• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Square Matrices with Stable Entries

    2011-11-23 00:45:54CHENHuanyin
    關(guān)鍵詞:環(huán)上理學(xué)院方塊

    CHEN Huan-yin

    (College of Science, Hangzhou Normal University, Hangzhou 310036, China)

    On Square Matrices with Stable Entries

    CHEN Huan-yin

    (College of Science, Hangzhou Normal University, Hangzhou 310036, China)

    This paper extended stable rings to ideals of a ring, and investigated matrices with stable entries.The results prove that every square matrix with 1-stable entries over an exchange ring admits a diagonal reduction, and that every square matrix with unit 1-stable entries is a sum of two invertible matrices.The paper obtained an analogous result by square matrices with 2-stable entries, and studied triangular decompositions of square matrices with stable entries.

    1-stable ideal; unit 1-stable ideal; 2-stable ideal; square matrix

    1 Introduction

    A square matrixAover a ringRis called to admit a diagonal reduction if there exist invertible matricesPandQsuch thatPAQis a diagonal matrix.It is well known that every square matrix over unit-regular rings admits a diagonal reduction(cf.[11, Theorem 3]).P.Ara et al.have extended this result to separative exchange rings (cf.[2, Theorem 2.4]).On the other hand, Menal and Moncasi(1982) showed that the diagonalizability for some rectangular matrix over some regular rings fails.In this paper, we show that every square matrix with 1-stable entries over an exchange ring admits a diagonal reduction.A ringRis said to be a (s,2)-ring in case every element inRis a sum of two units.We know that ifRis a (s,2)-ring, then so isMn(R), i.e., every square matrix over a (s,2)-ring is generated by two invertible matrices.A natural problem is how to extend this fact to matrices over a ring which is not a (s,2)-ring.It is proved that every square matrix with unit 1-stable entries is generated by two invertible matrices.Furthermore, we get a analogous result for matrices with 2-stable entries.Triangular decompositions of square matrices with stable entries are also studied.

    2 Stable Range One

    An idealIof a ringRis said to have stable range one ifaR+bR=Rwitha∈1+I,b∈Rimplies that there existsy∈Rsuch thata+by∈U(R).Vaserstein proved that an idealIhaving stable range one depends only on the ring structure ofI, and not on the ambient ringR.In other words,Ias an ideal of a ringRhas stable range one if and only ifIas a non-unital ring has stable range one.We say that an elementx∈Ris 1-stable in caseRxRhas stable range one.Clearly, every element in an ideal having stable range one is 1-stable.Also we note that the sum and the product of two 1-stable elements of a ring is 1-stable.In [12], one proved that there is a unique largest idealR0of a ringRwhich has stable range one, namely, the sum of all ideals having stable range one.We now derive the following.

    Lemma1 LetRbe a ring, and letA∈Mn(R).Then the following are equivalent:

    (1) Every entry ofAis 1-stable.

    (2)A∈Mn(R0).

    (3)Mn(R)AMn(R) has stable range one.

    Proof(1)?(2) is trivial.

    (2)?(3) SinceA=(aij)∈Mn(R0), we getMn(R)AMn(R)?Mn(R0) as ideals ofMn(R).This infers thatMn(R)AMn(R) as an ideal ofMn(R) has stable range one, and soMn(R)AMn(R) as a non-unital ring has stable range one.

    Recall that an elementx∈Ris regular provided that there existsy∈Rsuch thatx=xyx.A ring is said to be regular in case every element inRis regular.IfRis a regular ring, we note thatR0coincides with the ideal generalized by all idempotents ofRwhose corner is unit-regular(see [12, Lemma 1.5]).

    Lemma2 LetIbe an ideal of a ringR,a,b∈Ibe regular.IfIhas stable range one, then the following hold:

    (1)aR=bRimplies thata=bufor au∈U(R).

    (2)Ra=Rbimplies thata=ubfor au∈U(R).

    ProofObvious.

    Lemma3 LetIbe an ideal of a ringR.IfIhas stable range one, thenaR?bRwith regulara,b∈Iimplies thata=ubvfor someu,v∈U(R).

    ProofClear.

    Theorem1 LetRbe an exchange ring,A∈Mn(R) be regular.If every entry ofAis 1-stable, thenAadmits a diagonal reduction.

    LetIbe an ideal of a ringR.We setGL2(I)=GL2(R)∩(I2+M2(I)).

    Lemma4 LetIbe an ideal of a ringR,A∈GL2(I).IfIhas stable range one, then the following hold:

    (1)A=[*,*]B21(*)B12(*)B21(y) for ay∈R.

    (2)A=[*,*]B12(*)B21(*)B12(y) for ay∈R.

    (2) SinceIhas stable range one, so hasIop.Applying (1) to (A-1)op, we complete the proof.

    Theorem2 LetRbe a ring,A∈GL2(R).If every entry ofI2-Ais 1-stable, then the following hold:

    (1)A=[*,*]B21(*)B12(*)B21(y) for ay∈R.

    (2)A=[*,*]B12(*)B21(*)B12(y) for ay∈R.

    (a) Ifα=1,β=1, thenx=1,y=2.

    (b) Ifα=1,β=-1, thenx=-1,y=2.

    (c) Ifα=-1,β=1, thenx=1,y=-2.

    (d) Ifα=-1,β=-1, thenx=-1,y=-2.

    In any case, 1+xy≠0.ThereforeAcan not be written in the form (1) overZ.

    3 Unit 1-Stable Ideals

    In [8, Lemma 2.1], the first author proved that a ringRsatisfies unit 1-stable if and only ifax+b=1 witha,x,b∈Rimplies that there exists ay∈Rsuch thata+by,1-xy∈U(R).Now we extend unit 1-stable range condition as follows.

    Definition1 We say that an idealIof a ringRis unit 1-stable provided thatax+b=1 witha∈1+I,x,b∈Rimplies that there existsy∈Rsuch thata+by,1-xy∈U(R).

    Clearly, every unit 1-stable ideal of a ring is 1-stable, and that every ideal of a ring satisfying unit 1-stable range is unit 1-stable.LetR=Z/2Z⊕Z/3ZandI=0⊕Z/3Z.ThenIis unitI-stable as an ideal ofR, whileRdoesn’t satisfies unit 1-stable range.Thus the concept of unit 1-stable ideal is a nontrivial generalization of unit 1-stable range condition.We say that an elementx∈Ris unit 1-stable in caseRxRas an ideal ofRis unit 1-stable.One easily checks that a ringRsatisfies unit 1-stable range if and only if every element inRis unit 1-stable.Also we see that every element in the Jacobson radical of a ring is unit 1-stable.

    Theorem3 LetIbe an ideal of a ringR.Then the following are equivalent:

    (1)Iis unit 1-stable.

    (2) For anyx∈1+I,y∈R, there existsu∈U(R) such that 1+(x-u)y∈U(R).

    (3) For anyx∈1+I,y∈R, there existsa∈Rsuch thatx+a,1+ya∈U(R).

    (4) Wheneverax+b=1 witha∈1+I,x,b∈R, there existsu∈U(R) such thatx+ub∈U(R).

    Proof(1)?(4) Givenax+b=1 witha∈1+I,x,b∈R, then we havey∈Rsuch thata+by=u,1-xy=v∈U(R).So we get

    Thereforex+vu-1b∈U(R).

    (4)?(2) For anyx∈1+I,y∈R, we havex(-y)+(1+xy)=1.So we get someu∈U(R) such that-y+u(1+xy)∈U(R); hence, 1+(x-u-1)y∈U(R), as required.

    (2)?(3) For anyx∈1+I,y∈R, we haveu∈U(R) such that 1+(x-u)(-y)∈U(R).Leta=u-x.Thenx+a,1+ay∈U(R).Furthermore, we have 1+ya∈U(R).

    (3)?(1) Suppose thatax+b=1 witha∈1+I,x,b∈R.Then we havec∈Rsuch thata+(-c)=u,1+(-c)x=v∈U(R).Thus we getb+ux=1-(a-u)x=v∈U(R).This implies that

    Clearly,a-bv-1u(u-1a-1)∈U(R).Sety=v-1u(1-u-1a).Thena+by,1-xy∈U(R), as asserted.

    Corollary1 LetIbe an ideal of a ringR.IfIis unit 1-stable, then so isMn(I) as an ideal ofMn(R).

    ProofIt is clear.

    Corollary2 LetIbe an ideal of a ringR.IfIis unit 1-stable, then every square matrix overIis a sum of two invertible matrices.

    ProofIt is obvious.

    LetTMn(R) be the ring of alln×nlower triangular matrices overR, and letTMn(I) be the ideal of alln×nlower triangular matrices overI.We can derive the following.

    Theorem4 LetIbe an ideal of a ringR.Then the following are equivalent:

    (1)Ias an ideal ofRis unit 1-stable.

    (2)TMn(I) as an ideal ofTMn(R) is unit 1-stable.

    ProofIt suffices to show that the result holds forn=2.Assume thatIas an ideal ofRis unit 1-stable.By a directly verification, we obtain the result.

    There is an analogous result for the ring of upper triangular matrices overRand the ideal of upper triangular matrices overI.Also we note that Theorem 4 can not be generalized matrix rings.For example,M2(Z/2Z) is unit 1-stable as an ideal ofM2(Z/2Z), whileZ/2Zis not unit 1-stable as an ideal ofZ/2Z.

    4 Unit 1-Stable Entries

    By virtue of Theorem 1, we know that every square regular matrix with unit 1-stable entries over an exchange ring admits a diagonal reduction.In this section, we investigate further properties of such square matrices.

    Lemma5 IfIandJare unit 1-stable as ideals of a ringR, then so isI+J.

    ProofSuppose that (1+a1+a2)x+b=1 witha1∈I,a2∈J,x,b∈R.Then (1+a1)x+(a2x+b)=1.By Theorem 3, we get someu∈U(R) such thatx+u(a2x+b)=v∈U(R).Hence (1+ua2)xv-1+ubv-1=1 with 1+ua2∈1+I.By Theorem 3 again, there existsw∈U(R) such thatxv-1+wubv-1∈U(R).Thereforex+wub∈U(R).So the result follows by Theorem 3.

    Since the sum of two unit 1-stable ideals is unit 1-stable, there is a unique largest idealR*ofRwhich is unit 1-stable as an ideal ofR, namely, the sum of all unit 1-stable ideals ofR.One easily checks that every entry ofA∈Mn(R) is unit 1-stable if and only ifA∈Mn(R*).

    Theorem5 Every square matrix with unit 1-stable matrices is a sum of two invertible matrices.

    Corollary3 Every square matrix over a ring satisfying unit 1-stable range is a sum of two invertible matrices.

    ProofObviously, every entry of a square matrix over a ring satisfying unit 1-stable range is unit 1-stable.Therefore the result follows by Theorem 5.

    Lemma6 LetIbe an ideal of a ringR.Then the following are equivalent:

    (1)Iis unit 1-stable.

    (2) Wheneverax+b=1 withx∈1+I,a,b∈R, there existsu∈U(R) such thata+bu∈U(R).

    ProofSince 1+cd∈U(R) if and only if 1+dc∈U(R) for anyc,d∈R, by Theorem 3, we see thatIis unit 1-stable as an ideal ofRif and only if so isIopas an ideal of the opposite ringRop.Therefore we complete the proof from Theorem 3.

    Lemma7 LetIbe a unit 1-stable ideal of a ringR.WheneveraR+bR=Rwitha∈1+I,b∈I, there existsu∈U(R) such thata+bu∈U(R).

    ProofObvious.

    Lemma8 LetIbe a unit 1-stable ideal of a ringR,A∈GLn(I).Then the following hold:

    (1)A=[*,*]B21(*)B12(*)B21(u) for au∈U(R).

    (2)A=[*,*]B12(*)B21(*)B12(u) for au∈U(R).

    (2) AsIis a unit 1-stable ideal of a ringR, so isIopas an ideal ofR.LetA∈GLn(I).Then ((A-1)op)T∈GLn(Iop).Applying (1) toRop, we have auop∈U(Rop) such that ((A-1)op)T=[*op,*op]B21(*op)B12(*op)B21(-uop).ThereforeA=[*,*]B12(*)B21(*)B12(u), as asserted.

    Theorem6 LetA∈GLn(R).Suppose that every entry ofI2-Ais unit 1-stable.Then the following hold:

    (1)A=[*,*]B21(*)B12(*)B21(u) for au∈U(R).

    (2)A=[*,*]B12(*)B21(*)B12(u) for au∈U(R).

    5 2-Fold Stable Ideals

    LetIbe an ideal of a ringR.We say thatIis a 2-fold stable ideal ofRif the following holds:

    We say that an elementx∈Ris 2-fold stable incaseRxRas an ideal ofRis 2-fold stable.We know that every unit 1-stable element is 1-stable, and that every 2-fold stable element is unit 1-stable.

    Lemma9 LetRbe a ring, and lete∈Rbe an idempotent.IfIis 2-fold stable as an ideal ofR, theneIeis 2-fold stable as an ideal ofeRe.

    Lemma10 IfIandJare 2-fold stable as ideals of a ringR, then so isI+J.

    Theorem7 LetRbe a ring,A∈Mn(R).Then the following are equivalent:

    (1) Every entry ofAis 2-fold stable.

    (2) There exists a 2-fold stable idealIofRsuch thatA∈Mn(I).

    (2)?(1) Suppose thatIis a 2-fold stable ideal ofRsuch thatA=(aij)∈Mn(I).Then allRaijR?I.AsIis 2-fold stable, we show that allRaijRare 2-fold stable as ideals ofR, as asserted.

    6 2-Fold Stable Entries

    In this section, we investigate square matrices with 2-fold stable entries over a regular ring.

    Lemma11 LetIbe a 2-fold stable ideal of a ring, and lete∈Ibe an idempotent.TheneReis a 2-fold stable ring.

    The following result is well known, we omit its proof.

    Lemma12 LetIbe an ideal of a regular ringRandx1,x2,…,xm∈I.Then there exists an idempotente∈Isuch thatxi∈eRefor alli=1,2,…,m.

    Lemma13 LetIbe a 2-stable ideal of a regular ringR, and letA1,A2∈GLn(I).Then the following hold:

    overeRewhereeα1e,eβ1e,eα2e,eβ2e∈U(eRe).This infers that

    (1) diag(1-e,1-e)+diag(e,e)A1diag(e,e)=[eα1e+1-e,eβ1e+1-e]B12(ex1e)B21(ez1e)B12(eye)

    (2) diag(1-e,1-e)+diag(e,e)A1diag(e,e)=[eα2e+1-e,eβ2e+1-e]B12(ex2e)B21(ez2e)B12(eye)

    (2) is proved in the same manner.

    Theorem8 LetRbe a regular ring,A1,A2∈GL2(R).If every entry ofI2-A1andI2-A2is 2-fold stable, then the following hold:

    In view of Theorem 5, we see that every square matrix with 2-fold stable entries is a sum of two invertible matrices.Furthermore, we derive the following.

    by Theorem 9, we getZ∈Mn(eRe) such that

    Therefore

    as asserted.

    [1] Ara P.Strongly π-regular rings have stable range one[J].Proc Amer Math Soc,1996,124(11):3293-3298.

    [2] Ara P, Goodearl K R, O’Meara K C,etal.Diagonalization of matrices over regular rings[J].Linear Algebra Appl,1997,265(1/2/3):147-163.

    [3] Canfell M J.Completion of diagrams by automorphisms and Bass’ first stable range condition[J].J Algebra,1995,176(2):480-503.

    [4] Carmona J J, Cuf J, Menal P.On the unit 1-stable rank of rings of analytic functions[J].Publ Mat Barc,1992,36(2):439-447.

    [5] Chen Huanyin.Onm-fold stable exchange rings[J].Comm Algebra,1999,27(11):5639-5647.

    [6] Chen Huanyin.Exchange rings with artinian primitive factors[J].Algebra Represent Theory,1999,2(2):201-207.

    [7] Chen Huanyin.Exchange rings satisfying unit 1-stable range[J].Kyushu J Math,2000,54:1-6.

    [8] Chen Huanyin.Units, idempotents and stable range conditions[J].Comm Algebra,2001,29(2):703-717.

    [9] Chen Huanyin.Extensions of rings with many units[J].Comm Algebra,2003,31(5):2403-2416.

    [10] Goodearl K R, Menal P.Stable range one for rings with many units[J].J Pure Appl Algebra,1988,54:261-287.

    [11] Henriksen M.On a class of regular rings that are elementary divisor rings[J].Arch Math,1973,24(1):133-141.

    [12] Menal P, Moncasi J.Lifting units in self-injective rings and an index theory for RickartC*-algebras[J].Pacific J Math,1987,126(2):295-329.

    [13] Vasertein L N.Stable rank of rings and dimensionality of topological spaces[J].Funct Anal Appl,1971,5(2):17-27.

    [14] You Hong.K2(R,I) of unit 1-stable ring[J].Chin Sci Bull,1990,35:1590-1595.

    [15] Yu Huaping.Stable range one for exchange rings[J].J Pure Appl Algebra,1995,98:105-109.

    具有穩(wěn)定元的方塊矩陣

    陳煥艮

    (杭州師范大學(xué)理學(xué)院,浙江 杭州 310036)

    把穩(wěn)定環(huán)推廣到理想上, 從而討論了具有穩(wěn)定元的方塊矩陣, 得到了置換環(huán)上這類矩陣可對角化, 進一步討論了其它相關(guān)的穩(wěn)定性問題.

    1-穩(wěn)定理想;單位1-穩(wěn)定理想;2-穩(wěn)定理想;方塊矩陣

    date:2011-01-02

    Biography:CHEN huan-yin(1963—), male, born in Xinghua, Jiangsu Province, Ph.D., Professor, majored in non-commutative algebra and K-theory.E-mail: huanyinchen@yahoo.cn

    10.3969/j.issn.1674-232X.2011.04.001

    O153MSC2010: 19U10ArticlecharacterA

    1674-232X(2011)04-0289-09

    猜你喜歡
    環(huán)上理學(xué)院方塊
    昆明理工大學(xué)理學(xué)院學(xué)科簡介
    昆明理工大學(xué)理學(xué)院簡介
    有多少個方塊
    不一樣的方塊橋
    謎題方塊
    主動脈瓣環(huán)擴大聯(lián)合環(huán)上型生物瓣膜替換治療老年小瓣環(huán)主動脈瓣狹窄的近中期結(jié)果
    西安航空學(xué)院專業(yè)介紹
    ———理學(xué)院
    交換環(huán)上四階反對稱矩陣李代數(shù)的BZ導(dǎo)子
    取繩子
    投射可遷環(huán)上矩陣環(huán)的若當同態(tài)
    亚州av有码| 免费人成在线观看视频色| 如何舔出高潮| 黄色毛片三级朝国网站 | 18禁动态无遮挡网站| 有码 亚洲区| 亚洲国产精品一区二区三区在线| 午夜视频国产福利| 欧美性感艳星| 青青草视频在线视频观看| 性色avwww在线观看| 国产女主播在线喷水免费视频网站| 亚洲精品中文字幕在线视频 | 亚洲欧美日韩另类电影网站| 成年人午夜在线观看视频| 亚洲国产最新在线播放| 久久久久久久久大av| 最新中文字幕久久久久| 欧美日韩在线观看h| 国产永久视频网站| 少妇被粗大的猛进出69影院 | 王馨瑶露胸无遮挡在线观看| 如日韩欧美国产精品一区二区三区 | 亚洲av二区三区四区| 国产乱人偷精品视频| 国产爽快片一区二区三区| 亚洲成人一二三区av| 51国产日韩欧美| 久久精品国产自在天天线| 最新的欧美精品一区二区| 男女啪啪激烈高潮av片| 全区人妻精品视频| 精品久久久噜噜| 大香蕉97超碰在线| 一级毛片我不卡| 午夜老司机福利剧场| av卡一久久| 王馨瑶露胸无遮挡在线观看| 日韩欧美精品免费久久| 91精品伊人久久大香线蕉| 日日爽夜夜爽网站| 国产黄片视频在线免费观看| 久久97久久精品| 日日摸夜夜添夜夜爱| 亚洲欧美日韩卡通动漫| 日日摸夜夜添夜夜爱| 好男人视频免费观看在线| 91精品伊人久久大香线蕉| 国产成人a∨麻豆精品| 亚洲婷婷狠狠爱综合网| 91精品伊人久久大香线蕉| 18禁在线无遮挡免费观看视频| 嫩草影院入口| 久久午夜福利片| 精品卡一卡二卡四卡免费| 美女福利国产在线| 91精品伊人久久大香线蕉| 黄色毛片三级朝国网站 | 赤兔流量卡办理| 两个人免费观看高清视频 | 亚洲精品色激情综合| 国产精品人妻久久久影院| 国产男女内射视频| 国产亚洲午夜精品一区二区久久| 99久久中文字幕三级久久日本| 亚洲自偷自拍三级| 欧美少妇被猛烈插入视频| 黑人猛操日本美女一级片| 亚洲内射少妇av| 亚洲精品国产色婷婷电影| 久久青草综合色| 好男人视频免费观看在线| 99久国产av精品国产电影| 国产精品嫩草影院av在线观看| 99热6这里只有精品| 性色av一级| 国产精品蜜桃在线观看| 高清毛片免费看| 97在线人人人人妻| 一级爰片在线观看| h视频一区二区三区| 亚洲,欧美,日韩| 色94色欧美一区二区| 久久国产精品大桥未久av | 国精品久久久久久国模美| 久久6这里有精品| 精品少妇内射三级| 女性被躁到高潮视频| 熟女人妻精品中文字幕| 久热久热在线精品观看| 亚洲国产成人一精品久久久| 中文字幕免费在线视频6| 高清毛片免费看| 青春草视频在线免费观看| 国产伦在线观看视频一区| 伦理电影大哥的女人| 国产高清不卡午夜福利| 制服丝袜香蕉在线| 街头女战士在线观看网站| 美女主播在线视频| 久久久久久伊人网av| 男女边吃奶边做爰视频| 欧美性感艳星| 午夜福利视频精品| 国语对白做爰xxxⅹ性视频网站| 亚洲四区av| 久久精品久久久久久久性| 纯流量卡能插随身wifi吗| 观看免费一级毛片| 国产av一区二区精品久久| 麻豆成人av视频| 久久久久久久久久久免费av| av网站免费在线观看视频| 精华霜和精华液先用哪个| 亚洲精品色激情综合| 亚洲内射少妇av| 啦啦啦中文免费视频观看日本| 午夜福利影视在线免费观看| 日韩 亚洲 欧美在线| 亚洲av不卡在线观看| 国产一区有黄有色的免费视频| 国产欧美日韩精品一区二区| 久久精品国产亚洲av涩爱| 亚洲成色77777| 亚洲国产精品一区二区三区在线| 亚洲av国产av综合av卡| 国产 一区精品| 久久久久久久久大av| 久久久精品94久久精品| 嫩草影院入口| 日韩,欧美,国产一区二区三区| 国产av码专区亚洲av| 亚洲一区二区三区欧美精品| 日韩中文字幕视频在线看片| 少妇的逼好多水| 嫩草影院新地址| 亚洲va在线va天堂va国产| 国产精品99久久99久久久不卡 | 汤姆久久久久久久影院中文字幕| 成人国产麻豆网| 国国产精品蜜臀av免费| 久久综合国产亚洲精品| 午夜老司机福利剧场| 99热这里只有是精品在线观看| 乱人伦中国视频| 国产无遮挡羞羞视频在线观看| 亚洲精品第二区| 国产乱人偷精品视频| 久久久欧美国产精品| 性高湖久久久久久久久免费观看| 日本-黄色视频高清免费观看| 久久99精品国语久久久| 亚洲av男天堂| 国产视频首页在线观看| 91在线精品国自产拍蜜月| 亚洲四区av| 国产乱来视频区| 高清在线视频一区二区三区| 亚洲人成网站在线观看播放| 成人免费观看视频高清| 亚洲av欧美aⅴ国产| 99热国产这里只有精品6| 精品久久国产蜜桃| 少妇猛男粗大的猛烈进出视频| 免费黄色在线免费观看| 自线自在国产av| 国产av一区二区精品久久| 国产免费福利视频在线观看| 如日韩欧美国产精品一区二区三区 | 精品人妻熟女毛片av久久网站| 制服丝袜香蕉在线| 精品久久久久久久久亚洲| 欧美日韩在线观看h| av免费在线看不卡| 青青草视频在线视频观看| 99久国产av精品国产电影| 中文字幕免费在线视频6| 国产欧美日韩精品一区二区| 久久久久久久久久久免费av| 免费高清在线观看视频在线观看| 国产成人免费观看mmmm| 我要看日韩黄色一级片| 男人和女人高潮做爰伦理| 欧美 日韩 精品 国产| 亚洲国产精品国产精品| 欧美人与善性xxx| 制服丝袜香蕉在线| 日韩精品有码人妻一区| 国产视频首页在线观看| 在现免费观看毛片| 久久久久久久久久久丰满| 亚洲人成网站在线观看播放| 夫妻性生交免费视频一级片| 精品人妻偷拍中文字幕| 桃花免费在线播放| 一二三四中文在线观看免费高清| 熟女人妻精品中文字幕| 亚洲精品一区蜜桃| 午夜免费男女啪啪视频观看| 三级经典国产精品| 久久免费观看电影| 精品国产一区二区久久| 国产精品三级大全| 国产免费视频播放在线视频| 亚洲国产精品成人久久小说| 久久久久久人妻| 在线播放无遮挡| 亚洲av欧美aⅴ国产| 亚洲自偷自拍三级| 国产成人a∨麻豆精品| 国产日韩欧美视频二区| videos熟女内射| kizo精华| 男女边摸边吃奶| 少妇人妻久久综合中文| 我要看日韩黄色一级片| 高清欧美精品videossex| 久久99热6这里只有精品| 日韩一区二区视频免费看| 久久久久久久久久久免费av| 亚洲精品,欧美精品| 丰满人妻一区二区三区视频av| 午夜久久久在线观看| 日韩免费高清中文字幕av| 亚洲人成网站在线播| 99久久精品一区二区三区| 中文在线观看免费www的网站| www.av在线官网国产| 麻豆成人av视频| 国产有黄有色有爽视频| 蜜臀久久99精品久久宅男| 久久久精品94久久精品| 六月丁香七月| 99热全是精品| a级一级毛片免费在线观看| av福利片在线观看| 看非洲黑人一级黄片| 在线观看美女被高潮喷水网站| 国产精品99久久99久久久不卡 | 日日啪夜夜撸| 自拍欧美九色日韩亚洲蝌蚪91 | 国产无遮挡羞羞视频在线观看| 久久久精品免费免费高清| av福利片在线观看| 亚洲美女黄色视频免费看| xxx大片免费视频| 91久久精品国产一区二区成人| 啦啦啦啦在线视频资源| 精品久久久噜噜| 九九在线视频观看精品| 日韩精品有码人妻一区| 一级二级三级毛片免费看| 精品一区二区三区视频在线| av线在线观看网站| 午夜福利,免费看| 22中文网久久字幕| 一本色道久久久久久精品综合| 卡戴珊不雅视频在线播放| 久久精品久久久久久久性| 久久狼人影院| 性高湖久久久久久久久免费观看| 久久国产乱子免费精品| av天堂久久9| 99热6这里只有精品| 国产在线男女| 欧美日韩综合久久久久久| 国产伦精品一区二区三区视频9| 久久久久久久精品精品| a级毛色黄片| 欧美老熟妇乱子伦牲交| av.在线天堂| 婷婷色综合大香蕉| 黑人猛操日本美女一级片| 曰老女人黄片| 黄色欧美视频在线观看| 精品酒店卫生间| 在线观看免费日韩欧美大片 | 亚洲欧洲日产国产| av卡一久久| 男人和女人高潮做爰伦理| 国产精品久久久久久精品古装| 久久精品国产a三级三级三级| 97超碰精品成人国产| 婷婷色麻豆天堂久久| 国产国拍精品亚洲av在线观看| 麻豆成人午夜福利视频| 欧美精品高潮呻吟av久久| 国产有黄有色有爽视频| 极品人妻少妇av视频| 午夜老司机福利剧场| 在线观看人妻少妇| 全区人妻精品视频| 草草在线视频免费看| 啦啦啦中文免费视频观看日本| 婷婷色av中文字幕| 伊人久久精品亚洲午夜| 亚洲精品,欧美精品| 久久久久人妻精品一区果冻| 欧美xxxx性猛交bbbb| 久久久精品免费免费高清| av网站免费在线观看视频| 精品午夜福利在线看| videossex国产| 国产爽快片一区二区三区| 日韩熟女老妇一区二区性免费视频| 亚洲av中文av极速乱| 一边亲一边摸免费视频| 国产精品熟女久久久久浪| 久久精品国产a三级三级三级| 免费av不卡在线播放| 九九久久精品国产亚洲av麻豆| 久久青草综合色| 三上悠亚av全集在线观看 | 欧美日韩视频高清一区二区三区二| 麻豆乱淫一区二区| 久久狼人影院| 日产精品乱码卡一卡2卡三| 久久综合国产亚洲精品| 韩国高清视频一区二区三区| 国产精品人妻久久久久久| 日韩欧美 国产精品| 亚洲精品国产色婷婷电影| 国产精品一二三区在线看| 国产精品人妻久久久久久| 午夜av观看不卡| 国产高清国产精品国产三级| 韩国av在线不卡| 亚洲国产精品999| av免费观看日本| 卡戴珊不雅视频在线播放| 成年av动漫网址| 少妇高潮的动态图| 亚洲av成人精品一二三区| 久久午夜福利片| 黄色欧美视频在线观看| 人人妻人人澡人人爽人人夜夜| 99热网站在线观看| 国产精品久久久久成人av| 日韩电影二区| 亚洲真实伦在线观看| 日日摸夜夜添夜夜爱| 高清毛片免费看| 天堂中文最新版在线下载| 亚洲欧洲日产国产| 国产精品国产三级国产专区5o| 国产毛片在线视频| 亚洲欧洲国产日韩| av国产久精品久网站免费入址| 中文在线观看免费www的网站| 日韩欧美 国产精品| 中国国产av一级| 亚洲人成网站在线播| 精品国产一区二区三区久久久樱花| 十分钟在线观看高清视频www | 国产乱人偷精品视频| 插逼视频在线观看| 国产精品免费大片| 国产 精品1| 麻豆成人av视频| 国产伦精品一区二区三区视频9| 性色avwww在线观看| 大又大粗又爽又黄少妇毛片口| 欧美亚洲 丝袜 人妻 在线| 亚洲av国产av综合av卡| av免费在线看不卡| 亚洲国产色片| 国产精品人妻久久久久久| 菩萨蛮人人尽说江南好唐韦庄| 91精品伊人久久大香线蕉| 亚洲av在线观看美女高潮| 亚洲成人av在线免费| xxx大片免费视频| 最近的中文字幕免费完整| 亚洲欧美日韩东京热| 亚洲精品乱久久久久久| 少妇人妻精品综合一区二区| 在线播放无遮挡| 日韩不卡一区二区三区视频在线| 免费观看无遮挡的男女| tube8黄色片| 午夜日本视频在线| 免费观看无遮挡的男女| 精品久久久噜噜| 欧美日韩视频精品一区| 亚洲国产最新在线播放| 国产淫语在线视频| 亚洲熟女精品中文字幕| 亚洲成人手机| 久久这里有精品视频免费| 美女主播在线视频| 18禁在线无遮挡免费观看视频| 男人添女人高潮全过程视频| 中文欧美无线码| 日韩免费高清中文字幕av| 国产精品不卡视频一区二区| 免费播放大片免费观看视频在线观看| av不卡在线播放| 一个人看视频在线观看www免费| 最近最新中文字幕免费大全7| 99热6这里只有精品| 夫妻性生交免费视频一级片| 成人特级av手机在线观看| 熟妇人妻不卡中文字幕| 男的添女的下面高潮视频| 最近中文字幕高清免费大全6| 欧美精品高潮呻吟av久久| 久久久午夜欧美精品| 午夜福利视频精品| 久热这里只有精品99| 一区二区av电影网| 熟女人妻精品中文字幕| 久久鲁丝午夜福利片| 精品久久久久久久久av| 久久久久久久国产电影| 在线看a的网站| 色视频在线一区二区三区| 在线观看一区二区三区激情| 中文欧美无线码| 2021少妇久久久久久久久久久| 尾随美女入室| 亚洲精品乱久久久久久| 亚洲av综合色区一区| 欧美日韩一区二区视频在线观看视频在线| 丰满乱子伦码专区| 精品亚洲乱码少妇综合久久| 两个人的视频大全免费| 免费观看无遮挡的男女| 国产伦精品一区二区三区四那| 日韩精品有码人妻一区| av女优亚洲男人天堂| 女人久久www免费人成看片| 国产精品免费大片| 久久久久久久国产电影| 日韩人妻高清精品专区| 18禁在线无遮挡免费观看视频| 日韩在线高清观看一区二区三区| 久久久久久久久大av| 狂野欧美激情性bbbbbb| 性高湖久久久久久久久免费观看| 男女国产视频网站| 97在线人人人人妻| 欧美日韩视频精品一区| 2021少妇久久久久久久久久久| 十八禁网站网址无遮挡 | 伊人久久国产一区二区| 国产精品成人在线| 下体分泌物呈黄色| 黄色配什么色好看| 97在线视频观看| 久久久久久久亚洲中文字幕| 日本与韩国留学比较| 男人爽女人下面视频在线观看| 精品少妇黑人巨大在线播放| 日本猛色少妇xxxxx猛交久久| 自线自在国产av| 日本与韩国留学比较| 国产美女午夜福利| 国产高清不卡午夜福利| 美女xxoo啪啪120秒动态图| 大又大粗又爽又黄少妇毛片口| 国产在线男女| 亚洲成色77777| 亚洲精品国产成人久久av| 丁香六月天网| 一区二区三区精品91| 老司机亚洲免费影院| 欧美最新免费一区二区三区| 久久ye,这里只有精品| 国产免费又黄又爽又色| 少妇被粗大猛烈的视频| 国产美女午夜福利| 天堂中文最新版在线下载| av在线播放精品| 午夜免费观看性视频| 国产精品人妻久久久影院| 自线自在国产av| 国产精品偷伦视频观看了| 亚洲欧美中文字幕日韩二区| 岛国毛片在线播放| 免费av中文字幕在线| 成人二区视频| 亚洲av中文av极速乱| 久久久久网色| 国产精品一区二区在线观看99| 观看美女的网站| 一级毛片aaaaaa免费看小| 国产成人91sexporn| 欧美 日韩 精品 国产| 亚洲欧美精品专区久久| 插阴视频在线观看视频| 精品人妻熟女毛片av久久网站| 国产视频首页在线观看| 亚洲第一av免费看| www.色视频.com| 久久久久久人妻| 日日啪夜夜撸| 狂野欧美激情性bbbbbb| 大话2 男鬼变身卡| av国产久精品久网站免费入址| 久久精品国产亚洲av涩爱| 午夜福利网站1000一区二区三区| 精品少妇内射三级| 欧美日本中文国产一区发布| 青青草视频在线视频观看| 另类亚洲欧美激情| 国产精品免费大片| 午夜影院在线不卡| 国产伦精品一区二区三区视频9| 国产精品久久久久久精品古装| 日产精品乱码卡一卡2卡三| 精品人妻熟女av久视频| 天天操日日干夜夜撸| 女性被躁到高潮视频| 亚洲欧美一区二区三区黑人 | 婷婷色综合www| 人人妻人人澡人人爽人人夜夜| 国精品久久久久久国模美| 麻豆成人av视频| 久久久久人妻精品一区果冻| 欧美变态另类bdsm刘玥| 大片电影免费在线观看免费| 成人综合一区亚洲| 我的女老师完整版在线观看| 十八禁高潮呻吟视频 | 妹子高潮喷水视频| 国产亚洲5aaaaa淫片| a 毛片基地| 高清黄色对白视频在线免费看 | 亚洲经典国产精华液单| 日日爽夜夜爽网站| 亚洲国产日韩一区二区| 国产日韩一区二区三区精品不卡 | 色视频www国产| 国产熟女欧美一区二区| 一区二区三区免费毛片| 久久久久国产网址| 青春草亚洲视频在线观看| 国产午夜精品一二区理论片| 一级a做视频免费观看| 国产免费又黄又爽又色| 各种免费的搞黄视频| 亚洲国产毛片av蜜桃av| 亚州av有码| 国产高清三级在线| 一区二区av电影网| 高清毛片免费看| 又大又黄又爽视频免费| 国产爽快片一区二区三区| 哪个播放器可以免费观看大片| 国产一级毛片在线| 久久国产乱子免费精品| 啦啦啦啦在线视频资源| 午夜av观看不卡| 成人二区视频| 日本午夜av视频| 亚洲精品中文字幕在线视频 | 青春草亚洲视频在线观看| 午夜免费观看性视频| 午夜激情久久久久久久| 精品亚洲成国产av| 日韩中文字幕视频在线看片| 免费人成在线观看视频色| 国产精品欧美亚洲77777| 99久久精品一区二区三区| 男女国产视频网站| 日韩成人伦理影院| 成人18禁高潮啪啪吃奶动态图 | 亚洲人与动物交配视频| 九九在线视频观看精品| 人人澡人人妻人| 观看免费一级毛片| 纵有疾风起免费观看全集完整版| 一级毛片电影观看| 国产69精品久久久久777片| 人人妻人人爽人人添夜夜欢视频 | 日韩不卡一区二区三区视频在线| 亚洲欧美日韩另类电影网站| 亚洲av欧美aⅴ国产| 久久精品夜色国产| av在线观看视频网站免费| 国产精品一二三区在线看| 亚洲熟女精品中文字幕| 中文字幕亚洲精品专区| 我的女老师完整版在线观看| 国产精品麻豆人妻色哟哟久久| 自拍欧美九色日韩亚洲蝌蚪91 | 大码成人一级视频| 青春草视频在线免费观看| 欧美国产精品一级二级三级 | 欧美另类一区| 国产毛片在线视频| 一二三四中文在线观看免费高清| 免费av不卡在线播放| 亚洲欧美清纯卡通| 免费观看在线日韩| 下体分泌物呈黄色| 一级,二级,三级黄色视频| 亚洲精品成人av观看孕妇| 一区在线观看完整版| 久久久久久人妻| 色婷婷av一区二区三区视频| 日韩视频在线欧美| 亚洲精品国产成人久久av| 在线精品无人区一区二区三| 久久久久久久精品精品| 亚洲成色77777| 最近手机中文字幕大全| 三级国产精品欧美在线观看| 在线免费观看不下载黄p国产| 国产真实伦视频高清在线观看| 午夜精品国产一区二区电影| 亚洲国产精品专区欧美| 日韩视频在线欧美| 9色porny在线观看| 五月开心婷婷网|