    吲哚方酸菁半導(dǎo)體在場(chǎng)效應(yīng)晶體管中的應(yīng)用

    孫秋健 董桂芳*鄭海洋 趙昊巖 喬 娟 段 煉王立鐸 張復(fù)實(shí) 邱 勇*

    (有機(jī)光電子與分子工程教育部重點(diǎn)實(shí)驗(yàn)室,清華大學(xué)化學(xué)系,北京100084)

    研究了2,3,3-三甲基-1-H-吲哚方酸菁的場(chǎng)效應(yīng)性質(zhì),通過X射線衍射證實(shí)了方酸菁分子內(nèi)電荷分離結(jié)構(gòu)以及分子間面面堆積模式,并在Si/SiO2基片上通過真空蒸鍍和旋涂的方法制備了p型晶體管器件.通過對(duì)器件性能與溝道形態(tài)的研究,我們發(fā)現(xiàn)退火處理能促進(jìn)方酸菁薄膜由無定形態(tài)向多晶態(tài)轉(zhuǎn)變,從而使薄膜晶體管的遷移率從10-5cm2·V-1·s-1量級(jí)提高到10-3cm2·V-1·s-1量級(jí).頂接觸結(jié)構(gòu)單晶器件獲得了7.8×10-2cm2·V-1·s-1的遷移率.未封裝的方酸菁晶體管在大氣中也表現(xiàn)出較好的穩(wěn)定性.

    方酸菁內(nèi)鹽;有機(jī)晶體管;旋涂;單晶;退火

    1 Introduction

    Organic semiconductors are the most important element in organic thin-film field-effect transistors(OTFTs).1-4Both experimental results and theoretical calculations have verified that the current magnification of gate bias in OTFTs results from the hopping process of field induced carriers between adjacent molecules,and thus close packing of the molecules can improve charge transport through the overlapping frontier orbital.5-8Hitherto,lots of π-conjugated organic small molecules and polymers with small energy gaps,such as pentacene,9-11copper phthalocyanine(CuPc),12-14perylene diimide,15oligothiophene,16,17and their derivatives,18,19have been investigated to realize high mobility.Since the initial status of these organic films by traditional processing techniques is usually less ordered,uniform and oriented polycrystallization of the film,especially at the first few layers near the semiconductor/dielec-tric interface,is the key to improve the performance of OTFTs. Thus post-processing such as annealing is frequently used to improve the microstructure of the semiconductor layer.20

    In order to facilitate the thermodynamic phase transition during annealing,squarylium inner salt,a kind of compounds with strong intendancy of self crystallization,was focused as the semiconductor in OTFTs.Though squarylium dyes have been widely used as photoconductors in printers and organic solar cells due to their fine stability and transport property,21,22they are less reported in organic transistors.23-25In this paper,1,3-bis [(3,3-dimethylindolin-2-ylidene)methyl]squaraine(ISQ,Fig.1 (a))was studied in both thermal vacuum deposited and solution processed transistors.This molecule is nearly planar and has a fine π-π packing along b direction in crystal phase(Fig.1 (b)),which is expected to benefit the field effect transport.

    2 Experimental

    2.1 Material synthesis

    ISQ was synthesized by a modified procedure according to reference.263,4-dihydroxy-3-cyclobutene-1,2-dione(99%)and octadecyltrichlorosilane(OTS,95%)were purchased from Acros.The 2,3,3-trimethyiindolenine(97%)was purchased from Alfa Aesar.The other chemicals and solvents were purchased from Sigma-Aldrich.All the chemicals were analytically pure and used as received without further purification unless otherwise stated.3,4-Dihydroxy-3-cyclobutene-1,2-dione and 2,3, 3-trimethyiindolenine in stoichiometric ratio were heated in refluxing mixture of toluene and n-butanol for 6 h.The byproduct,water,was removed azeotropically using a Dean-Stark trap.The precipitate was rinsed with petrol ether.Then it was sequently purified by column chromatography and recrystallization to get gold-shine needle-like crystals with a yield of 85%.The purity was assessed to be about 99.5%by high performance liquid chromatography(Agilent 1100,USA).

    2.2 X-ray crystallography

    Fig.1 (a)Chemical structure of ISQ and(b)its crystal packing along b direction

    A prism-shaped single crystal was grown by slow evaporation of the ISQ/dichloromethane solution at room temperature. Structural X-ray diffraction was performed on a CCD diffractometer(BrukerAPEX,Germany)equipped with graphite monchromatized Mo Kαradiation.Details of crystal parameters,data collection,and structure refinement are given in Table 1.Data collection was controlled by SMART program(Bruker, 1997).Computations were performed using the SHELXTL NT ver.5.10 program package(Bruker,1997)on an IBM PC 586 computer.Analytic expressions of atomic scattering factors were employed,and anomalous dispersion corrections were incorporated(International Tables for X-ray Crystallography, 1989).Crystal drawings were produced with XP(Bruker, 1998).

    2.3 Photochemical and electrochemical properties

    The ISQ film was deposited on a quartz glass from methanol solution.The absorption was recorded with a UV-Vis spectrophotometer(Agilent 8453,USA).The fluorescence emission was recorded with a uoro-spectrophotometer(Jobin Yvon Fluro Max-3,France).The maximum absorption and emission were observed at 644 and 664 nm respectively,with nearly symmetric shapes(Fig.2).From the absorption edge,the band gap of ISQ was calculated to be 1.83 eV.

    The electrochemical properties of ISQ were investigated by cyclic voltammetry.The measurement was performed on a voltammetric analyzer(Princeton Applied Research Potentiostat/Galvanostat model 283,USA)in dichloromethane at a scan rate of 100 mV·s-1.Ferrocene was added in as an internalreference.The oxidation potentials were 0.971 V for ISQ and 0.528 V for ferrocene(Fig.3).The highest occupied molecular orbital(HOMO)of ISQ was then calculated to be-5.24 eV versus vacuum.According to the spectrum data,the lowest unoccupied molecular orbital(LUMO)of ISQ was deduced to be-3.41 eV.

    Table 1 Data collection,processing and structure refinement for the structural X-ray diffraction of ISQ

    Fig.2 UV-Vis absorption and photoluminescence spectrum of ISQ film

    2.4 Fabrication of transistors

    Field-effect transistors were fabricated in a bottom-gate, top-contact architecture with a highly n-doped silicon wafer as the gate electrode and 300 nm thermally grown SiO2as the gate dielectric.The substrates were cleaned by sonication in organic solvents.Then the SiO2surface was treated in piranha solution and modified with OTS.ISQ was deposited onto the SiO2substrate at a rate of 1 nm·s-1under 10-4Pa.For solution process,the ISQ semiconductor was spin-coated from a 4 g·L-11,2-dichloroethane solution and then baked on a hot plate at 80°C in N2atmosphere.The thickness of ISQ thin film was controlled at 45 nm.For crystal transistors,the crystal strips were in-situ assembled on OTS modified Si/SiO2substrate by immersing the substrate into an ISQ/dichloromethane solution (10-3mol·L-1)and then slowly evaporating the solution in a saturated hexane atmosphere for two weeks.Finally,the source and drain contacts were formed by thermal vacuum deposition of Au thin film through shadow masks.Electrical characterization of the transistors was performed in air without encapsulation with a semiconductor characterization system(Keithley SCS 4200,USA).

    2.5 Surface morphology

    Fig.3 Cyclic voltammetry of ISQ with ferrocene included

    The dynamic atomic force microscopy(DAFM)of the ISQ film was taken by a scanning probe microscope(Seiko SPI 3800 Series SPA-400,Japan).The optical images of the thin films,the crystal strips,and the top view of the transistors were recorded with a microscope(Olympus BX51M,Japan).

    3 Results and discussion

    The classical structure of ISQ is shown in Fig.1(a).Because of the isomerous effect of squaric acid,opposite charges are located in oxygen and nitrogen atoms separately.A near flat configuration of ISQ is kept with only 7°distortion in the crystal, according to the crystal packing data(Fig.1(b)).The optimized structure was given by geometrical optimization with Gaussian98 at B3LYP/6-311+G(d,p)level(Fig.4).Symmetrical frontier orbital is delocalized among the whole molecule for both HOMO and LUMO due to the fast resonance with charge exchange.

    The electron density contour map in the molecular plane was calculated by“EDEN”command of Shelxtl XP program (Fig.5).FoFourier method was chosen to process the crystal diffractional data.By counting the electron numbers per each carbon atom,it is found that the electron density decreases from the central part to the side groups.In order to clarify the transport property of ISQ,the inner reorganization energy was calculated based on the result of static energy and geometry optimization for positive and negative ISQ ions at B3LYP/6-311+ G(d,p)level.The reorganization energy was 0.168 and 0.271 eV for hole and electron,respectively.The relatively smaller value for hole carriers suggests that ISQ is mainly a p-type transporter.

    According to thermal gravity analysis,mass loss of ISQ occurred at 287.8°C.The attached methyls also enable ISQ to solve in most halohydrocarbon.Thus,ISQ thin films could be prepared by both thermal evaporation and solution process. The morphology of films was characterized by dynamic atomic force microscopy(DAFM)(Fig.6).The root mean square roughness(RRMS)was generally less than 0.5 nm.

    Top contact bottom gate architecture was employed in ISQ transistors(Fig.7).Since the HOMO of ISQ are-5.24 eV,gold was used as the source and drain electrodes to achieve energy level matching.As expected before,ISQ TFTs performed hole-transport properties with saturated output curves.However,the initial mobility of vacuum evaporated and spin-coated devices ranged from 10-6to 10-5cm2·V-1·s-1with a low on/off current ratio.

    Fig.4 HOMO and LUMO of the singlet ground-state ISQ

    Fig.5 Contour map of crystal electron density in the molecular plane

    Fig.6 DAFM morphologies in the area of 5 μm×5 μm of(a)thermal evaporation film,(b)spin coated film from C2H4Cl2and(c)single crystal strip on SiO2substrate

    In order to accelerate the polycrystallization of the semiconducting layer,the devices were then annealed in the N2-filled glove box at 80°C for 8 h.As a result,crystal-like patterns were observed on the surface of the semiconductor layer,and the mobility increased to 10-4-10-3cm2·V-1·s-1,about two orders of magnitudes higher than initial devices.To explore the structure of the annealed film,X-ray diffraction was applied with a diffractometer(Rigaku-2500,Japan)equipped with a Cu target.2θ scan ranged from 3°to 100°at a speed of 6(°)·min-1. The diffraction pattern proved the presence of polycrystalline phase(Fig.8).The major electrical parameters of various transistors were summarized in Table 2.For each kind of transistors,the data were averaged for effective channels in a batch of 11 devices.Transfer and output characteristics of the best device were shown in Fig.9.The on/off ratio was defined as the current of-120 V over that of 30 V in transfer curves.

    Fig.7 Architecture of the ISQ thin film transistor

    Generally,the performance of ISQ transistors was enhanced by both OTS modification and annealing.However,the effect of annealing was largely dependent on channel morphology.In about 40%of the spin coated devices,ISQ film aggregated into irregular polycrystalline particles(Fig.10(c)).The amplified inset shows the microscopic film continuity is completely destroyed,which resulted in noneffective devices.In rest devices, although channel smoothness was somewhat decreased,the polycrystalline film still kept connectivity between source and drain electrodes(Fig.10(b)).In this case,the improvement of performance further proves the mobility and on/off ratio of polycrystalline film is higher than amorphous one.For vacuum evaporation,the percentage of noneffective devices resulting from the channel discontinuity was 5%.The difference in success rate indicates the residual solvent in solution processed film facilitated excessive crystallization in annealing,and induced larger polycrystalline particles and rougher surface. Therefore annealing condition needs to be properly controlled to improve the quality of the semiconductor layer.

    Fig.8 X-ray diffraction patterns of 200 nm ISQ film after annealing

    Table 2 Electrical characterization of various ISQ transistors

    Fig.9 Transfer and output curves of ISQ thin-film transistors by(a,b)thermal evaporation and(c,d)spin coating with a W/Lof 20Idrain:drain current,Vdrain:drain voltage,Vgate:gate voltage

    Fig.10 Channel images of spin coated ISQ film(a)before annealing,(b)enhanced device after annealing, (c)noneffective device after annealing

    Since the mobility of ISQ thin film transistors is not as high as ordinary organic semiconductors,further optimization is necessary.Firstly,the interaction between the dielectric surface and the organic semiconductor affects the assembly of the initial ISQ layers,so the selection and modification of dielectric are important.Secondly,as the crystallinity and crystal orientation were uncontrolled in present process,inducing ordered packing along the channel is expected to greatly improve the performance.Thereby ISQ single crystal was evaluated on Si/ SiO2substrate.Fig.11 illustrates the process of the crystal deposition by diffusion of good and poor solvents.OTS-modified Si/SiO2substrate was firstly immersed into the ISQ/dichloromethane solution of 1×10-3mol·L-1and then the solvent was evaporated slowly in a saturated hexane atmosphere for two weeks.The precipitation of single crystal strips was found to adhere to the SiO2surface.Extra crystal precipitation was rinsed from the substrate by hexane.100 nm gold was deposited onto the crystal strips as source and drain electrodes.Fig.12 (a,b)is the top view of channel in the crystal transistor.Fig.12 (c,d)shows the characteristic curves of the crystal transistor. The highest mobility,the corresponding on/off ratio,and threshold voltage were calculated to be 7.8×10-2cm2·V-1·s-1, 102,and-37 V,respectively.

    Fig.11 Illustration of the growth of ISQ single crystal on Si/SiO2substrate

    In comparison to thin films,the mobility of ISQ single crystal increased by only 10×,but the on/off ratio decreased by 100×and threshold voltage increased.It was noteworthy that the thickness of the crystal strips was about 30 μm while the filed effect thickness was normally less than 10 nm.For bottom gate top contact structure,large thickness shields the function of gate electric field and brings high threshold voltage. The extra thickness had negligible contribution to the on-current but greatly affected the off-current.In an approximate analysis,the channel along direction of thickness could be treated as parallel connection between source and drain.Therefore compared to a crystal strip with 30 nm-thickness,the off-current would increase 1000×and result in a 3-magnitude drop of on/off ratio.Thinner crystal strip and bottom contact structure are promising to solve these problems.

    The stability of OTS treated ISQ transistors after annealing was also investigated(Fig.13).The devices were stored in air without encapsulation and measured each month.Six months later,no obvious break down was observed for single crystal and spin-coated devices.The mobility value of thermal vacuum deposition device decayed about 70%at first few months and became relatively stable for the rest time.As H2O and O2traps in the channel were thought to be the predominant physical reasons for the degradation of OTFT in ambient.27This result suggests that the crystal phase with compact structure may serve as a passivation layer and effectively prevents the permeation of H2O and O2from ambient.

    Fig.12 (a)Top view of the ISQ single crystal transistor,(b)self-assembled single crystal strips and source drain electrodes on the substrate, (c)output and(d)transfer curves of the ISQ single crystal transistor with a W/Lof 2

    Fig.13 Stability of ISQ transistors in air

    4 Conclusions

    In summary,this work explored the potentiality of a flat structured organic inner salt,ISQ,as semiconductor in field-effect transistor via thermal evaporation and solution process. The performance improvement via post annealing was found to be associated with the spontaneous crystallization process of ISQ film.Single crystal of ISQ was also self-assembled on Si/ SiO2substrate.The highest mobility of 7.8×10-2cm2·V-1·s-1was achieved without optimization.This research indicated that 1,3-substituted squarine is a promising field-effect material and the performance may be further improved via more effective molecular design.

    Acknowledgement: The authors greatly appreciate the help from Professor WANG Ru-Ji and Dr.LI Zhong-Yu in the analysis of crystal structure and synthesis.

    (1) Horowitz,G.Adv.Mater.1998,10,365.

    (2) Bao,Z.N.;Lovinger,A.J.Chem.Mater.1999,11,2607.

    (3) Dimitrakopoulos,C.D.;Mascaro,D.J.IBM J.Res.Dev.2001, 45,11.

    (4) Forrest,S.R.Nature 2004,428,911.

    (5)Koren,A.B.;Curtis,M.D.;Francis,A.H.;Kampf,J.W.J.Am. Chem.Soc.2003,125,5040.

    (6) Bredas,J.L.;Calbert,J.P.;da Silva,D.A.;Cornil,J.Proc.Natl. Acad.Sci.U.S.A.2002,99,5804.

    (7) Choi,H.Y.;Kim,S.H.;Jang,J.Adv.Mater.2004,8,732.

    (8) Lan,L.F.;Peng,J.B.;Sun,M.L.;Zhou,J.L.;Zou,J.H.; Wang,J.;Cao,Y.Organ.Electr.2009,10,346.

    (9) Virkar,A.;Mannsfeld,S.;Oh,J.H.;Toney,M.F.;Tan,Y.H.; Liu,G.Y.;Scott,C.;Miller,R.;Bao,Z.N.Adv.Func.Mater. 2009,19,1962.

    (10) Liang,Y.;Dong,G.F.;Hu,Y.;Wang,L.D.;Qiu,Y.Appl.Phys. Lett.2005,86,132101.

    (11) Gundlach,D.J.;Lin,Y.Y.;Jackson,T.N.;Nelson,S.F.; Schlom,D.G.IEEE Electron Device Lett.1997,18,87.

    (12)Wang,J.;Wang,H.B.;Yan,S.J.;Huang,H.H.;Yan,D.H. Appl.Phys.Lett.2005,87,093507.

    (13)Wu,W.P.;Zhang,H.L.;Wang,Y.;Ye,S.H.;Guo,Y.L.;Di,C. G.;Yu,G.;Zhu,D.B.;Liu,Y.Q.Adv.Funct.Mater.2008,18, 2593.

    (14)Zhang,J.;Wang,H.B.;Yan,X.J.;Wang,J.;Shi,J.W.;Yan,D. H.Adv.Mater.2005,17,1191.

    (15) Cai,X.;Qi,D.D.;Zhang,Y.X.;Bian,Y.Z.;Jiang,J.Z.Acta Phys.-Chim.Sin.2010,26,1059.[蔡 雪,齊冬冬,張躍興,邊永忠,姜建壯.物理化學(xué)學(xué)報(bào),2010,26,1059.]

    (16) Ie,Y.;Nitani,M.;Tada,H.;Aso,Y.Organ.Electr.2010,11, 1740.

    (17)Ahmed,M.O.;Wang,C.M.;Keg,P.;Pisula,W.;Lam,Y.M.; Ong,B.S.;Ng,S.C.;Chen,Z.K.;Mhaisalkar,S.G.J.Mater. Chem.2009,19,3449.

    (18) Sonar,P.;Singh,S.P.;Leclere,P.;Surin,M.;Lazzaroni,R.;Lin, T.T.;Dodabalapur,A.;Sellinger,A.J.Mater.Chem.2009,19, 3228.

    (19)Zhou,Y.;Liu,W.J.;Ma,Y.G.;Wang,H.L.;Qi,L.M.;Cao,Y.; Wang,J.;Pei,J.J.Am.Chem.Soc.2007,129,12386.

    (20)Wang,X.Y.;Dong,G.F.;Qiao,J.;Wang,L.D.;Qiu,Y.Acta Phys.-Chim.Sin.2010,26,249.[王小燕,董桂芳,喬 娟,王立鐸,邱 勇.物理化學(xué)學(xué)報(bào),2010,26,249.]

    (21)Burke,A.;Schmidt-Mende,L.;Ito,S.;Gr?tzel,M.Chem. Commun.2007,3,234.

    (22) Pandey.S.;Inoue,T.;Fujikawa,N.;Yamaguchi,Y.;Hayase,S. J.Photochem.Photobiol.A 2010,214,269.

    (23) Smits,E.C.P.;Setayesh,S.;Anthopoulos,T.D.;Buechel,M.; Nijssen,W.;Coehoorn,R.;Blom,P.W.M.;Boer,B.;Leeuw, D.M.Adv.Mater.2007,19,734.

    (24) Wobkenberg,P.H.;Labram,J.G.;Swiecicki,J.M.; Parkhomenko,K.;Sredojevic,D.;Gisselbrecht,J.P.;Leeuw,D. M.;Bradley,D.D.C.;Djukic,J.P.;Anthopoulos,T.D. J.Mater.Chem.2010,20,3673.

    (25) Sreejith,S.;Carol,P.;Chithra,P.;Ajayaghosh,A.J.Mater. Chem.2008,18,264.

    (26) Miltsov,S.;Encinas,C.;Alonso,J.Tetrahedron Lett.1999,40, 4067.

    (27)Qiu,Y.;Hu,Y.C.;Dong,G.F.;Wang,L.D.;Xie,J.F.;Ma,Y. N.Appl.Phys.Lett.2003,83,1644.

    May 11,2011;Revised:June 15,2011;Published on Web:June 24,2011.

    Indolium Squarine Semiconductor for Field-Effect Transistors

    SUN Qiu-Jian DONG Gui-Fang*ZHENG Hai-Yang ZHAO Hao-Yan QIAO Juan DUAN Lian WANG Li-Duo ZHANG Fu-Shi QIU Yong*
    (Key Laboratory of Organic Optoelectronics&Molecular Engineering of Ministry of Education,Department of Chemistry, Tsinghua University,Beijing 100084,P.R.China)

    An indolium squarine 1,3-bis[(3,3-dimethylindolin-2-ylidene)methyl]squaraine was investigated as a semiconductor for use in organic field-effect transistors.Intramolecular charge separation and face to face packing were found by X-ray crystallography.p-Type thin film transistors were fabricated on Si/SiO2substrates by thermal evaporation and spin-coating.By channel state research we found that annealing could improve the polycrystallization of the semiconductor film from the amorphous state and device mobility improved from 10-5to 10-5cm2·V-1·s-1.The highest mobility of 7.8×10-2cm2·V-1·s-1was achieved in a top contact single crystal device.ISQ transistors were also stable in air without encapsulation.

    Squarylium inner salt;Organic transistor;Spin coating;Single crystal;Annealing

    O646;O649

    ?Corresponding authors.DONG Gui-Fang,Email:donggf@mail.tsinghua.edu.cn.QIU Yong,Email:qiuy@mail.tsinghua.edu.cn.

    The project was supported by the National Natural Science Foundation of China(60877026,50990062)and National Key Basic Research and Development Program of China(973)(2009CB930602).

    國家自然科學(xué)基金(60877026,50990062)和國家重點(diǎn)基礎(chǔ)研究發(fā)展規(guī)劃(973)(2009CB930602)資助項(xiàng)目

    猜你喜歡
    晶體管吲哚器件
    吲哚美辛腸溶Eudragit L 100-55聚合物納米粒的制備
    2.6萬億個(gè)晶體管
    大自然探索(2021年7期)2021-09-26 01:28:42
    HPV16E6與吲哚胺2,3-二氧化酶在宮頸病變組織中的表達(dá)
    氧代吲哚啉在天然產(chǎn)物合成中的應(yīng)用
    山東化工(2019年11期)2019-06-26 03:26:44
    吲哚胺2,3-雙加氧酶在結(jié)核病診斷和治療中的作用
    旋涂-蒸鍍工藝制備紅光量子點(diǎn)器件
    一種新型的耐高溫碳化硅超結(jié)晶體管
    電子器件(2015年5期)2015-12-29 08:42:07
    碳納米管晶體管邁出商用關(guān)鍵一步
    面向高速應(yīng)用的GaN基HEMT器件
    一種加載集總器件的可調(diào)三維周期結(jié)構(gòu)
    亚洲电影在线观看av| 日韩欧美精品免费久久 | 全区人妻精品视频| 搡女人真爽免费视频火全软件 | av中文乱码字幕在线| 国产精品免费一区二区三区在线| 97热精品久久久久久| 99热6这里只有精品| 国产高清三级在线| 久久精品91蜜桃| 日本 av在线| 18禁在线播放成人免费| 国产69精品久久久久777片| 丁香六月欧美| 午夜福利高清视频| 九九热线精品视视频播放| 真人一进一出gif抽搐免费| 在线播放国产精品三级| 国产白丝娇喘喷水9色精品| 自拍偷自拍亚洲精品老妇| 国产精品三级大全| 国产人妻一区二区三区在| 国产高清三级在线| 91久久精品电影网| 国产精品三级大全| 97超级碰碰碰精品色视频在线观看| 欧美最黄视频在线播放免费| 午夜福利高清视频| 国产成人福利小说| 51国产日韩欧美| 人妻丰满熟妇av一区二区三区| 老熟妇乱子伦视频在线观看| 国产伦精品一区二区三区视频9| 制服丝袜大香蕉在线| 中文字幕精品亚洲无线码一区| 亚洲欧美日韩高清在线视频| 每晚都被弄得嗷嗷叫到高潮| 色哟哟·www| 在现免费观看毛片| 99久久精品一区二区三区| 国内精品美女久久久久久| 久久久久久久久大av| 欧美日韩乱码在线| 欧美日韩亚洲国产一区二区在线观看| 久久精品国产亚洲av涩爱 | 国产麻豆成人av免费视频| 男女那种视频在线观看| 在线观看免费视频日本深夜| 国产欧美日韩一区二区三| 亚洲精华国产精华精| 久久伊人香网站| 老熟妇乱子伦视频在线观看| 搡女人真爽免费视频火全软件 | 国产免费av片在线观看野外av| 日韩欧美免费精品| 亚洲av不卡在线观看| 欧美乱色亚洲激情| 男人舔女人下体高潮全视频| 日本一二三区视频观看| 成人一区二区视频在线观看| 日韩人妻高清精品专区| 精品人妻视频免费看| 我要看日韩黄色一级片| 男人狂女人下面高潮的视频| 亚洲无线观看免费| 亚洲精品成人久久久久久| 国产黄色小视频在线观看| 两人在一起打扑克的视频| 欧美高清成人免费视频www| 日韩欧美国产一区二区入口| 综合色av麻豆| 免费看日本二区| 欧美绝顶高潮抽搐喷水| av在线老鸭窝| 国内少妇人妻偷人精品xxx网站| 国产一区二区激情短视频| 精品人妻熟女av久视频| 国产精品不卡视频一区二区 | 亚洲人成网站在线播| 欧美+日韩+精品| 色在线成人网| 欧美一区二区亚洲| 亚洲美女搞黄在线观看 | 欧美高清成人免费视频www| 亚洲精品亚洲一区二区| 最近中文字幕高清免费大全6 | 国产精品一区二区免费欧美| 日韩人妻高清精品专区| 最近视频中文字幕2019在线8| 国产中年淑女户外野战色| 波多野结衣巨乳人妻| 国产乱人视频| 性色av乱码一区二区三区2| 亚洲第一欧美日韩一区二区三区| 国内精品一区二区在线观看| 99久久九九国产精品国产免费| 久久精品国产自在天天线| 中亚洲国语对白在线视频| www.熟女人妻精品国产| 欧美三级亚洲精品| 淫秽高清视频在线观看| 国产精品伦人一区二区| 亚洲国产高清在线一区二区三| 免费高清视频大片| 男人狂女人下面高潮的视频| 全区人妻精品视频| 九九热线精品视视频播放| 国产精品嫩草影院av在线观看 | 99视频精品全部免费 在线| 精品午夜福利在线看| 麻豆成人午夜福利视频| 亚洲,欧美,日韩| 亚洲精品成人久久久久久| 久久天躁狠狠躁夜夜2o2o| 中文在线观看免费www的网站| 成年女人看的毛片在线观看| 国产精品女同一区二区软件 | 少妇高潮的动态图| 一二三四社区在线视频社区8| 51国产日韩欧美| 亚洲,欧美,日韩| 久久这里只有精品中国| 久久九九热精品免费| 波多野结衣巨乳人妻| 国产真实伦视频高清在线观看 | 国产精品久久电影中文字幕| 两个人的视频大全免费| 国产黄色小视频在线观看| 亚洲精品乱码久久久v下载方式| 亚洲 欧美 日韩 在线 免费| 国产精品自产拍在线观看55亚洲| 别揉我奶头 嗯啊视频| 一区二区三区激情视频| 99国产综合亚洲精品| 亚洲欧美精品综合久久99| 一个人看的www免费观看视频| 97超视频在线观看视频| aaaaa片日本免费| 亚洲欧美日韩东京热| 久久久成人免费电影| 给我免费播放毛片高清在线观看| 国产午夜精品论理片| 一a级毛片在线观看| 美女cb高潮喷水在线观看| 日日夜夜操网爽| 午夜福利在线在线| 性插视频无遮挡在线免费观看| 久久国产精品人妻蜜桃| 最好的美女福利视频网| 国产成人影院久久av| 成人一区二区视频在线观看| 久久亚洲精品不卡| 三级毛片av免费| 一个人看视频在线观看www免费| 最新中文字幕久久久久| 国产精品美女特级片免费视频播放器| 少妇高潮的动态图| 淫秽高清视频在线观看| 真实男女啪啪啪动态图| 日韩成人在线观看一区二区三区| 麻豆国产av国片精品| 9191精品国产免费久久| 久久中文看片网| 国产人妻一区二区三区在| 内射极品少妇av片p| 久久这里只有精品中国| 97超级碰碰碰精品色视频在线观看| 看十八女毛片水多多多| 久久久久久大精品| 日本一本二区三区精品| av国产免费在线观看| 禁无遮挡网站| 伊人久久精品亚洲午夜| 变态另类丝袜制服| 亚洲不卡免费看| 日本黄大片高清| 黄色视频,在线免费观看| 欧美另类亚洲清纯唯美| 亚洲 国产 在线| 色播亚洲综合网| 日日夜夜操网爽| 婷婷色综合大香蕉| 国产麻豆成人av免费视频| 国产精品国产高清国产av| 亚洲熟妇中文字幕五十中出| 国产单亲对白刺激| 听说在线观看完整版免费高清| 精品久久久久久成人av| 亚洲精品一区av在线观看| 最近最新免费中文字幕在线| 韩国av一区二区三区四区| 久久亚洲精品不卡| 美女高潮的动态| 国产精品久久久久久久电影| 性色av乱码一区二区三区2| 久久人妻av系列| 久久精品人妻少妇| 欧美xxxx黑人xx丫x性爽| 成人欧美大片| 免费av毛片视频| 亚洲人与动物交配视频| 久久国产精品影院| 在线观看美女被高潮喷水网站 | 国产不卡一卡二| 午夜精品久久久久久毛片777| 国内精品一区二区在线观看| 国产av不卡久久| 性欧美人与动物交配| 亚洲精品在线美女| 嫩草影院新地址| 亚洲av成人精品一区久久| 亚洲国产精品sss在线观看| 午夜精品在线福利| 欧美激情久久久久久爽电影| 国产三级黄色录像| 天堂影院成人在线观看| 久久精品国产自在天天线| 欧美日韩福利视频一区二区| 一级黄色大片毛片| 午夜亚洲福利在线播放| 在线国产一区二区在线| 亚洲精品色激情综合| 国产69精品久久久久777片| 成年女人看的毛片在线观看| 嫩草影院入口| 国产免费男女视频| 国产国拍精品亚洲av在线观看| 成人亚洲精品av一区二区| av在线蜜桃| 一夜夜www| 久久久精品大字幕| 中文字幕人成人乱码亚洲影| 国产中年淑女户外野战色| 亚洲人成网站在线播放欧美日韩| 国产高清有码在线观看视频| 午夜精品一区二区三区免费看| 亚洲国产精品999在线| 成年人黄色毛片网站| 亚洲最大成人中文| 亚洲av电影在线进入| 国产精品永久免费网站| 美女大奶头视频| 真人一进一出gif抽搐免费| 激情在线观看视频在线高清| 美女xxoo啪啪120秒动态图 | 一个人观看的视频www高清免费观看| 看片在线看免费视频| 热99在线观看视频| 性欧美人与动物交配| 国产高潮美女av| 91久久精品国产一区二区成人| 人人妻人人看人人澡| 精品乱码久久久久久99久播| 免费黄网站久久成人精品 | 亚洲男人的天堂狠狠| 日韩欧美国产一区二区入口| 成人性生交大片免费视频hd| 中文亚洲av片在线观看爽| 我要搜黄色片| 久久久久久久久中文| 美女高潮喷水抽搐中文字幕| 国产在视频线在精品| 2021天堂中文幕一二区在线观| 1024手机看黄色片| 国产极品精品免费视频能看的| а√天堂www在线а√下载| 日日夜夜操网爽| 丰满的人妻完整版| 欧美另类亚洲清纯唯美| 五月伊人婷婷丁香| 最新在线观看一区二区三区| 午夜福利高清视频| 亚洲成av人片免费观看| 日本成人三级电影网站| 国产伦人伦偷精品视频| 国产精品亚洲美女久久久| 免费高清视频大片| 午夜精品一区二区三区免费看| 国产精品av视频在线免费观看| aaaaa片日本免费| 亚洲成人久久性| 亚洲精华国产精华精| 欧美激情国产日韩精品一区| 免费看美女性在线毛片视频| 午夜日韩欧美国产| 国产精品爽爽va在线观看网站| 男女那种视频在线观看| 丰满人妻一区二区三区视频av| 老司机午夜福利在线观看视频| 亚洲av成人不卡在线观看播放网| 99精品久久久久人妻精品| 午夜两性在线视频| 18美女黄网站色大片免费观看| 亚洲最大成人中文| 嫩草影院新地址| 国产亚洲精品av在线| 精品久久国产蜜桃| av专区在线播放| 国产精品免费一区二区三区在线| 午夜久久久久精精品| 欧美在线黄色| 成人亚洲精品av一区二区| 亚洲自拍偷在线| 精品无人区乱码1区二区| 午夜福利在线观看免费完整高清在 | 午夜精品一区二区三区免费看| 国产蜜桃级精品一区二区三区| 亚洲一区高清亚洲精品| 国产午夜精品久久久久久一区二区三区 | 亚洲精品一区av在线观看| 精品熟女少妇八av免费久了| 亚洲中文字幕一区二区三区有码在线看| 欧美成人一区二区免费高清观看| 网址你懂的国产日韩在线| 欧美一区二区亚洲| 欧美绝顶高潮抽搐喷水| 国产黄色小视频在线观看| 国产精品不卡视频一区二区 | 成人国产综合亚洲| 两个人视频免费观看高清| 国产伦一二天堂av在线观看| 欧美日韩乱码在线| 亚洲欧美日韩东京热| 免费看美女性在线毛片视频| 亚洲国产日韩欧美精品在线观看| 18禁在线播放成人免费| 久久久久久久久久成人| 久久久精品欧美日韩精品| 午夜视频国产福利| 国产精品日韩av在线免费观看| 啦啦啦观看免费观看视频高清| 日韩欧美三级三区| 男女那种视频在线观看| 十八禁网站免费在线| 国产精品一区二区免费欧美| 波多野结衣高清作品| 亚洲天堂国产精品一区在线| 香蕉av资源在线| 直男gayav资源| 中文字幕人成人乱码亚洲影| 亚洲美女搞黄在线观看 | 深夜a级毛片| 色视频www国产| 男人舔奶头视频| 51国产日韩欧美| 日韩人妻高清精品专区| 精品无人区乱码1区二区| 91字幕亚洲| 国产欧美日韩一区二区精品| 亚洲成人久久性| 1024手机看黄色片| 三级国产精品欧美在线观看| 国产人妻一区二区三区在| 色吧在线观看| 观看免费一级毛片| 久久人人爽人人爽人人片va | 亚洲激情在线av| 精品久久久久久久久久久久久| 久久99热这里只有精品18| 色综合欧美亚洲国产小说| 无遮挡黄片免费观看| 一级黄片播放器| 中文字幕av成人在线电影| av女优亚洲男人天堂| 每晚都被弄得嗷嗷叫到高潮| 午夜激情欧美在线| av天堂在线播放| 一级黄片播放器| 亚洲精品亚洲一区二区| 最新在线观看一区二区三区| 国产一区二区在线观看日韩| 免费黄网站久久成人精品 | 免费一级毛片在线播放高清视频| 国产精品爽爽va在线观看网站| av专区在线播放| 国产一区二区亚洲精品在线观看| 亚洲成av人片在线播放无| 黄色视频,在线免费观看| 91狼人影院| 国产精品女同一区二区软件 | 婷婷色综合大香蕉| 日本三级黄在线观看| 热99在线观看视频| 九色国产91popny在线| 亚洲av.av天堂| 真实男女啪啪啪动态图| 久久中文看片网| 99热这里只有是精品50| 99在线人妻在线中文字幕| av专区在线播放| 综合色av麻豆| 亚洲男人的天堂狠狠| 深夜a级毛片| 国产精品久久久久久久久免 | 可以在线观看的亚洲视频| 国产高清视频在线播放一区| 老司机午夜十八禁免费视频| www日本黄色视频网| 老司机福利观看| 亚洲美女视频黄频| 国产大屁股一区二区在线视频| 久久精品国产清高在天天线| 精品国内亚洲2022精品成人| 成年女人永久免费观看视频| 亚洲午夜理论影院| 制服丝袜大香蕉在线| 黄色配什么色好看| 午夜福利在线观看吧| 夜夜看夜夜爽夜夜摸| 麻豆国产av国片精品| 好男人电影高清在线观看| 国产中年淑女户外野战色| 久久国产乱子伦精品免费另类| 精品日产1卡2卡| 男女做爰动态图高潮gif福利片| 级片在线观看| 有码 亚洲区| 欧美日本视频| 最近中文字幕高清免费大全6 | 一区二区三区激情视频| 欧美日韩福利视频一区二区| 99国产极品粉嫩在线观看| 成年免费大片在线观看| 国产主播在线观看一区二区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 最新在线观看一区二区三区| 亚洲片人在线观看| 久久国产精品人妻蜜桃| 久久久久久久午夜电影| 欧美+日韩+精品| 夜夜爽天天搞| 动漫黄色视频在线观看| 一级黄片播放器| 91av网一区二区| 亚洲久久久久久中文字幕| 免费电影在线观看免费观看| 麻豆一二三区av精品| 亚洲av一区综合| 欧美激情久久久久久爽电影| 日本一二三区视频观看| 国产三级中文精品| 午夜福利成人在线免费观看| 免费av毛片视频| 免费在线观看日本一区| 乱人视频在线观看| 国产毛片a区久久久久| 欧美精品国产亚洲| 免费av观看视频| 亚洲七黄色美女视频| 一个人看的www免费观看视频| 国产精华一区二区三区| 大型黄色视频在线免费观看| 精品午夜福利视频在线观看一区| www.色视频.com| 精品久久久久久久久久免费视频| or卡值多少钱| 国产乱人伦免费视频| 亚洲成av人片免费观看| 免费看a级黄色片| 欧美高清性xxxxhd video| 亚州av有码| 色综合婷婷激情| 国产黄色小视频在线观看| 在线a可以看的网站| 久9热在线精品视频| av在线观看视频网站免费| 婷婷丁香在线五月| 深夜精品福利| 亚洲无线观看免费| 在线观看午夜福利视频| 成人毛片a级毛片在线播放| 欧美丝袜亚洲另类 | 天美传媒精品一区二区| 亚洲人成网站在线播放欧美日韩| 午夜激情福利司机影院| 亚洲美女视频黄频| 窝窝影院91人妻| 18禁在线播放成人免费| 女同久久另类99精品国产91| 午夜激情欧美在线| 热99在线观看视频| 成人欧美大片| av视频在线观看入口| 动漫黄色视频在线观看| 国产亚洲欧美98| www.色视频.com| 亚洲av中文字字幕乱码综合| 69av精品久久久久久| 在线天堂最新版资源| 日韩有码中文字幕| 精华霜和精华液先用哪个| 99久久成人亚洲精品观看| АⅤ资源中文在线天堂| 久久久久久久久久成人| 午夜福利视频1000在线观看| 最好的美女福利视频网| 午夜久久久久精精品| 淫秽高清视频在线观看| .国产精品久久| 国产成人aa在线观看| 亚洲国产精品sss在线观看| 国产又黄又爽又无遮挡在线| 久久久久久大精品| 婷婷精品国产亚洲av| 国产人妻一区二区三区在| 亚洲精品成人久久久久久| 精品久久久久久久久久免费视频| 免费大片18禁| 亚洲人成网站在线播放欧美日韩| aaaaa片日本免费| www.色视频.com| 小蜜桃在线观看免费完整版高清| 男女视频在线观看网站免费| 亚洲专区中文字幕在线| 亚洲美女搞黄在线观看 | 88av欧美| 国产免费男女视频| 国产精华一区二区三区| 亚洲自拍偷在线| 国产高清三级在线| 欧美日韩乱码在线| 国内精品美女久久久久久| 又爽又黄无遮挡网站| 久久久久久久久久黄片| 内射极品少妇av片p| 欧美成狂野欧美在线观看| 亚洲欧美日韩无卡精品| 国产高清三级在线| 搡老妇女老女人老熟妇| 午夜福利在线观看免费完整高清在 | 国产高潮美女av| 色综合欧美亚洲国产小说| 久久人人爽人人爽人人片va | 久久久精品欧美日韩精品| 又紧又爽又黄一区二区| 99热这里只有是精品在线观看 | 在线播放无遮挡| 99riav亚洲国产免费| 嫩草影视91久久| 亚洲男人的天堂狠狠| 国产精品日韩av在线免费观看| 亚洲经典国产精华液单 | 国产精品av视频在线免费观看| 丁香六月欧美| 久久午夜福利片| 成人国产一区最新在线观看| 国产av一区在线观看免费| 嫩草影院精品99| 久久国产精品影院| 国产亚洲欧美98| 欧美黑人欧美精品刺激| 人妻制服诱惑在线中文字幕| 国产欧美日韩一区二区精品| 最新中文字幕久久久久| 69av精品久久久久久| 精品人妻偷拍中文字幕| 内地一区二区视频在线| 久久久久久国产a免费观看| 国产精品1区2区在线观看.| 国产麻豆成人av免费视频| 久久婷婷人人爽人人干人人爱| 午夜日韩欧美国产| 国产精华一区二区三区| 欧美在线黄色| 麻豆一二三区av精品| 日韩欧美精品免费久久 | 最近最新中文字幕大全电影3| 亚洲av一区综合| 亚洲成人久久性| 亚洲国产精品久久男人天堂| 黄色视频,在线免费观看| 精品一区二区三区视频在线观看免费| 精品午夜福利视频在线观看一区| 国产三级黄色录像| 国产视频一区二区在线看| 桃色一区二区三区在线观看| 十八禁网站免费在线| 激情在线观看视频在线高清| 精品无人区乱码1区二区| 99热只有精品国产| 两性午夜刺激爽爽歪歪视频在线观看| 一本一本综合久久| 国产主播在线观看一区二区| 韩国av一区二区三区四区| 在现免费观看毛片| 热99在线观看视频| 久久久久免费精品人妻一区二区| 真人一进一出gif抽搐免费| 一区福利在线观看| 看黄色毛片网站| 国产亚洲av嫩草精品影院| 一a级毛片在线观看| 亚洲午夜理论影院| 真人一进一出gif抽搐免费| 婷婷六月久久综合丁香| 成人永久免费在线观看视频| 成年人黄色毛片网站| 国产主播在线观看一区二区| 搡老熟女国产l中国老女人| 久9热在线精品视频| 国产蜜桃级精品一区二区三区| 国产精品亚洲美女久久久| 99精品久久久久人妻精品| 亚洲激情在线av| 少妇熟女aⅴ在线视频| 熟女人妻精品中文字幕| 久久久成人免费电影| 欧美绝顶高潮抽搐喷水| 国产成人av教育| 男女床上黄色一级片免费看| 国产黄片美女视频| xxxwww97欧美| 国产黄a三级三级三级人| 久久香蕉精品热| 欧美日韩亚洲国产一区二区在线观看|