• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    “三明治式”多層Au/Pt復(fù)合薄膜的制備及其對(duì)甲醇的電氧化

    2011-11-30 10:50:58李永軍
    物理化學(xué)學(xué)報(bào) 2011年8期
    關(guān)鍵詞:化工學(xué)院三明治單層

    趙 靜 孫 越 李永軍 梁 韌

    (湖南大學(xué)化學(xué)化工學(xué)院化學(xué)系,長(zhǎng)沙410082)

    “三明治式”多層Au/Pt復(fù)合薄膜的制備及其對(duì)甲醇的電氧化

    趙 靜 孫 越 李永軍*梁 韌

    (湖南大學(xué)化學(xué)化工學(xué)院化學(xué)系,長(zhǎng)沙410082)

    采用界面組裝、欠電位沉積和氧化還原置換反應(yīng)組合方法制備了單層Pt/Au復(fù)合薄膜,并且不需要任何有機(jī)偶聯(lián)劑;組裝單層Pt/Au復(fù)合薄膜為三類(lèi)多層Pt/Au復(fù)合薄膜:(Pt/Au)n、Ptm/Au和(Pt3/Au)k(n、m和k分別為Pt/Au、Pt和Pt3/Au的層數(shù)).采用電子顯微鏡研究了Au納米粒子單層膜和Pt/Au復(fù)合多層膜的形貌.對(duì)于所有的多層膜電極而言,其電化學(xué)活性面積隨著層數(shù)的增加而增加.通過(guò)研究甲醇在每一類(lèi)Pt/Au復(fù)合薄膜上的氧化電流密度,考察了其對(duì)甲醇的電催化和抗毒化性能.對(duì)于同一類(lèi)復(fù)合薄膜而言,甲醇分別在(Pt/Au)3、Pt3/ Au和(Pt3/Au)2電極上均具有最大的氧化電流密度,且優(yōu)于本體Pt電極.在這三種電極中,(Pt/Au)3電極無(wú)論從電流密度上還是從抗毒化能力上講,其性能是最好的,而且其抗毒化能力也優(yōu)于商業(yè)Pt/C催化劑.這種良好的催化性能源于Au和Pt之間最大化的協(xié)同效應(yīng),這取決于Pt和Au原子比率以及Pt納米層和Au納米層之間的排布方式.

    界面組裝;欠電位沉積;Au/Pt復(fù)合多層膜;電氧化;甲醇

    1 Introduction

    Direct methanol fuel cells(DMFCs)have received extensive attention as portable electronic devices due to their high energy density,low pollutant emission,low operating temperature, and relatively compact design.1-3Platinum,as one of the most effective anodic electrocatalysts at present,is indispensable in methanol oxidation.However,pure Pt metallic catalyst is expensive and extremely susceptible to be poisoned by the CO-like intermediate derived from the oxidation of methanol;its application is very limited.To improve the catalytic efficiency and lower the content of costly Pt in catalysts,designing Ptbased bimetallic catalysts becomes a common way.4,5The performance of this kind of composite catalysts is dependent on synergistic effects of hetero-metals and significantly different from that of either component.6

    Although gold is rather inert in its bulk form,gold nanoparticles(AuNPs)exhibit good catalytic activity for CO electrooxidation,and are dependent on the synergetic effects,Au/Pt bimetallic catalyst,such as Pt decorated Au,7-10the mixture of Au and Pt nanopowder,11and Pt-based alloy,12has been reported to show better electrocatalytic activity for methanol oxidation than pure Pt.13,14However,the alloy catalysts can not maintain long-term stability due to the behavior of phase separation.

    Recent researches have also found that Pt thin films deposited on a second metal can not only provide good catalytic activity,but also greatly increase the utilization efficiency of Pt.15-17It has been theoretically attributed to the shift of average d band center energy,decreasing the metal-adsorbate bonding strength.18,19The under-potential deposition(UPD)technique has been proposed to indirectly prepare Pt metallic monolayer.20,21Typically,a Cu monolayer is electrodeposited on a foreign metal substrate by UPD,and then displayed into a PtCl62-solution.Thus,a Pt monolayer is achieved through a redox replacement reaction.By this UPD-redox replacement technique, many types of Au/Pt catalysts have been prepared to exploit their electrocatalytic performance,such as Pt decorated AuNP film,22Au nanotube film,23and sponge-like Au film.24These Au/ Pt catalysts show high electrocatalytic activity and good longterm stability for methanol oxidation.

    In the case of Pt decorated AuNP film catalyst,the catalytic performance depends on the particle density of pre-deposited Au film25and the coverage of Pt layer on AuNPs.26Closepacked AuNP film serving as a substrate for depositing Pt is necessary forimproving catalytic efficiency.27Generally, AuNPs were fabricated on the electrode surface by the linkerassisted method,27,28but the coverage of AuNPs on the electrode surface is very low,generally less than 40%.Therefore, the Pt content of the resulting Pt/Au composite multilayer films after UPD-redox replacement is also very low.This means that the synergistic effect between Au and Pt is not entirely shown.To increase Pt content to improve the catalytic efficiency,the multi-cycle UPD-redox replacement has been used to increase the coverage and thickness of Pt layer.29

    Recently,our group developed several methods to assemble close-packed AuNP monolayers at liquid-liquid interfaces,30-33and a linker-free method to prepare multilayer nanoparticle films by repeatedly transferring Au monolayer to the same glass carbon(GC)electrode surface.34Here,the interfacial assembly of Au nanoparticles and UPD-redox replacement were combined to fabricate sandwich-like Pt/Au composite multilayer films for methanol electro-oxidation.This sandwich-like Pt/ Au composite multilayer film can fully exhibit the synergistic effect between Au and Pt because each Pt layer is located between twoAuNP monolayer films.

    2 Experimental

    2.1 Chemicals

    Chloroauric acid tetrahydrate(HAuCl4·4H2O,≥99.9%),hexachloroplatinic(IV)acid hexahydrate(H2PtCl6·6H2O,≥99.5%) and n-butanol(C4H10O,99%)were obtained from Sinopharm Chemical Reagent Co.Ltd.(China).All chemicals were of analytical grade and were used as received.All solutions were prepared with Milli-Q water.

    2.2 Synthesis and assembly of Au nanoparticles

    AuNP aqueous solution was prepared according to Frens? method.35Typically,1%(w)sodium citrate aqueous solution was added into a boiling aqueous solution containing 0.01% (w)HAuCl4under vigorous stirring conditions,and after 40 min,AuNP aqueous solution was obtained.The AuNP size was estimated to be 18 nm according to transmission electron microscopy(TEM)images.

    AuNP monolayer film was prepared as follows:32,335 mL of n-butanol was poured into a Petri dish containing 20 mL of asprepared AuNP aqueous solution,and consequently an oil/water interface was formed immediately between n-butanol and water.The above system was kept silent for 15 min to accumulate AuNPs at the interface.The resulting AuNP monolayer film was transferred onto a GC surface for morphological characterization or electrochemical measurements when most of n-butanol was removed.The detailed information about the preparation and transfer of AuNP monolayer can be found in our previous publications.32,33

    2.3 Fabrication of Pt/Au composite multilayer films

    To enhance the adherence force between AuNP monolayer film and GC,the resulting Au/GC electrode was firstly kept in an oven at 90°C for 15 min,which is a key step for ensuring the stability of Pt/Au composite multilayer films to be prepared;otherwise,Pt/Au composite multilayer films are apt to peel from the GC surface.The Au/GC electrode after heating treatment was subsequently inserted in a deaerated 0.1 mol·L-1H2SO4+1 mmol·L-1CuSO4solution for under-depositing Cu layer on the AuNP surface(Cu/Au/GC).A Cu UPD layer can be obtained by holding the potential at 0.05 V for 200 s in the potentiostatic mode,20and the thicker UPD layer can be obtained by repeating the UPD process several times.The Cu/Au/ GC electrode was rapidly transferred into a deaerated 5 mmol· L-1H2PtCl6solution,and was kept for 10 min.The Cu UPD layer was gradually replaced by Pt layer via the redox replacement reaction between Cu and PtCl2-6.Finally,a Pt/Au/GC electrode was obtained,as shown in Scheme 1(a-d).We designated the above combination of UPD and redox replacement process as“the UPD-redox replacement”.

    Here,we adopted two methods to fabricate sandwich-like Pt/ Au composite multilayer films:

    (1)The resulting Pt/Au/CG electrode was used as the substrate to deposit another AuNP monolayer film and then the UPD-redox replacement is performed,as shown in Scheme 1 (e).A Pt/Au/Pt/Au/GC electrode can be obtained,designated as(Pt/Au)2/GC.By repeating AuNP monolayer transfer and the UPD-redox replacement,(Pt/Au)3/GC,(Pt/Au)4/GC,and(Pt/ Au)n/GC electrodes can be fabricated easily.

    (2)To increase Pt content in each AuNP monolayer film,the resulting Pt/Au/GC electrode was used again as a substrate to repeat the UPD-redox replacement to fabricate Pt2/Au/GC,Pt3/ Au/GC,and Ptm/Au/GC electrodes.Pt3/Au/GC was further chosen as the substrate to construct(Pt3/Au)k/GC.n,m,and k are the number of Pt/Au,Pt,and Pt3/Au units,respectively.

    Surface morphologies of all above Pt/Au composite multilayer films are further examined after electrochemical experiments and no noticeable change was observed,indicating that these electrode films are stable.

    2.4 Instruments and measurements

    The electrochemical cell with a three-electrode configuration was used for all the electrochemical measurements on a CHI660B electrochemical workstation(Chenhua,China).The working electrode is bulk Pt(Ptbulk),(Pt/Au)n/GC,Ptm/Au/GC, or(Pt3/Au)k/GC;a Pt wire and a saturated calomel electrode (SCE)were used as the counter electrode and the reference electrode,respectively.

    Scanning electron microscopy(SEM)images of Pt/Au films were obtained on Hitachi-S4800 scanning electron microscope (Hitachi,Japan)at an accelerating voltage of 3.0 kV.Transmission electron microscopy(TEM)images were recorded on JEM-3010 transmission electron microscope(JEOL,Japan)operating at 200 kV.

    3 Results and discussion

    3.1 Fabrication and characterization of(Pt/Au)n/GC, Ptm/Au/GC,and(Pt3/Au)k/GC electrodes

    The AuNP monolayer prepared at n-butanol/water interface was transferred onto GC surface for SEM characterization and onto Cu grid coated carbon for TEM characterization,as shown in Fig.1.The entire AuNP monolayer film is not perfect due to the existence of some vacancies,but in the short range, AuNPs show a close-packed structure,similar to our previous results.33

    After the Au/GC electrode was treated via a UPD replacement,the surface morphology has a slight change due to the epitaxial growth of Cu on AuNPs:36most of neighboring AuNPs connected each other and formed a chain-like structure except for the existence of some isolated AuNPs,as shown in

    Fig.2(A).Electrochemical linear sweep voltammetry further confirmed the success of Cu under-potential deposition,as shown in Fig.2(B).A conspicuous anodic peak appeared at about 0.24 V,consistent with the oxidation potential of UPD Cu,37,38which indicates that UPD Cu layer has been fabricated on theAu/GC surface.

    When the Cu/Au/GC electrode was rapidly immersed into the deaerated H2PtCl6solution for 10 min,the UPD Cu layer was replaced completely by a Pt layer.37,39Thus,a Pt/Au/GC electrode was obtained,as shown in Fig.3(A),which nearly has the same morphology as Cu/Au/GC(Fig.2(A)).By repeating the fabrication cycles as described in Experimental Section,sandwich-like(Au/Pt)ncomposite multilayer films can be easily created on a GC electrode surface.Compared with the increase of n(n=1,2,3,4,5),most of initial vacancies disappears in the film and the macroscopic structure become more compact and rougher due to the overlapping between Pt/Au layers.SEM images of Au/Pt multilayer composite multilayer films as n=3,5 are shown in Fig.3(B,C).This morphology change is similar to that of Ptm/Au/GC with the increase of m (m=1,2,3,4,5)and(Pt3/Au)k/GC with the increase of k(k=1, 2,3)(not shown).

    Fig.1 SEM and TEM(inset)images ofAuNPmonolayer

    All resulting composite electrodes,Au/GC,(Pt/Au)n/GC,Ptm/ Au/GC,and(Pt3/Au)k/GC,were characterized in 0.5 mol·L-1H2SO4using cyclic voltammetric technique,as shown in Fig.4. The CV curve of the bareAu film(Fig.4(A))shows two characteristic redox peaks of Au species:1.1 V in the forward scan and 0.8 V in the backward scan,and a larger double-layer region below 0.7 V presenting the nanoparticle nature of the Au film.20However,the Au redox peaks can not be discerned in the CVs on various Pt/Au composite multilayer film electrodes due to the lower current in the defined potential range(Fig.4 (B,C,D)).All the resulting Pt/Au composite multilayer films have the same CV characteristics:anodic peaks at~1.0 V,cathodic peaks at 0.53 V,and pairs of redox peaks at the potential range from-0.2 to 0.2 V,which is the typical voltammetric pattern of Pt species.40-42In the case of(Pt/Au)n/GC and(Pt3/ Au)k/GC electrodes,peak currents gradually become more and more intense with the increase of n and k,respectively,indicating that this linker-free layer-by-layer assembly works very well for preparing Au/Pt multilayer composite multilayer films.For Ptm/Au/GC electrodes,the increase of peak current originates from the increase of exposed Pt surface area.Based on the redox replacementit is clear that each Pt layer just covers 50 percent of the surface of AuNPs,and is a sub-monolayer rather than a full monolayer. Thus,increasing the number of Pt deposition cycles can increase the content of Pt and surface roughness,which contributed to the increase of exposed Pt surface area.

    3.2 Catalytic activity of Pt/Au composite multilayer films to electrooxidation of methanol

    To explore the relationship between electrocatalytic activity and film structure,methanol electrooxidation was performed on(Pt/Au)n/GC,Ptm/Au/GC,and(Pt3/Au)k/GC electrodes.For comparison,a bulk Pt(Ptbulk)electrode was also used.Fig.5(A) shows the CVs of Ptbulkand(Pt/Au)n/GC electrodes in a N2-saturated 0.1 mol·L-1CH3OH+0.1 mol·L-1H2SO4solution.To reflect exactly the effect of AuNPs on catalytic performance of Pt,the catalytic current per unit area of Pt catalyst was adopted.The effective surface area of Pt layer was estimated from the total hydrogen desorption charge in Fig.4 according to the well-accepted monolayer hydrogen absorption charge of 210 mC·cm-2.43A primary oxidation peak at~0.65 V in the forward scan and the secondary oxidation peak at~0.43 V in the backward scan can be observed on the Ptbulkor(Pt/Au)n/GC(n=1,2, 3,4,5)electrode(Fig.5(A)).The catalytic current density on Ptbulkelectrode is far lower than those on(Pt/Au)n/GC,suggesting that those Pt/Au composite multilayer films have satisfacto-ry catalytic efficiency.It may be attributed to Pt microstructures and the synergistic effect of Au and Pt nanoparticles. With the increase of n,the oxidation potential slightly shifts positive and the catalytic current density dramatically increases,and reaches a maximum value as n=3.Subsequently,the current density decreased again.Despite that,the(Pt/Au)4/GC and(Pt/Au)5/GC electrodes still exhibit better catalytic activity than Ptbulk.

    Fig.4 CVs ofAu/GC(A),(Pt/Au)n/GC(B),Ptm/Au/GC(C),and(Pt3/Au)k/GC(D)electrodes in 0.5 mol·L-1H2SO4solution scan rate(v):50 mV·s-1

    In methanol electrooxidation,the ratio of the forward anodic peak current density(If)to the backward anodic peak current density(Ib),If/Ib,is commonly used to evaluate the catalyst tolerance to carbonaceous species accumulation.44A low If/Ibratio shows poor oxidation of methanol to carbon dioxide during the anodic scan and excessive accumulation of carbonaceous residues on the catalyst surface,while a high If/Ibratio indicates the converse case.As shown in Fig.5(B),(Pt/Au)1/GC,(Pt/Au)2/ GC,and(Pt/Au)3/GC electrodes show higher If/Ibratio than Ptbulk,indicating that those three film electrodes possess better CO-poisoning tolerance.

    To explore the influence of Pt content on AuNP monolayer on catalytic activity,Ptm/Au/GC electrode was fabricated.Fig.6 (A)shows CVs of Ptm/Au/GC(m=1,2,3,4,5)electrodes in a N2-saturated 0.1 mol·L-1CH3OH+0.1 mol·L-1H2SO4solution. As the m value increased,the catalytic current density gradually increased and subsequently decreased.When m=3,the current density is the largest one.But the poisoning tolerance(If/ Ib)was not always improved,as shown in Fig.6(B).The If/Ibratio of Ptm/Au/GC initially weakens with the increase of m,and when m>4,the If/Ibratio of Ptm/Au/GC almost remains constant.The results indicate that increasing Pt content may increase the catalytic current,but has no significance for improving poisoning tolerance of Pt-based catalysts.

    Fig.6 (A)CVs of Ptm/Au/GC electrodes in 0.1 mol·L-1CH3OH+0.1 mol·L-1H2SO4solution and(B)the dependence of If/Ibvalues and the layer number(m)

    Fig.7 (A)CVs of(Pt3/Au)k/GC electrodes in 0.1 mol·L-1CH3OH+0.1 mol·L-1H2SO4solution and(B)the dependence of If/Ibvalues and the layer number(k)

    To examine the structural effect of sandwich-like film catalysts,Pt3/Au/GC was also used as a substrate to fabricate(Pt3/ Au)k/GC electrodes and we found that the(Pt3/Au)2/GC electrode has the high catalytic current density among(Pt3/Au)kelectrodes,as shown in Fig.7(A),but the If/Ibratios of(Pt3/Au)2/ GC still show a decreasing tendency(Fig 7(B)).

    Among various different electrodes,the composite electrodes exhibiting the largest catalytic current density in each type of composite electrodes were examined by EDX.EDX results indicate that the atomic ratios of Pt/Au in(Pt/Au)3/GC,Pt3/Au/GC, and(Pt3/Au)2/GC electrode are close to 5/6,12/1,and 5/1,respectively.The difference of Pt:Au atomic ratios indicates that the catalytic performance is not entirely determined by the content of Pt andAu.The actual structures of composites and the arrangement of Pt and Au nanoparticles are two important factors affecting Pt/Au catalytic performance.27,45-48For comparison,current densities and If/Ibvalues in CVs of methanol electrooxidation on Ptbulk,(Pt/Au)3/GC,Pt3/Au/GC,and(Pt3/Au)2/GC were summarized in Table 1.The current density on Ptbulkis the lowest among those electrodes although its If/Ibvalue is slightly larger than that on(Pt3/Au)2/GC,close to that on Pt3/Au/GC. (Pt/Au)3is the best catalyst film because whether current density or CO-poisoning tolerance is far better than the commercial Pt/C catalyst(Johnson Matthey,20%(w)).24

    Table 1 Oxidation peak current densities and If/Ibvalues of different electrodes

    4 Conclusions

    Linker-free multilayer films were fabricated by combining AuNP monolayer transfer,UPD and redox-replacement.All asprepared Pt/Au multi-layer composites were used as catalyst films for study of methanol oxidation.The results indicate that the catalytic activity of the composite multilayer film depends on many factors,such as the atomic ratio of Pt/Au,the arrangement of Pt and Au nanoparticles.(Pt/Au)3films shows not only the best electrocatalytic performance,but also the atom number of Pt only accounts for 58%of the total atom number,fully showing the maximum synergistic effect between Au and Pt. Other metal(e.g.,Ru,Fe,Pd)and metal oxide(e.g.,SnO2, TiO2,ZnO)nanoparticles are now used to construct alternative multilayer composite multilayer films with Pt nanoparticles to further improve the performance of Pt-based catalysts for commercial utilization.

    (1) Steele,B.C.H.;Heinzel,A.Nature 2001,414,345.

    (2) Liu,H.S.;Song,C.J.;Zhang,L.;Zhang,J.J.;Wang,H.J.; Wilkinson,D.P.J.Power Sources 2006,155,95.

    (3) Winter,M.;Brodd,R.J.Chem.Rev.2004,104,4245.

    (4) Iwasita,T.;Hoster,H.;John-Anacker,A.;Lin,W.F.;Vielstich, W.Langmuir 1999,16,522.

    (5)Liu,Z.;Reed,D.;Kwon,G.M.;Shamsuzzoha,D.;Nikles,E. J.Phys.Chem.C 2007,111,14223.

    (6) Zhou,S.G.;McIlwrath,K.;Jackson,G.;Eichhorn,B.J.Am. Chem.Soc.2006,128,1780.

    (7) Guo,S.J.;Zhai,J.F.;Fang,Y.X.;Dong,S.J.;Wang,E.Chem. Asian J.2008,3,1156.

    (8) Zhao,D.;Xu,B.Q.Angew.Chem.Int.Edit.2006,45,4955.

    (9) Kiani,A.;Fard,E.N.Electrochim.Acta 2009,54,7254.

    (10) Du,Y.;Xu,J.J.;Chen,H.Y.Electrochem.Commun.2009,11, 1717.

    (11) Wang,J.J.;Yin,G.P.;Wang,G.J.;Wang,Z.B.;Gao,Y.Z. Electrochem.Commun.2008,10,831.

    (12) Markovic,N.M.;Ross,P.N.Surf.Sci.Rep.2002,45,117.

    (13) Mott,D.;Luo,J.;Njoki,P.N.;Lin,Y.;Wang,L.Y.;Zhong,C.J. Catal.Today 2007,122,378.

    (14) Zeng,J.H.;Yang,J.;Lee,J.Y.;Zhou,W.J.J.Phys.Chem.B 2006,110,24606.

    (15) Zhang,J.L.;Vukmirovic,M.B.;Sasaki,K.;Nilekar,A.U.; Mavrikakis,M.;Adzic,R.R.J.Am.Chem.Soc.2005,127, 12480.

    (16) Zhang,J.L.;Vukmirovic,M.B.;Xu,Y.;Mavrikakis,M.;Adzic, R.R.Angew.Chem.Int.Edit.2005,44,2132.

    (17) Du,B.C.;Tong,Y.Y.J.Phys.Chem.B 2005,109,17775.

    (18)Hammer,B.;Morikawa,Y.;Norskov,J.K.Phys.Rev.Lett. 1996,76,2141.

    (19) Hammer,B.;Norskov,J.K.Adv.Catal.2000,45,71.

    (20) Park,S.;Yang,P.;Corredor,P.;Weaver,M.J.J.Am.Chem.Soc. 2002,124,2428.

    (21) Aramata,A.;Modern Aspects of Electrochemistry,Vol.31; Bockris,J.O.M.;White,R.E.;Conway,B.E.Eds.;Kluwer Academic Publishers:New York,1998;pp 181-250.

    (22)Tang,H.;Chen,J.H.;Wang,M.Y.;Nie,L.H.;Kuang,Y.F.; Yao,S.Z.Appl.Catal.A 2004,275,43.

    (23) Shin,T.Y.;Yoo,S.H.;Park,S.Chem.Mater.2008,20,5682.

    (24)Liu,P.P.;Ge,X.B.;Wang,R.Y.;Ma,H.Y.;Ding,Y.Langmuir 2009,25,561.

    (25) Park,I.S.;Lee,K.S.;Choi,J.H.;Park,H.Y.;Sung,Y.E. J.Phys.Chem.C 2007,111,19126.

    (26) Ge,X.;Wang,R.;Liu,P.;Ding,Y.Chem.Mater.2007,19,5827.

    (27) Kumar,S.;Zou,S.Z.Langmuir 2007,23,7365.

    (28) Patra,S.;Das,J.;Yang,H.Electrochim.Acta 2009,54,3441.

    (29) Huang,M.;Jin,Y.;Jiang,H.;Sun,X.;Chen,H.;Liu,B.;Wang, E.;Dong,S.J.Phys.Chem.B 2005,109,15264.

    (30) Li,Y.J.;Huang,W.J.;Sun,S.G.Angew.Chem.Int.Edit.2006, 45,2537.

    (31)Liu,C.;Li,Y.J.;Wang,M.H.;He,Y.;Yeung,E.S. Nanotechnology 2009,20,065604.

    (32) Wang,M.H.;Li,Y.J.;Xie,Z.X.;Liu,C.;Yeung,E.S.Mater. Chem.Phys.2010,119,153.

    (33)Wang,M.H.;Hu,J.W.;Li,Y.J.;Yeung,E.S.Nanotechnology 2010,21,145608.

    (34)Li,Y.J.;Liu,C.;Yang,M.H.;He,Y.;Yeung,E.S. J.Electroanal.Chem.2008,622,103.

    (35) Frens,G.Nat.Phys.Sci.1973,241,20.

    (36) Uosaki,K.;Ye,S.;Naohara,H.;Oda,Y.;Haba,T.;Kondo,T. J.Phys.Chem.B 1997,101,7566.

    (37) Kolb,D.M.Adv.Electrochem.Electrochem.Eng.1978,11,125.

    (38)Mrozek,M.F.;Xie,Y.;Weaver,M.J.Anal.Chem.2001,73, 5953.

    (39) Brankovic,S.R.;Wang,J.X.;Adzic,R.R.Surf.Sci.2001,474, L173.

    (40) Maillard,F.;Eikerling,M.;Cherstiouk,O.V.;Schreier,S.; Savinova,E.;Stimming,U.Faraday Discuss.2004,125,357.

    (41) Mayrhofer,K.J.J.;Arenz,M.;Blizanac,B.B.;Stamenkovic, V.;Ross,P.N.;Markovic,N.M.Electrochim.Acta 2005,50, 5144.

    (42) Arenz,M.;Mayrhofer,K.J.J.;Stamenkovic,V.;Blizanac,B. B.;Tomoyuki,T.;Ross,P.N.;Markovic,N.M.J.Am.Chem. Soc.2005,127,6819.

    (43) Biegler,T.;Rand,D.A.J.;Woods,R.J.Electroanal.Chem. 1971,29,269.

    (44) Liu,Z.;Ling,X.Y.;Su,X.;Lee,J.Y.J.Phys.Chem.B 2004, 108,8234.

    (45) Chang,S.C.;Ho,Y.;Weaver,M.J.Surf.Sci.1992,265,81.

    (46) Park,S.;Xie,Y.;Weaver,M.J.Langmuir 2002,18,5792.

    (47)Zhang,J.;Lima,F.H.B.;Shao,M.H.;Sasaki,K.;Wang,J.X.; Hanson,J.;Adzic,R.R.J.Phys.Chem.B 2005,109,22701.

    (48) Zhang,J.;Mo,Y.;Vukmirovic,M.B.;Klie,R.;Sasaki,K.; Adzic,R.R.J.Phys.Chem.B 2004,108,10955.

    April 11,2011;Revised:May 31,2011;Published on Web:June 8,2011.

    Preparation of‘Sandwich-Like’Au/Pt Composite Multilayer Films for Methanol Electrooxidation

    ZHAO Jing SUN Yue LI Yong-Jun*LIANG Ren
    (Department of Chemisty,College of Chemistry and Chemical Engineering,Hunan University,Changsha 410082,P.R.China)

    Pt/Au composite monolayer films were fabricated by combining interfacial assembly and under-potential deposition(UPD)with redox replacement.Based on the Pt/Au composite monolayers,an organic linker-free method was proposed for the fabrication of sandwich-like Pt/Au composite multilayer films:(Pt/Au)n,Ptm/Au,and(Pt3/Au)k(n,m,or k represents the layer number).Electron microscopy was used to characterize the morphologies of the Au monolayer films and the Pt/Au composite multilayer films. For each type of composite multilayer films,a common characteristic was that the effective electroactive areas increased with an increase in the layer number.Additionally,the electrocatalytic activities of the composite multilayer films for methanol electrooxidation are systematically discussed by examining the catalytic current densities and its tolerance toward carbonaceous species.For the same series of composite multilayer films(Pt/Au)3,Pt3/Au,and(Pt3/Au)2showed a higher catalytic current density than bulk Pt(Ptbulk).Among the three composite multilayer films,(Pt/Au)3showed the best catalytic performance in terms of the current density and tolerance toward carbonaceous species.The tolerance of(Pt/Au)3to carbonaceous species was found to be better than that of the commercial Pt/C catalyst.This better electrocatalytic activity may be attributed to the maximum synergistic effect between Au and Pt,which depends on the Pt:Au atomic ratio and also the arrangement of Pt and Au nanoparticles.

    Interfacial self-assembly;Under-potential deposition;Au/Pt composite multilayer film; Electrooxidation;Methanol

    O646

    *Corresponding author.Email:liyongjunef@gmail.com;Tel:+86-731-88821900.

    The project was supported by the National Natural Science Foundation of China(20703016),Scientific and Technological Projects of Hunan Province,China(2010FJ6030)and State Key Laboratory for Physical Chemistry of Solid Surface(Xiamen University),China.

    國(guó)家自然科學(xué)基金(20703016),湖南省科技計(jì)劃(2010FJ6030)及固體表面物理化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室(廈門(mén)大學(xué))開(kāi)放課題經(jīng)費(fèi)資助

    猜你喜歡
    化工學(xué)院三明治單層
    使固態(tài)化學(xué)反應(yīng)100%完成的方法
    二維四角TiC單層片上的析氫反應(yīng)研究
    分子催化(2022年1期)2022-11-02 07:10:16
    國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
    三明治
    中老年保健(2021年2期)2021-08-22 07:29:38
    【鏈接】國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
    不同形狀的三明治
    幼兒園(2019年8期)2019-09-09 16:04:00
    基于PLC控制的立式單層包帶機(jī)的應(yīng)用
    電子制作(2019年15期)2019-08-27 01:12:04
    單層小波分解下圖像行列壓縮感知選擇算法
    新型單層布置汽輪發(fā)電機(jī)的研制
    紐約市最著名的三明治
    海外星云(2016年15期)2016-12-01 04:18:27
    国产有黄有色有爽视频| 黄色配什么色好看| 欧美老熟妇乱子伦牲交| 成人综合一区亚洲| 久久精品国产a三级三级三级| 天堂俺去俺来也www色官网| 曰老女人黄片| 国内精品宾馆在线| 国产免费一区二区三区四区乱码| 中文字幕av电影在线播放| 久久99热这里只频精品6学生| 国产精品久久久久久av不卡| 18禁在线播放成人免费| 国产片内射在线| 亚洲精品乱久久久久久| 亚洲欧洲国产日韩| 少妇丰满av| 九九久久精品国产亚洲av麻豆| 国产亚洲最大av| 中文乱码字字幕精品一区二区三区| 精品亚洲乱码少妇综合久久| 国产高清不卡午夜福利| 我的女老师完整版在线观看| 一本大道久久a久久精品| av线在线观看网站| 亚洲成人av在线免费| 欧美日韩视频精品一区| 日日爽夜夜爽网站| 香蕉精品网在线| 国产伦理片在线播放av一区| 亚洲精品亚洲一区二区| √禁漫天堂资源中文www| 欧美 亚洲 国产 日韩一| 欧美成人午夜免费资源| 99国产综合亚洲精品| 观看av在线不卡| 亚洲av电影在线观看一区二区三区| 色婷婷久久久亚洲欧美| 精品一品国产午夜福利视频| 欧美精品一区二区大全| 男女高潮啪啪啪动态图| 久久99热6这里只有精品| 少妇的逼水好多| 天天操日日干夜夜撸| 国产精品国产三级国产av玫瑰| 欧美日韩国产mv在线观看视频| 久久精品国产亚洲av天美| 看免费成人av毛片| 国产一区二区在线观看av| 一二三四中文在线观看免费高清| 欧美成人精品欧美一级黄| 高清视频免费观看一区二区| 日韩中字成人| 精品国产国语对白av| 免费黄网站久久成人精品| 国产成人精品福利久久| 久久久久久久久大av| 王馨瑶露胸无遮挡在线观看| 少妇精品久久久久久久| 久久人妻熟女aⅴ| 久久久久久久久大av| 亚洲国产最新在线播放| 国产免费又黄又爽又色| 高清黄色对白视频在线免费看| 一本—道久久a久久精品蜜桃钙片| 精品卡一卡二卡四卡免费| 能在线免费看毛片的网站| 免费黄网站久久成人精品| 五月开心婷婷网| 亚洲熟女精品中文字幕| 99久久综合免费| 亚洲美女搞黄在线观看| 免费av不卡在线播放| 亚洲怡红院男人天堂| 国产成人免费无遮挡视频| 国产爽快片一区二区三区| 亚洲中文av在线| 久久99蜜桃精品久久| 免费播放大片免费观看视频在线观看| 18禁裸乳无遮挡动漫免费视频| 国产成人精品婷婷| 久久久久人妻精品一区果冻| 午夜福利影视在线免费观看| 妹子高潮喷水视频| tube8黄色片| 赤兔流量卡办理| 色5月婷婷丁香| 成人免费观看视频高清| 亚洲激情五月婷婷啪啪| 成年美女黄网站色视频大全免费 | 亚洲精品久久久久久婷婷小说| av在线老鸭窝| 少妇熟女欧美另类| 2021少妇久久久久久久久久久| 欧美另类一区| 美女国产视频在线观看| 亚洲欧洲日产国产| 亚洲情色 制服丝袜| 国产视频首页在线观看| 国产高清国产精品国产三级| 国产综合精华液| 国产在视频线精品| 国产日韩欧美视频二区| 亚洲国产精品国产精品| 日韩精品免费视频一区二区三区 | 欧美成人午夜免费资源| 日韩精品免费视频一区二区三区 | 久热这里只有精品99| 国产免费现黄频在线看| 如日韩欧美国产精品一区二区三区 | 国产欧美另类精品又又久久亚洲欧美| 秋霞在线观看毛片| 国产成人精品在线电影| 久久久精品94久久精品| 亚洲成人一二三区av| 国产一区二区三区综合在线观看 | 国产免费一区二区三区四区乱码| 日韩一区二区视频免费看| 亚洲精品久久久久久婷婷小说| 国产成人av激情在线播放 | 亚洲精品,欧美精品| 国产高清有码在线观看视频| 夜夜爽夜夜爽视频| 91国产中文字幕| 国产av国产精品国产| 久久精品国产a三级三级三级| 日本-黄色视频高清免费观看| 一边亲一边摸免费视频| 亚洲国产成人一精品久久久| 制服丝袜香蕉在线| 丰满乱子伦码专区| 自线自在国产av| 制服丝袜香蕉在线| 日本av手机在线免费观看| 乱人伦中国视频| 久久人妻熟女aⅴ| 激情五月婷婷亚洲| 香蕉精品网在线| 美女脱内裤让男人舔精品视频| 九色成人免费人妻av| 三级国产精品片| 欧美激情极品国产一区二区三区 | 我要看黄色一级片免费的| 一级毛片aaaaaa免费看小| 大香蕉久久成人网| 国产精品久久久久成人av| 在线观看免费视频网站a站| 国产精品偷伦视频观看了| 国产成人免费无遮挡视频| 亚洲av成人精品一区久久| 久久久亚洲精品成人影院| 啦啦啦中文免费视频观看日本| 国产在线一区二区三区精| 亚洲欧美一区二区三区黑人 | 国产国拍精品亚洲av在线观看| av国产久精品久网站免费入址| 婷婷成人精品国产| 亚洲第一区二区三区不卡| 一级a做视频免费观看| 熟女人妻精品中文字幕| 久久这里有精品视频免费| 午夜日本视频在线| 制服人妻中文乱码| 一边摸一边做爽爽视频免费| 少妇高潮的动态图| 男女边吃奶边做爰视频| 亚洲人成网站在线播| 天堂中文最新版在线下载| av天堂久久9| 18禁观看日本| 22中文网久久字幕| 日韩欧美精品免费久久| 欧美激情 高清一区二区三区| 免费播放大片免费观看视频在线观看| 2021少妇久久久久久久久久久| 亚洲欧美成人精品一区二区| 十分钟在线观看高清视频www| 最近2019中文字幕mv第一页| 亚洲成人av在线免费| 国产精品欧美亚洲77777| 欧美日韩亚洲高清精品| 日本黄大片高清| 青春草亚洲视频在线观看| 日本与韩国留学比较| 美女xxoo啪啪120秒动态图| 亚洲精品一区蜜桃| 美女大奶头黄色视频| 亚洲国产精品一区三区| 国产成人精品一,二区| 汤姆久久久久久久影院中文字幕| av不卡在线播放| kizo精华| 亚洲综合色网址| 丰满饥渴人妻一区二区三| 少妇高潮的动态图| 亚洲综合色网址| 狂野欧美激情性bbbbbb| 国产熟女欧美一区二区| 黄片播放在线免费| 精品视频人人做人人爽| 精品久久久久久电影网| 国产精品99久久99久久久不卡 | 2021少妇久久久久久久久久久| a级片在线免费高清观看视频| 日本与韩国留学比较| 一级毛片我不卡| 国产午夜精品一二区理论片| 爱豆传媒免费全集在线观看| 中文字幕免费在线视频6| 国产免费一级a男人的天堂| 久久久久久久精品精品| 考比视频在线观看| 爱豆传媒免费全集在线观看| 熟妇人妻不卡中文字幕| av播播在线观看一区| 成人无遮挡网站| 欧美老熟妇乱子伦牲交| 国产精品免费大片| 国产亚洲av片在线观看秒播厂| 亚洲精品自拍成人| 日韩亚洲欧美综合| 久久久久久久久久人人人人人人| 天堂8中文在线网| 国产一区有黄有色的免费视频| 亚洲美女黄色视频免费看| 一本大道久久a久久精品| 久久久久久久久久成人| 在线观看三级黄色| av在线app专区| 久久99精品国语久久久| 春色校园在线视频观看| 色94色欧美一区二区| 欧美少妇被猛烈插入视频| 亚洲美女搞黄在线观看| 成人黄色视频免费在线看| 老司机亚洲免费影院| 欧美激情极品国产一区二区三区 | 亚洲欧美日韩另类电影网站| 国产成人精品无人区| 一区二区三区四区激情视频| 国产伦理片在线播放av一区| 在线观看三级黄色| 精品亚洲成国产av| 日本wwww免费看| 最近的中文字幕免费完整| 国产成人精品福利久久| 人人妻人人添人人爽欧美一区卜| 久久久精品免费免费高清| 色婷婷av一区二区三区视频| 欧美日韩亚洲高清精品| 亚洲激情五月婷婷啪啪| 亚洲国产精品成人久久小说| 99视频精品全部免费 在线| 午夜免费鲁丝| 秋霞伦理黄片| 中文精品一卡2卡3卡4更新| 久久久久久人妻| 日韩一本色道免费dvd| 一区二区三区乱码不卡18| 色5月婷婷丁香| 啦啦啦在线观看免费高清www| 18禁动态无遮挡网站| 视频在线观看一区二区三区| 久久久久网色| 免费观看在线日韩| 人妻人人澡人人爽人人| 免费av不卡在线播放| 免费大片18禁| 97超碰精品成人国产| 日韩三级伦理在线观看| 精品亚洲乱码少妇综合久久| 成人国产麻豆网| 天堂俺去俺来也www色官网| 高清黄色对白视频在线免费看| 精品少妇内射三级| 国产欧美亚洲国产| 天堂8中文在线网| 久久这里有精品视频免费| 女人精品久久久久毛片| 国产乱人偷精品视频| 亚洲美女黄色视频免费看| 曰老女人黄片| 我的老师免费观看完整版| 精品卡一卡二卡四卡免费| 国产精品99久久久久久久久| 国产片内射在线| 国产成人精品一,二区| 一区二区av电影网| 女的被弄到高潮叫床怎么办| 黄片无遮挡物在线观看| 久久99热6这里只有精品| 纵有疾风起免费观看全集完整版| av不卡在线播放| 波野结衣二区三区在线| 在线观看免费高清a一片| 国产毛片在线视频| 男女边吃奶边做爰视频| 亚洲丝袜综合中文字幕| 一边亲一边摸免费视频| 极品少妇高潮喷水抽搐| 极品人妻少妇av视频| 欧美 日韩 精品 国产| 亚洲精品日韩在线中文字幕| 久久久久国产精品人妻一区二区| 久久热精品热| 最近2019中文字幕mv第一页| 日韩人妻高清精品专区| 人妻少妇偷人精品九色| 永久免费av网站大全| 人妻人人澡人人爽人人| 熟女电影av网| 亚洲综合精品二区| 99国产综合亚洲精品| 日日摸夜夜添夜夜爱| 欧美+日韩+精品| 男女高潮啪啪啪动态图| 国产精品国产av在线观看| 亚洲一级一片aⅴ在线观看| 国产爽快片一区二区三区| 成人黄色视频免费在线看| 三级国产精品片| 91午夜精品亚洲一区二区三区| 亚洲av免费高清在线观看| videosex国产| 国产免费视频播放在线视频| 亚洲av二区三区四区| 久久精品久久精品一区二区三区| 久久精品国产亚洲av涩爱| 亚洲国产精品一区三区| 亚洲性久久影院| 国产片内射在线| 亚洲精品久久成人aⅴ小说 | videos熟女内射| 亚洲av成人精品一二三区| 国产精品蜜桃在线观看| 亚洲天堂av无毛| 一边摸一边做爽爽视频免费| 超色免费av| 亚洲五月色婷婷综合| 天天躁夜夜躁狠狠久久av| 亚洲精品日本国产第一区| 日本-黄色视频高清免费观看| 国产免费视频播放在线视频| 亚洲成色77777| 日日爽夜夜爽网站| 国产成人精品福利久久| 国产精品久久久久久av不卡| 性高湖久久久久久久久免费观看| 91久久精品国产一区二区成人| 伦精品一区二区三区| 国产高清国产精品国产三级| kizo精华| 国产综合精华液| 人妻一区二区av| 99九九线精品视频在线观看视频| 99re6热这里在线精品视频| 国产成人av激情在线播放 | 日本黄色日本黄色录像| 亚洲欧美日韩卡通动漫| 亚洲成色77777| 精品少妇内射三级| 九九在线视频观看精品| 大香蕉97超碰在线| 成人毛片a级毛片在线播放| av不卡在线播放| 欧美xxⅹ黑人| 在线 av 中文字幕| 精品人妻偷拍中文字幕| 一边摸一边做爽爽视频免费| av播播在线观看一区| 啦啦啦啦在线视频资源| 精品久久久久久久久亚洲| 欧美亚洲日本最大视频资源| 2022亚洲国产成人精品| 日本黄色片子视频| 日本与韩国留学比较| 欧美3d第一页| 69精品国产乱码久久久| 丝袜在线中文字幕| av免费观看日本| 欧美成人精品欧美一级黄| 欧美日韩精品成人综合77777| 欧美亚洲日本最大视频资源| 最黄视频免费看| 亚洲人成网站在线播| 少妇被粗大猛烈的视频| 免费黄网站久久成人精品| 久久精品国产自在天天线| 欧美成人精品欧美一级黄| 一区在线观看完整版| 亚洲精品456在线播放app| 91aial.com中文字幕在线观看| 亚洲成人一二三区av| 一区在线观看完整版| 晚上一个人看的免费电影| 看非洲黑人一级黄片| 内地一区二区视频在线| 亚洲国产精品专区欧美| 日韩视频在线欧美| 国产精品三级大全| 国产毛片在线视频| 国产免费视频播放在线视频| 熟女电影av网| 人妻少妇偷人精品九色| 2022亚洲国产成人精品| 晚上一个人看的免费电影| 久久久久精品久久久久真实原创| 乱码一卡2卡4卡精品| 精品久久蜜臀av无| 久久毛片免费看一区二区三区| 久久久久人妻精品一区果冻| 欧美人与善性xxx| 91在线精品国自产拍蜜月| 午夜免费男女啪啪视频观看| 97超视频在线观看视频| 少妇精品久久久久久久| 黑人猛操日本美女一级片| 日日摸夜夜添夜夜添av毛片| 观看美女的网站| 国产欧美亚洲国产| av电影中文网址| 午夜福利网站1000一区二区三区| 国产精品国产三级国产专区5o| 男人操女人黄网站| 久久精品国产a三级三级三级| 中国三级夫妇交换| 考比视频在线观看| 日本爱情动作片www.在线观看| 看十八女毛片水多多多| 婷婷色综合www| 成人毛片a级毛片在线播放| 久久人人爽人人片av| 日本av免费视频播放| 美女国产高潮福利片在线看| 亚洲人成77777在线视频| 久久久久精品久久久久真实原创| 在线天堂最新版资源| 丰满迷人的少妇在线观看| 午夜免费男女啪啪视频观看| 国产精品三级大全| h视频一区二区三区| 国产亚洲欧美精品永久| 乱人伦中国视频| 久久精品久久久久久噜噜老黄| 国产精品久久久久久精品古装| 18在线观看网站| 夜夜骑夜夜射夜夜干| 91在线精品国自产拍蜜月| 午夜免费男女啪啪视频观看| 国产av国产精品国产| 最近中文字幕2019免费版| 色婷婷久久久亚洲欧美| 在线观看免费日韩欧美大片 | 成人手机av| 九九爱精品视频在线观看| 最近最新中文字幕免费大全7| 成年女人在线观看亚洲视频| 视频中文字幕在线观看| 黑丝袜美女国产一区| 一本大道久久a久久精品| 日韩av不卡免费在线播放| 啦啦啦啦在线视频资源| 色婷婷av一区二区三区视频| 一区二区日韩欧美中文字幕 | 精品久久久精品久久久| 中文天堂在线官网| 亚洲国产欧美日韩在线播放| 一本色道久久久久久精品综合| 久久婷婷青草| 免费观看性生交大片5| 夫妻性生交免费视频一级片| 水蜜桃什么品种好| 观看av在线不卡| 日本91视频免费播放| 一级毛片电影观看| av有码第一页| 亚洲国产色片| 国产一区二区三区av在线| 日日啪夜夜爽| 久久久精品94久久精品| 看免费成人av毛片| 老司机影院成人| 中文欧美无线码| 国产日韩欧美亚洲二区| 伦理电影免费视频| 国产精品.久久久| 女性被躁到高潮视频| 国产黄色免费在线视频| 啦啦啦啦在线视频资源| 如日韩欧美国产精品一区二区三区 | 热re99久久精品国产66热6| freevideosex欧美| 99热这里只有是精品在线观看| 亚洲精品久久久久久婷婷小说| 亚洲精品第二区| 亚洲av中文av极速乱| 亚洲精品成人av观看孕妇| 一级,二级,三级黄色视频| 亚洲人与动物交配视频| 久久久午夜欧美精品| 久久精品夜色国产| 2022亚洲国产成人精品| 久久99热6这里只有精品| 国产精品偷伦视频观看了| 久久99热6这里只有精品| 国产精品偷伦视频观看了| 欧美丝袜亚洲另类| 欧美日韩精品成人综合77777| 18禁动态无遮挡网站| 26uuu在线亚洲综合色| 亚洲av不卡在线观看| 视频区图区小说| 乱人伦中国视频| 亚洲综合色惰| 一个人免费看片子| 国产成人精品婷婷| 一区二区日韩欧美中文字幕 | 亚洲美女视频黄频| 高清在线视频一区二区三区| 久久久久久伊人网av| 新久久久久国产一级毛片| 亚洲综合色惰| 亚洲av成人精品一区久久| 又粗又硬又长又爽又黄的视频| 大又大粗又爽又黄少妇毛片口| 自拍欧美九色日韩亚洲蝌蚪91| 国产一区有黄有色的免费视频| 大码成人一级视频| 久久这里有精品视频免费| a级毛片免费高清观看在线播放| 热99久久久久精品小说推荐| 黑人欧美特级aaaaaa片| 不卡视频在线观看欧美| 91精品伊人久久大香线蕉| 欧美最新免费一区二区三区| 人妻人人澡人人爽人人| 一级,二级,三级黄色视频| 欧美成人午夜免费资源| 丰满乱子伦码专区| 久久久久久久久久人人人人人人| 韩国av在线不卡| 99热网站在线观看| 久久av网站| 午夜老司机福利剧场| 一区二区三区精品91| 丝袜喷水一区| 视频中文字幕在线观看| 满18在线观看网站| 亚洲国产成人一精品久久久| 国产精品免费大片| 久久精品人人爽人人爽视色| 亚洲五月色婷婷综合| 亚洲综合色惰| 亚洲性久久影院| 男女边摸边吃奶| 久久久久久久久久久丰满| 中文字幕最新亚洲高清| 高清午夜精品一区二区三区| 婷婷色av中文字幕| 国产精品人妻久久久影院| 日本黄色日本黄色录像| 曰老女人黄片| 亚洲美女视频黄频| 在线播放无遮挡| 我要看黄色一级片免费的| 国产 一区精品| 大又大粗又爽又黄少妇毛片口| 高清不卡的av网站| 久久久亚洲精品成人影院| 十八禁高潮呻吟视频| 美女xxoo啪啪120秒动态图| 成年美女黄网站色视频大全免费 | 亚洲精品色激情综合| 国产一区二区三区综合在线观看 | 另类亚洲欧美激情| 人妻人人澡人人爽人人| 午夜av观看不卡| 精品视频人人做人人爽| 大片免费播放器 马上看| 国产精品国产三级专区第一集| 乱码一卡2卡4卡精品| 男女高潮啪啪啪动态图| 人体艺术视频欧美日本| 国产精品久久久久久精品古装| 久久久国产一区二区| 亚洲经典国产精华液单| 久久99热6这里只有精品| 大码成人一级视频| 成人免费观看视频高清| 人妻系列 视频| 五月玫瑰六月丁香| 精品酒店卫生间| 麻豆乱淫一区二区| 日韩中文字幕视频在线看片| 大香蕉久久网| 亚洲五月色婷婷综合| 亚州av有码| 女性生殖器流出的白浆| 日韩一区二区三区影片| 国产男人的电影天堂91| 亚洲成色77777| 国产69精品久久久久777片| 一边亲一边摸免费视频| 国产男女超爽视频在线观看| 欧美丝袜亚洲另类| 日本猛色少妇xxxxx猛交久久| 亚洲成人av在线免费| 国产一级毛片在线| 多毛熟女@视频| 大陆偷拍与自拍| 飞空精品影院首页| 国产片内射在线| 大话2 男鬼变身卡| 精品亚洲乱码少妇综合久久| 观看美女的网站|