• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    COMPENSATION CONTROL OF REAL-TIME UNBALANCE FORCE FOR ACTIVE MAGNETIC BEARING SYSTEM

    2011-10-08 12:09:54GaoHuiXuLongxiangZhuYili

    Gao Hui,Xu Longxiang,Zhu Yili

    (College of Mechanical and Electrical Engineering,NUAA,29 Yudao Street,Nanjing,210016,P.R.China)

    INTRODUCTION

    Compared with classical bearings, active magnetic bearing(AMB)has been used widely in modern industry,medical machinery,aeronautics and astronautics because of its active control,no mechanical contact,no friction,no lubrication and high speed[1].AMBis the chief component of multi-electric aircraft and aero-motor.However,just as the ordinary rotary device,AMB system also has the impact on unbalance stimulation synchronous with rotor rotational frequency because of the rotor mass eccentricity and the principal axis of inertia being not coincident with the axis of geometry.Under the action of active control,the rotor would be restrained by AMBs and spin around one unknown axis between the inertial axis and the geometrical axis.So,there are two kinds of unbalance vibration in AMB system.Oneis force unbalance vibration,and the other is displacement vibration.The method for eliminating or weakening force unbalance vibration is called the force unbalance force compensation,that is,let the rotor spin closer to the inertial axis by means of weakening the effect of active control. The active control can be weakened by reducing the amplitudes of the control currents[2-9]. The other method of restraining displacement vibration is called the unbalance displacement compensation,that is,let the rotor spin closer to the geometrical axis through enhancing active control[10-12].Directed towards unbalance force compensation,there are two schemes, one is closed-loop feedback compensation[2,7], and the other is open-loop feed-forward compensation[3-6,8-9]. The merit of the first scheme is that it can filter directly the unknown displacement signals at some fixed frequency,and the drawback is increasing the exponent number of feedback control system and reducing system stability. The merit of the second scheme is that it will not increase the unstable factor of closed-loop system.But it is difficult to provide the needed sinusoidal compensation signal having the same frequency and amplitude as rotor displacement signal besides reverse phase.

    Herzog et al[2]proposed a generalized narrow band notch filter which was inserted into the closed-loop feedback system. Shafai et al[3]introduced a novel method called the adaptive forced balancing(AFB)which solved the problem of synchronous vibration. Mohamed et al[4]proposed a controller design methodology using the Q-parameterization theory for variable speed magnetic bearings in order to achieve elimination of unbalance vibrations. Huang et al[5]used compensatory voltage vectors with proper amplitudes and phases as the input of the power amplifiers to cancel out the effect of the rotor imbalance.LMS adaptive filter algorithm also was applied in autoba lance[6-9], which could eliminate the sinusoidal displacement signals,reduce the amplitudes of the output control currents of power amplifiers,weaken the active control,and achieve adaptive force compensation.LM S algorithm is adaptive to filter some unknown signals. At home, Zhang et al[6]mentioned the application of LMS algorithm in AMB system.Gao et al[7]implemented closed loop feedback unbalance force compensation control in AMB system by adopting LMS algorithm.At abroad,Kang and Shi et al[8-9]also applied this method in AMB system.Ref.[8]implemented single-DOF experiment,and Ref.[9]only achieved compensation for four radial DOFs in fixed rotational frequency(26.37 Hz).Refs.[6-9]analyzed the vibratory force only from fixed frequency,but did not research the real time unbalance force compensation.The reasons of those maybe it will produce complicated or nonlinear relation among filter algorithm,corresponding controller and AMB system,thus cannot satisfy the filter requirement in all bandwidth.

    Directed towards the deficiency of Refs.[6-9],this paper analyzes the principle of adaptive filter of LMS algorithm and the relation between algorithm step-size and rotor rotational frequency combining with the time-variable feature of rotor displacement signals.Furthermore,one new real time feed-forward compensation scheme is proposed to adaptively weaken four radial unbalance force.A new variable step-size LMS algorithm is utilized as the feed-forward compensation controller to provide requisite sinusoidal compensatory signals. Firstly,rotor displacement signal is kept as algorithm expectant signal and the needed algorithm output signal is obtained after several times of iteration,then the reverse signal of algorithm output as the output signal of the feed-forward controller is injected into the closed-loop system of AMB. The stability of original control system will not be reduced by the added feed-forward controller,so it can implement real-time unbalance force compensation for four radial DOFs when AMB system works normally.Finally,the feasibility of the new method for the adaptive compensation of the vibration of AMB system is verified by the experimental results.

    1 SCHEME OF FEED-FORWARD COMPENSATION

    1.1 Feed-forward structure based on LMS algorithm

    The structure of feed-forward compensation control based on LMS algorithm is given in Fig.1. The added sinusoidal unbalance information is provided by LMS adaptive algorithm according to rotor feedback signals.LMS algorithm is adopted for its several merits,such as simple structure,moderate operations,and without mathematical model of the processed objects.Relative to Refs.[3-5],the sinusoidal compensatory signals are ex tracted adaptively only by LMS algorithm instead of contrived given or some other signal generating algorithms.

    Fig.1 Adaptive feed-forward compensation control based on LMS algorithm

    The sinusoidal rotor displacement fluctuation of AMB system caused by the rotor mass eccentricity at high speed can be supposed by

    where A(2πft)is the function of displacement signal amplitude,f the rotational frequency of rotor, and h the initial phase, which is determined by the rotor initial position.Eq.(1)is expanded by

    Let A(2πft)sin h=a1(t),A(2πft)cos h=a2(t),Eq.(2)can be replaced by

    Therefore,the signal d(t)can be processed by LMS algorithm. The structure of LM S algorithm is shown in Fig.1.X(t)=[sin(2πf 0t)cos(2πf 0t)]′,W(t)=[k 1(t) k 2(t)]′respectively represent input vector and weight iteration vector of the algorithm,f 0 is the frequency of input signal,Y(t)the output of the algorithm,also the sinusoidal feed-forward compensatory signal.According to Ref.[13],discrete analysis of the downside branch of LMS algorithm is shown in Fig.2.

    Fig.2 Algorithm single transmission

    In Fig.2,_is the step-size,and the weight coefficient iterative function of the downside branch from D to P can be given by

    From Figs.1-2,the following two functions are given

    Eqs.(4-6)are the discrete analysis.When t→+ ∞ ,if guaranteeing k1(t)→ a1(t)and k2(t)→a2(t)in the process of iteration combining Eqs.(3-6),there has

    If conditions are permitted,the needed sinusoidal compensatory signal can be provided by LMS algorithm from Eq.(7),which is the reverse signal of Y(t).The transfer function of closed-loop between e(t)and d(t)can be written from Refs.[13,14]

    From Eq.(8),the zeros of H L(z)are e±2jπf0,which are distributed on the unit circle.Signal tracked completely can be achieved if H L(z)=0 when the frequency of d(t)is equal to f 0,i.e.,Eq.(7)is restricted by f=f0.

    PID digital controller with advanced part is used,the controller module is

    where K p is the proportional gain,T i the integral gain,T d the differential gain,K p T d s/(1+ T f s)the incomplete differential part,and(T L s+ 1)/(αT L s+ 1)the additional advanced part,here,T<1.The transfer function of the closed-loop controller system is given by

    The transfer function of total controller added the feed-forward compensation controller can be calculated by

    To prove the validity,the major coefficients of the total controller are configured as follows:_=0.04,f 0=400 Hz,K p=0.685,T i=0.545,T d=0.569,K f=0.753 9,K L=0.074 25,sample frequency is f s=20 000 Hz,and so on.The curves of frequency characteristic of Eq.(11)is simulated by MATLAB in Fig.3.From the curve of amplitude-frequency characteristic,it can be seen that it can filter well at 400 Hz because the output response is less than-100 d B,and the output response is close to 0 d B in additional frequency,which can prove that output tracks system input well. From phase-frequency characteristic curve,it can be seen that the curve is over-180°, so the controller is stable according to log-magnitude versus phase plot.Therefore,the sinusoidal control signal of the input of PID can be compensated when f=f 0.The validity of the scheme of feed-forward compensation can be proved form Fig.3.

    Fig.3 Bode diagram of total controller

    The part surrounded by circles in Fig.3 is enlarged in Fig.4. Easy to see, the total controller is unstable in the low-frequency region because the corresponding output response is less than-3 d B,but output can perfectly respond the input signal after 300 rad/s(47.8 Hz).That is to say the feed-forward controller is unsuitable for AMB system in low-frequency region.So,in this paper,compensation controller is not added until the rotational frequency reaches the fixed value.

    Fig.4 Amplitude-frequency characteristic of restricted part in Fig.3

    1.2 Variable step-size of LMS algorithm

    According to Section 1.1,it is feasible that LMS algorithm works as feed-forward controller to implement unbalance force compensation.But the effect of LMS filtering is restricted by_.The selected value of_ will directly influence the algorithm convergent velocity and the ability of following the time-variable signal.So the normal LMS with fixed_ cannot satisfy real-time requirement in the unbalance force compensation of AMB system.And it is the reason why Refs.[6-9]only analyzed the application of LMS in force unbalance force compensation in fixed rotational speed.The variable step-size of LMS can be deduced by analyzing the relation among the step-size and the frequency of input signal and the rotor rotational frequency.From the angle of zeros 2πf 0 and Ref.[15],the bandwidth(BW)can be given by

    Here,the concept of quality factor is adopted to show the effect of Notch filtering[13]

    If_? 1,then_2cos2(2πf 0)≈ 0,Eq.(12)can be simplified by

    Q is proportional to f 0 and inverse proportional to_.The correctness of Eq.(14)can be proved by the coefficients in Table 1 and the corresponding simulation given in Fig.5.

    Table 1 Dif fer ent combination of f requ ency and step-size

    Fig.5 Relation among BW,frequency and step-size

    The length between the two nodes of-3 d B beeline and each curve from Fig.5 denotes the BW of each filter which is the smaller the better.In practical and industrial application,to improve the effect of filtering,the value of Q should be selected reasonably and should satisfy the harmonious reason among the three characteristics mentioned of LMS.So_can be represented by f0and Q

    From Eq.(15),it can be seen that suitable_is restricted by f0when Q is fixed.In view of the limitations of normal LMS in the application of real-time adaptive compensation and the validity and thoroughness of filtering when f=f 0,now,the new variable step-size function in the application of time-variable feed-forward unbalance force compensation control system of AMBis given by

    where_v is the variable step-size,Q f the fixed value according to different AMB system,which is computed by suitable_ and corresponding coefficients of PID controller according to Eq.(15)when implementing force compensation of fixed speed of 300 Hz._is 0.04 and Q f is 23 550 rad/s when the compensatory experiment is operated practically at 300 Hz.

    1.3 Real-time unbalance force compensation

    According to the analysis of Sections 1.1 and 2.2,one new real-time and on-line feed-forward unbalance force compensation scheme is proposed in Fig.6.

    Fig.6 Real-time feed-forward control for unbalance force compensation

    The sinusoidal feed-forward compensatory signals are provided by variable step-size LMS algorithm,but they are uncompensated at low frequency until the rotational speed reaches the fixed compensatory frequency.There is a switch control between the process of uncompensation and compensation.The algorithms of digital PID controller and feed-forward compensation according to variable step-size LMS and the switch procedure are implemented by PC.A/D converter and speed measurement are implemented by DSP chip of TM S320LF2407A,and information exchange between them is implemented by PCI9052 card. The period of digital control and sample are all 50μs.Finally,the real-time unbalance force compensation can be achieved.

    Fig.7 is the part of switch compensation in Fig.6.Only PID controller works when the rotational frequency is less than f s,and f s is a given value according to needs.Here,it is 300 Hz.Feed-forward controller and PID controller will work simultaneously when the rotational frequencyf reaches or surpasses f s,and real-time and variable-speed unbalance force compensation will beimplemented.

    Fig.7 Feed-forward control part for providing sinusoidal compensatory signal

    As a major criterion in the processes of compensation and switch control,rotor rotational frequency plays an important role.The process of speed measurement adopts unit of CAP4 in EVB,and sets relevant trigger of capture and period to achieve speed measurement.The measured signal is provided by one of the four radial displacement signals of the AMB system,where the sinusoidal signal having 2.5 V bias is processed to square wave(0—3.3 V)by a processed circuit.

    Fig.8 is the simulation of feasibility of the new strategy,and the three curves severally signify the output signal of PID controller,the rotor displacement signal and the feed-forward compensatory signal.Before 0.015 s,there are not feed-forward signals for the compensatory controller is not added and the PID output can respond to rotor signal well.Between 0.015s and 0.03 s,feed-forward compensation is injected when the rotational frequency is given 200 Hz,and the feed-forward signal can follow up the rotor signal,so PID output becomes zero after several periods.Another compensation is shown at 400 Hz after 0.03 s according to Eq.(16),and the phenomenon is similar to foregoing compensation.It can be seen that the changes are stable at the two points of switching from the curve of PID output,which can prove the validity of the new strategy further.From the PID output signal in Fig.8,it can be seen that the unbalance displacement voltage is compensated by the new LMS,which can reduce the unbalance current response in the power amplifier and weaken the periodical constraint for cein the armature coils in Fig.6,and the unbalance force compensation of the rotor system is improved finally. So,eliminating the fluctuation of control current is one important basis for estimating unbalance force compensation.

    Fig.8 Simulation of variable-frequency switch feed forward compensation

    2 EXPERIMENTAL ANALYSIS

    The configuration of the active compensation control system is given in Fig.9.

    Fig.9 Real closed-loop manipulative system of AMB system

    In Fig.9,PC and digital control are the keys of implementing active compensation control.The displacements of rotor are measured by displacement sensors in the skeletons of magnetic bearings(not displayed in Fig.9)and the drive of sensors.The action of transducer is to drive the motor rotation,and the action of transfer box is debugged and measured conveniently.Relevant algorithms are programmed in PC and DSP,according to Eq.(16)and foregoing Qf.Variable step-size is given that_v=f/7 500,and the PID control coefficients are the same as those given in Section 1.1.Now,several pictures are displayed to contrast the effects between compensation and uncom pensation at the rotational frequencies of 300,400,500,550 and 575 Hz.The signals of currents and displacements with and without compensation control are shown in Fig.10.

    Fig.10 Curves of displacements and currents with and without compensation

    In each pair of Fig.10,the abscissa is time axis with the unit of 5 ms/div,and the ordinate represents current axis with the unit of 1.0 A/div and displacement axis with the unit of 1.0 V/div.It can be seen that the curves of control currents tend to be straight lines with compensation.In order to analyze the changes of currents and displacements better, fast Fourier transform(FFT)is utilized to obtain accurate amplitudes of each curve in Fig.10.The FFT curves of currents at different frequency are given in Fig.11,and FFT of displacements are shown in Fig.12.

    Fig.11 FFT of control currents of with and without compensation

    Fig.12 FFT of displacements of with and without compensation

    In Fig.11,the amplitudes of the control currents increase as nearly square relationship with the increase of the rotational frequency without compensation.When the rotor rotates at high-speed,even a small increase of the rotation frequency can lead to great change of the amplitudes of control currents.For example,the amplitude of current increases about 0.2 A when the rotation frequency changes from 550 Hz to 575 Hz,but it increases only 0.02 A from 300 Hz to 400 Hz.So,in the high-frequency region,the periodic counterforce acting on the housing of the AMB system through the magnetic bearing coils will increase quickly when rotor rotational frequency is increased.It can increase the housing vibration and noise,reduce the stability of the system,and aggrandize the power dissipation of all magnetic bearings.As the control currents with compensation fluctuate nearby zero line basically,the problems listed above caused by the counterforce can be to great extent settled,and the effect of compensation turns out to be much better in high-frequency region.

    From Fig.12,it can see that the rotor displacements in low-frequency region are relatively reduced with compensation, which maybedue to the existence of super-harmonic and sub-harmonic vibrations. While the rotor displacements are accordingly enlarged with compensation in high-frequency region because the rotor turns into the state of free rotation.What is more, the rotor inertial force is proportional to the square of the frequency.In order to balance the increased inertial force,the displacement should be greater than that without compensation.The vibration of AMB system is produced by the inertial force of the rotor from the amplitude of each curve in Fig.11 and Fig.12.It proves the validity of adaptive feed-forward unbalance force compensation with the new variable LMS algorithm, but the vibration decrease is achived by increasing the rotor displacements.

    3 CONCLUSION

    On the basis of the study of the influence of unbalance stimulation of AMB and the analysis of the disadvantage of the LMS algorithm,a new feed-forward unbalance force compensation strategy of real-time switching control is proposed.The effectiveness and real-time of the new scheme is verified by the rotational experiments.It can weaken the action of active control of AMB system through reducing the amplitudes of the control currents, and implement unbalance force compensation at the cost of increasing the unbalance displacement vibration. It can eliminate the stimulation of unbalance force of rotor especially in high-frequency region effectively,increase the control stability of AMB system,and limit the saturation of control current and losses of eddy current.This scheme provides an effective way to improve the rotational speed in the AMB system.

    [1] Yu Lie.The system of rotor of controllable magnetic bearings[M].Xi′an: Science Press,2003.(in Chinese)

    [2] Herzog R,Buhler P,Gahler C,et al.Unbalance compensation using generalized notch filters in the multivariable feedback of magnetic bearings[J].Control Systems Technology,1996,4(5):580-586.

    [3] Shafai B,Beale S,Larocca P,et al.Magnetic bearing control systems and adaptive forced balancing[J].Control Systems Magazine,1994,14(2):4-13.

    [4] Mohamed A M,Matsumura F,Namerikawa T.Q-parameterization control of vibrations in a variable speed magnetic bearing[C]//Proceedings of the 1997 IEEE International Conference on Control Applications. New York, Piscataway: IEEE,Control Applications,1997:540-546.

    [5] Huang Xiaowei,Tang Zhonglin.New method for autobalancing with active magnetic bearings[J].Chinese Journal of M echanical Engineering,2001,37(7):99-112.(in Chinese)

    [6] Zhang Dekui,Jiang Wei,Zhao Hongbin.Unbalance vibration control methods for active magnetic bearings system [J]. Journal of Tsinghua University,2000,40(10):28-31.(in Chinese)

    [7] Gao Hui,Xu Longxiang. Real-time vibration compensation for active magnetic bearing systems based on LMS algorithm[J].Journal of Vibration Engineering,2009,22(6):583-588.(in Chinese)

    [8] Kang M S,Yoon W H.Acceleration feed forward control in active magnetic bearing system subject to base motion by filtered-X LMS algorithm[J].IEEE Transactions on Control Systems Technology,2006,14(1):134-140.

    [9] Shi J,Zmood R.The direct method for adaptive feed-forward vibration control of magnetic bearing systems[C]//7th International Conference on Control, Automation, Robotics and Vision.Singapore: Nanyang Technological University,2002:675-680.

    [10]Bi Chao,Wu Dezheng, Jiang Quan.Automatic learning control for unbalance compensation in active magnetic bearings[J]. IEEE Transactions on Magnetics,2005,41(7):2270-2280.

    [11]Jing Minqing,Li Zixin,Luo Min,et al.Unbalance response and touch-rubbing threshold speed of rotor subjected to nonlinear magnetic forces[J].Chinese Journal of Mechanical Engineering,2008,21(2):1-4.

    [12]Arias M M,Silva N G.Finiteelement modeling and unbal ancecompensation for a two disks asymmetrical rotor system[C]//2008 5th International Conference on Electrical Engineering,Computing Science and Automatic Control. Mexico City, Piscataway:Electrical Engineering,2008:386-391.

    [13]Fu Minshen.Adaptivesignal processing[M].Xi′an:Xidian University Press, 2001: 144-147. (in Chinese)

    [14]Vaz C,Kong X,Thako N.An adaptive estimation of periodic signals using a Fourier linear combiner[J].IEEE Transactions on Signal Processing,1994,42(1):1-10.

    [15]Xiao Y,Tadokoro Y.LMS-based notch filter for the estimation of sinusoidal signals in noise[J].Signal Processing,1995,46(2):223-231.

    性少妇av在线| 久久这里只有精品19| 国产欧美日韩综合在线一区二区| xxx96com| 9热在线视频观看99| 韩国精品一区二区三区| 女人久久www免费人成看片| 又大又爽又粗| 精品第一国产精品| 国产人伦9x9x在线观看| 午夜激情av网站| 精品亚洲成国产av| 欧美日本中文国产一区发布| avwww免费| 亚洲国产中文字幕在线视频| 大香蕉久久成人网| 操出白浆在线播放| 成人国语在线视频| 校园春色视频在线观看| 最近最新免费中文字幕在线| 久久精品人人爽人人爽视色| 国产欧美日韩一区二区三| 亚洲国产精品sss在线观看 | 久久人妻av系列| 九色亚洲精品在线播放| 久久中文看片网| 一边摸一边抽搐一进一小说 | 日本黄色日本黄色录像| 黄色片一级片一级黄色片| 精品国产乱子伦一区二区三区| 中文亚洲av片在线观看爽 | 免费一级毛片在线播放高清视频 | 亚洲av电影在线进入| 在线观看日韩欧美| 久久青草综合色| 久久久久久免费高清国产稀缺| 亚洲精品一二三| 亚洲一区二区三区欧美精品| 国产精品一区二区免费欧美| 黄网站色视频无遮挡免费观看| 日韩欧美一区二区三区在线观看 | 午夜福利影视在线免费观看| 欧美在线黄色| 久久久久国内视频| 一级毛片女人18水好多| 久久精品国产a三级三级三级| 亚洲av日韩精品久久久久久密| av福利片在线| 99久久99久久久精品蜜桃| 国产精品综合久久久久久久免费 | 好男人电影高清在线观看| 亚洲精品国产精品久久久不卡| 成人黄色视频免费在线看| 亚洲在线自拍视频| 乱人伦中国视频| 成人亚洲精品一区在线观看| aaaaa片日本免费| 午夜日韩欧美国产| 国产一区在线观看成人免费| 满18在线观看网站| 欧美另类亚洲清纯唯美| 午夜激情av网站| 午夜福利一区二区在线看| a级毛片在线看网站| 精品午夜福利视频在线观看一区| 国产精品98久久久久久宅男小说| 高清视频免费观看一区二区| 午夜老司机福利片| 美国免费a级毛片| 亚洲美女黄片视频| 亚洲黑人精品在线| 国产精品一区二区免费欧美| www.自偷自拍.com| 亚洲精品中文字幕一二三四区| 欧美成人免费av一区二区三区 | 成在线人永久免费视频| 欧美一级毛片孕妇| 欧美成人午夜精品| 黄色视频不卡| 亚洲成国产人片在线观看| 欧美人与性动交α欧美软件| 国产又色又爽无遮挡免费看| 国产精品偷伦视频观看了| 亚洲在线自拍视频| 日韩欧美国产一区二区入口| 一个人免费在线观看的高清视频| 丝袜人妻中文字幕| 免费不卡黄色视频| 欧美国产精品一级二级三级| 精品久久久久久久久久免费视频 | 国产精品一区二区免费欧美| 国产人伦9x9x在线观看| 亚洲av电影在线进入| 天堂中文最新版在线下载| 亚洲中文av在线| 黄片小视频在线播放| 国产91精品成人一区二区三区| 国产亚洲欧美在线一区二区| 亚洲aⅴ乱码一区二区在线播放 | 中文字幕av电影在线播放| 亚洲 欧美一区二区三区| av国产精品久久久久影院| 啦啦啦在线免费观看视频4| 国产精品乱码一区二三区的特点 | 在线播放国产精品三级| 亚洲精品av麻豆狂野| 亚洲专区国产一区二区| 亚洲av美国av| 亚洲国产欧美一区二区综合| 欧美乱妇无乱码| 亚洲人成电影免费在线| 欧洲精品卡2卡3卡4卡5卡区| 国产精品一区二区精品视频观看| 啦啦啦 在线观看视频| 国产精品秋霞免费鲁丝片| 亚洲专区字幕在线| 精品乱码久久久久久99久播| 精品福利永久在线观看| 中文字幕人妻丝袜一区二区| 亚洲av电影在线进入| 久久精品国产99精品国产亚洲性色 | 免费黄频网站在线观看国产| 欧美亚洲 丝袜 人妻 在线| xxxhd国产人妻xxx| 亚洲精品成人av观看孕妇| 亚洲伊人色综图| 在线观看免费视频网站a站| 天天添夜夜摸| 欧美日韩亚洲国产一区二区在线观看 | 在线视频色国产色| 这个男人来自地球电影免费观看| 成人18禁高潮啪啪吃奶动态图| 免费在线观看日本一区| 一个人免费在线观看的高清视频| 一级,二级,三级黄色视频| 夜夜夜夜夜久久久久| 亚洲avbb在线观看| 精品国内亚洲2022精品成人 | 韩国av一区二区三区四区| 精品福利观看| 亚洲三区欧美一区| 好男人电影高清在线观看| 精品国产美女av久久久久小说| 露出奶头的视频| 一区二区三区精品91| xxx96com| 丝瓜视频免费看黄片| а√天堂www在线а√下载 | 天堂中文最新版在线下载| 色尼玛亚洲综合影院| 黄色 视频免费看| 国产精品av久久久久免费| 熟女少妇亚洲综合色aaa.| 亚洲三区欧美一区| 日本a在线网址| 正在播放国产对白刺激| 男女午夜视频在线观看| 91国产中文字幕| 成人精品一区二区免费| 久久天堂一区二区三区四区| 操美女的视频在线观看| 侵犯人妻中文字幕一二三四区| 91精品三级在线观看| x7x7x7水蜜桃| 日韩中文字幕欧美一区二区| 国产伦人伦偷精品视频| 国产精品电影一区二区三区 | 成人影院久久| 免费黄频网站在线观看国产| 久久久国产成人免费| 韩国av一区二区三区四区| 人妻 亚洲 视频| 99香蕉大伊视频| 免费在线观看视频国产中文字幕亚洲| 人人妻人人爽人人添夜夜欢视频| 大码成人一级视频| 丝袜在线中文字幕| 日韩人妻精品一区2区三区| 免费观看精品视频网站| 午夜福利乱码中文字幕| 性少妇av在线| 亚洲国产欧美日韩在线播放| 久久天躁狠狠躁夜夜2o2o| 免费观看精品视频网站| 欧美在线黄色| 精品无人区乱码1区二区| 手机成人av网站| 日韩三级视频一区二区三区| 老司机午夜福利在线观看视频| 一边摸一边做爽爽视频免费| 亚洲国产精品一区二区三区在线| 亚洲成人手机| 日韩欧美三级三区| 欧美黄色淫秽网站| 老熟妇仑乱视频hdxx| 男女免费视频国产| 在线国产一区二区在线| 国产蜜桃级精品一区二区三区 | 国产真人三级小视频在线观看| 久久九九热精品免费| 在线观看舔阴道视频| 午夜免费观看网址| 可以免费在线观看a视频的电影网站| 亚洲中文字幕日韩| 交换朋友夫妻互换小说| 亚洲一区二区三区不卡视频| 国产欧美亚洲国产| 欧美大码av| 极品少妇高潮喷水抽搐| 亚洲一卡2卡3卡4卡5卡精品中文| 少妇 在线观看| 久久国产精品大桥未久av| 成人影院久久| 国产又色又爽无遮挡免费看| e午夜精品久久久久久久| 黄网站色视频无遮挡免费观看| 精品国产一区二区三区久久久樱花| 亚洲精品国产色婷婷电影| 乱人伦中国视频| 一边摸一边抽搐一进一小说 | 久久久国产精品麻豆| 中文字幕人妻熟女乱码| 亚洲欧美日韩高清在线视频| 大型黄色视频在线免费观看| 一夜夜www| 久久久久久亚洲精品国产蜜桃av| 久久青草综合色| 亚洲成人免费av在线播放| 成年人免费黄色播放视频| 日韩有码中文字幕| 亚洲精品国产一区二区精华液| 高清欧美精品videossex| 亚洲伊人色综图| 欧美日本中文国产一区发布| 如日韩欧美国产精品一区二区三区| 久久久久精品国产欧美久久久| 亚洲精品成人av观看孕妇| 国产一区二区三区在线臀色熟女 | 午夜两性在线视频| cao死你这个sao货| 国产成+人综合+亚洲专区| 99国产精品免费福利视频| 色综合欧美亚洲国产小说| 亚洲全国av大片| 国产黄色免费在线视频| 日韩免费高清中文字幕av| 亚洲熟妇中文字幕五十中出 | 色婷婷久久久亚洲欧美| 成人免费观看视频高清| 亚洲精品久久午夜乱码| 黄片小视频在线播放| 99久久综合精品五月天人人| 大型黄色视频在线免费观看| 一区在线观看完整版| 水蜜桃什么品种好| 高清黄色对白视频在线免费看| 叶爱在线成人免费视频播放| 亚洲中文日韩欧美视频| 老汉色av国产亚洲站长工具| 国产日韩一区二区三区精品不卡| 少妇被粗大的猛进出69影院| 欧美中文综合在线视频| www.自偷自拍.com| 亚洲一卡2卡3卡4卡5卡精品中文| 动漫黄色视频在线观看| 在线观看午夜福利视频| 亚洲精品一卡2卡三卡4卡5卡| 99国产综合亚洲精品| 我的亚洲天堂| 国产不卡一卡二| 性少妇av在线| 亚洲av成人不卡在线观看播放网| 69精品国产乱码久久久| 精品一区二区三区视频在线观看免费 | 美女高潮喷水抽搐中文字幕| 免费久久久久久久精品成人欧美视频| 亚洲第一av免费看| 女人精品久久久久毛片| www.自偷自拍.com| 女警被强在线播放| 丝袜在线中文字幕| 亚洲色图 男人天堂 中文字幕| 曰老女人黄片| 精品免费久久久久久久清纯 | 精品福利永久在线观看| 亚洲国产精品合色在线| 男女免费视频国产| 热99国产精品久久久久久7| 久久久久久久午夜电影 | 久久婷婷成人综合色麻豆| 一级,二级,三级黄色视频| 国产精品乱码一区二三区的特点 | 一二三四社区在线视频社区8| 国产精品欧美亚洲77777| 波多野结衣av一区二区av| 热99re8久久精品国产| 热re99久久精品国产66热6| 一级,二级,三级黄色视频| 两性午夜刺激爽爽歪歪视频在线观看 | 一夜夜www| 色播在线永久视频| 啦啦啦 在线观看视频| 丰满迷人的少妇在线观看| 日韩欧美一区视频在线观看| 久久久国产一区二区| 国产野战对白在线观看| 国产97色在线日韩免费| 亚洲成人免费av在线播放| 99久久国产精品久久久| 伊人久久大香线蕉亚洲五| 久久午夜亚洲精品久久| 国产精品久久久久久精品古装| 亚洲精华国产精华精| 欧美国产精品va在线观看不卡| 黑丝袜美女国产一区| 国产成人免费无遮挡视频| 99国产精品免费福利视频| 国产精品一区二区在线不卡| 国产不卡av网站在线观看| www.精华液| 欧美在线黄色| 久久久国产一区二区| 亚洲国产毛片av蜜桃av| 在线av久久热| 一级a爱片免费观看的视频| x7x7x7水蜜桃| 免费看a级黄色片| 精品国产一区二区久久| 好男人电影高清在线观看| 久久久国产成人免费| 热re99久久精品国产66热6| 丝袜人妻中文字幕| 黄网站色视频无遮挡免费观看| 久久精品91无色码中文字幕| 国产精品亚洲一级av第二区| 国产成人影院久久av| 国产精品98久久久久久宅男小说| 亚洲精品自拍成人| 国产视频一区二区在线看| 最近最新免费中文字幕在线| 亚洲精品成人av观看孕妇| 国产精品 国内视频| 老熟妇乱子伦视频在线观看| 男女下面插进去视频免费观看| 中文字幕精品免费在线观看视频| 黄频高清免费视频| 亚洲一区中文字幕在线| 99国产精品一区二区蜜桃av | 国产色视频综合| 国产亚洲精品久久久久久毛片 | 嫩草影视91久久| 亚洲一卡2卡3卡4卡5卡精品中文| 999久久久国产精品视频| 在线观看日韩欧美| www.自偷自拍.com| 亚洲成a人片在线一区二区| 十八禁高潮呻吟视频| 日本黄色视频三级网站网址 | 亚洲精品在线观看二区| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美精品啪啪一区二区三区| 美女高潮到喷水免费观看| 日韩人妻精品一区2区三区| 高清黄色对白视频在线免费看| xxxhd国产人妻xxx| 天天躁狠狠躁夜夜躁狠狠躁| 久久久国产成人免费| 亚洲精品一卡2卡三卡4卡5卡| 久久香蕉国产精品| 久久久久精品国产欧美久久久| 人人妻,人人澡人人爽秒播| 亚洲五月婷婷丁香| 欧美乱色亚洲激情| 精品人妻熟女毛片av久久网站| 亚洲人成电影观看| 久久久久久久久免费视频了| 国产精品影院久久| 日韩大码丰满熟妇| 欧美国产精品va在线观看不卡| 亚洲熟妇中文字幕五十中出 | 免费在线观看亚洲国产| 国产99白浆流出| 欧美精品一区二区免费开放| 欧美 日韩 精品 国产| 一级作爱视频免费观看| 国产在线一区二区三区精| 操美女的视频在线观看| 久久国产精品男人的天堂亚洲| av网站在线播放免费| 亚洲精品久久成人aⅴ小说| 成人18禁在线播放| 99精品欧美一区二区三区四区| 午夜免费鲁丝| 成人亚洲精品一区在线观看| 又黄又粗又硬又大视频| 久久久久久久久久久久大奶| 少妇 在线观看| 欧美日韩成人在线一区二区| 一进一出抽搐gif免费好疼 | 国产精品久久久久成人av| 亚洲av第一区精品v没综合| 成年人午夜在线观看视频| 久久久久久久久久久久大奶| 日本黄色视频三级网站网址 | 亚洲国产精品sss在线观看 | 美女福利国产在线| 黄色视频不卡| 久久热在线av| 午夜福利影视在线免费观看| 老汉色∧v一级毛片| 亚洲国产精品一区二区三区在线| 真人做人爱边吃奶动态| 欧美老熟妇乱子伦牲交| 成人亚洲精品一区在线观看| 国产精品免费大片| 亚洲全国av大片| 国产伦人伦偷精品视频| 国产精品久久电影中文字幕 | 少妇被粗大的猛进出69影院| 18禁裸乳无遮挡动漫免费视频| 纯流量卡能插随身wifi吗| 午夜福利在线观看吧| 精品久久久精品久久久| 在线天堂中文资源库| 咕卡用的链子| 色播在线永久视频| 亚洲成人国产一区在线观看| 日本wwww免费看| 国产精品久久久久成人av| 久久久国产精品麻豆| 最新美女视频免费是黄的| 国产精品香港三级国产av潘金莲| 久久性视频一级片| 下体分泌物呈黄色| av网站免费在线观看视频| 一边摸一边抽搐一进一出视频| 大陆偷拍与自拍| 久久 成人 亚洲| 亚洲熟妇中文字幕五十中出 | 国产精品 欧美亚洲| 村上凉子中文字幕在线| 如日韩欧美国产精品一区二区三区| 亚洲精品一卡2卡三卡4卡5卡| 在线看a的网站| 欧美国产精品va在线观看不卡| 丝袜美腿诱惑在线| 夫妻午夜视频| 大型黄色视频在线免费观看| 制服诱惑二区| 午夜视频精品福利| 国产三级黄色录像| 黑人欧美特级aaaaaa片| 久久久精品免费免费高清| 美女视频免费永久观看网站| 日韩欧美一区二区三区在线观看 | 国产日韩欧美亚洲二区| 亚洲精品国产精品久久久不卡| av福利片在线| 窝窝影院91人妻| 老熟女久久久| 热99久久久久精品小说推荐| 一区福利在线观看| 亚洲国产欧美一区二区综合| 大码成人一级视频| 老司机在亚洲福利影院| 久久精品国产亚洲av香蕉五月 | netflix在线观看网站| av中文乱码字幕在线| 欧美黄色片欧美黄色片| 高清毛片免费观看视频网站 | av网站免费在线观看视频| 一级毛片女人18水好多| 好男人电影高清在线观看| 国产有黄有色有爽视频| av网站在线播放免费| 午夜两性在线视频| 亚洲熟妇熟女久久| 精品熟女少妇八av免费久了| 亚洲欧美一区二区三区久久| tube8黄色片| 日韩人妻精品一区2区三区| 久久ye,这里只有精品| 老司机靠b影院| 中文字幕人妻丝袜一区二区| 一级作爱视频免费观看| 天天躁日日躁夜夜躁夜夜| 久久久国产欧美日韩av| 99国产精品一区二区蜜桃av | av欧美777| 18禁黄网站禁片午夜丰满| 老司机亚洲免费影院| 99re6热这里在线精品视频| 免费不卡黄色视频| www日本在线高清视频| a级片在线免费高清观看视频| 美女 人体艺术 gogo| 热99国产精品久久久久久7| 久久久久精品人妻al黑| 一级片'在线观看视频| 激情视频va一区二区三区| av有码第一页| 亚洲综合色网址| 国产99白浆流出| 国产有黄有色有爽视频| 国产人伦9x9x在线观看| 欧美 日韩 精品 国产| 久久中文字幕一级| 国产精品欧美亚洲77777| 国产一区二区三区视频了| 老司机影院毛片| 久久ye,这里只有精品| av线在线观看网站| 麻豆av在线久日| 淫妇啪啪啪对白视频| 黑人巨大精品欧美一区二区蜜桃| 免费人成视频x8x8入口观看| 9色porny在线观看| 免费在线观看影片大全网站| 国产精品自产拍在线观看55亚洲 | 成年人午夜在线观看视频| 国产精品免费一区二区三区在线 | 欧美一级毛片孕妇| 久久久久久免费高清国产稀缺| 欧美激情极品国产一区二区三区| 亚洲免费av在线视频| 女同久久另类99精品国产91| 亚洲精品美女久久av网站| 成人国语在线视频| 在线观看66精品国产| 视频区欧美日本亚洲| 人妻久久中文字幕网| 悠悠久久av| 国产精品久久视频播放| 亚洲色图综合在线观看| 国产xxxxx性猛交| 制服诱惑二区| 老熟妇乱子伦视频在线观看| 在线天堂中文资源库| 亚洲精品乱久久久久久| 精品国产亚洲在线| 欧美激情高清一区二区三区| 夜夜躁狠狠躁天天躁| 国产成人系列免费观看| 69精品国产乱码久久久| 免费日韩欧美在线观看| 亚洲av电影在线进入| 看免费av毛片| 日韩 欧美 亚洲 中文字幕| 99热国产这里只有精品6| 亚洲精品成人av观看孕妇| 午夜亚洲福利在线播放| 中文字幕av电影在线播放| 99精品欧美一区二区三区四区| 法律面前人人平等表现在哪些方面| 欧美+亚洲+日韩+国产| 1024视频免费在线观看| 热re99久久国产66热| 99国产精品免费福利视频| 欧洲精品卡2卡3卡4卡5卡区| 久久精品国产a三级三级三级| 亚洲人成电影观看| 久久国产精品影院| 狠狠狠狠99中文字幕| 韩国av一区二区三区四区| 女性生殖器流出的白浆| 人人澡人人妻人| 少妇被粗大的猛进出69影院| 精品午夜福利视频在线观看一区| 99国产极品粉嫩在线观看| 在线观看日韩欧美| 激情视频va一区二区三区| 免费人成视频x8x8入口观看| 亚洲专区字幕在线| 国产男女超爽视频在线观看| 亚洲成国产人片在线观看| 亚洲一区中文字幕在线| 免费高清在线观看日韩| 久久精品国产99精品国产亚洲性色 | 在线看a的网站| 香蕉久久夜色| 欧美日本中文国产一区发布| 久久人妻av系列| 亚洲精品一二三| 男女高潮啪啪啪动态图| 精品视频人人做人人爽| 久久草成人影院| 久久国产精品男人的天堂亚洲| 女人被狂操c到高潮| 免费黄频网站在线观看国产| 欧美日韩亚洲国产一区二区在线观看 | 午夜影院日韩av| 自拍欧美九色日韩亚洲蝌蚪91| 在线永久观看黄色视频| 国产日韩一区二区三区精品不卡| 另类亚洲欧美激情| 淫妇啪啪啪对白视频| 亚洲中文av在线| 韩国av一区二区三区四区| 男女免费视频国产| 精品少妇一区二区三区视频日本电影| 亚洲一区二区三区欧美精品| 黄网站色视频无遮挡免费观看| 欧美激情久久久久久爽电影 | 超碰成人久久| 久久99一区二区三区| 在线观看免费视频日本深夜| 国产精品偷伦视频观看了| 丝袜在线中文字幕| 美女 人体艺术 gogo| 波多野结衣av一区二区av| 亚洲第一欧美日韩一区二区三区| 国产xxxxx性猛交| 正在播放国产对白刺激| 黄片小视频在线播放| 精品少妇久久久久久888优播|