• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SI-INSPIRED ENERGY AWARE QoSROUTING TREE FOR WSN

    2011-10-08 12:09:56HuangRuZhuYuMiaoPengZhuJie

    Huang Ru,Zhu Yu,Miao Peng,Zhu Jie

    (1.School of Information Science&Engineering,East China University of Science and Technology,Shanghai,200237,P.R.China;2.Institute of RF-&OE-ICs,Southeast University,Nanjing,210096,P.R.China;3.Department of Electronic Engineering,Shanghai Jiaotong University,Shanghai,200240,P.R.China)

    INTRODUCTION

    Data-gathering is a critical operation in wireless sensor networks(WSNs)for extracting the useful information from the operating environment to the base station sink.Constrained by the limited and non-replenished energy resources,minimizing energy consumption is regarded as a major performance criterion to provide the maximum network lifetime in WSNs.Technologies used to balance the energy consumption in networks are universally accepted as a key factor for prolonging the lifetime[1-2].However,without the geographic information support, the periodic low-rate data flooding throughout the network would cost lots of energy. Therefore,many current researches[3-6]focus on energy optimizing location-aided routing protocols with both low power and fault tolerance to overcome the above disadvantages.And the core technologies in above researches are realized by efficiently using geographic-aware information to limit the new route search into a smaller″request zone″,which is estimated according to the prior position and the mobility information of destination,thus conserving more energy.The size of the ″request zone″is too large if the obtained information is inaccurate.To solve the above problems,the greedy perimeter stateless routing(GPSR)[7]is proposed to utilize the greedy decisions forwarding perimeter-mode packets in a derived simple planar graph.The energy of those nodes on the planar graph should be quickly depleted for concentrated traffic on the promiscuous listening mode.The above routing problems can be proved by NP-hard.Swarm intelligence, which is the emergent collective intelligence of groups of simple agents,is an efficient way to solve the concerned problems.Swarm is a population of interacting individuals,which contributes to optimize some global objectives via collaborative operations. As an important research domain of swarm intelligence,ant colony optimization(ACO)is a constructive meta-heuristic optimization method and has been successfully used to build energy-saving routing[8-10]. In the process of routing construction in WSNs, ant-like agents concurrently and asynchronously build optimal solutions via applying a stochastic local decision policy and using pheromone trails and heuristic information.However,those swarm intelligent themes only put emphasis on the positivefeedback mechanism to search optimization and have made some modifications to fit different network types,which cannot satisfy the special characteristics of WSNs.This paper proposes a heuristic theoretical optimal routing algorithm(TORA). In the algorithm,prior theoretical results can be combined with the swarm intelligence-inspired mode to further enhance the energy-efficiency of routing construction in WSNs.

    1 SYSTEM MODEL

    WSNs can be represented by a weighted undirected graph G=(V,E,W),where V and E represent the set of nodes and links in G respectively,while W denotes the set of weights with E?G.Each link<i,j>∈ E is associated with a delay parameter D<i,j>∈ W and the total delay requirement for QoS is set as D Threshold.In WSNs,the energy consumption of sensors should be unbalanced for the asymmetric traffic distribution in data flow.In the data-gathering routing rooted at sink,the energy cost of each sensor is related with its own locality hierarchy in the tree structure.If the geographical position of sensor is closer to the sink,its hierarchy in the tree structure and its corresponding energy cost are higher due to the large amount of data aggregation.According to the above analyses,WSNs are divided into three categories of functional regions according to the event radius(ER)model[11]with disparity in the energy cost caused by the unbalanced streams distribution.In the ER model,events are sensed by a subset of nodes V s?V,i.e.the data-sensing region.The data-merging region V c?V is defined as a disk centered at sink with radius d crical denoting the critical distance of the V c boundary from the sink. And the sensors in V r=V- V s∪V c compose the data-relaying region. It is assumed that each sensor node maintains the information of a cache storing neighborhood and the self-address obtained by GPS and known by sink as a priori,and each artificial ant ak(k=1,2,…,|V s|)has a memory Mk,whose components are denoted in Table 1.

    The current feasible neighborhood of ak is defined as AK=(V-L(v))∩O(i),where O(i)is the set of neighbors in ni.Via the functional region division of sensor networks and the ability of ant memory,the artificial ant can roughly estimate the energy-cost-level of each reached sensor and correspondingly adjust the weight in heuristic information of routing selection to improve the reliability of data-gathering tree.

    Let Ri=Ei(lef)/Ei(ini), which denotes the remaining energy level of ni∈V.The routing tree problem A is defined to find a series of optimal paths t mult=from V s?V to destination sink subjected to the following conditions Eqs.(1,2)are constraint conditions for QoS requirement of energy optimization and temporal consistency,wheredenotes the average remaining energy ratio of optimal path p*k,A a NP-hard constrained path optimization(CPO)problem and solved by Lagrange multiplier(LM)algorithm.The Lagrange function is described as

    The solutions can be obtained by calculating the partial differential of Lagrange function matrix,but it is not suitable for the resource-limited sensor nodes in WSNs.Therefore,this paper proposes TORA algorithm to solve this primary problem A with a fully distributed way in ACO approach.

    2 OPTIMAL ROUTING STRUC-TURE

    2.1 Design of heuristic factor

    It is assumed that nv∈V s sends l bit message on multi-hop way to sink,which requires K(v)-1 relay nodes and the i th hop distance di,where K(v)shows the number of theoretic hops from nv to sink. Based on the first-order-radiomodel[12],the energy expended by relaying l bit message over distance d i is E relay(l,di)=(2E elec+X amp dni)×l. Denoting that d(nv,sink)is the distance between the source nv(v∈[1,|V s|])and sink.The total cost on path from nv to sink iswhich can be proved as a strict convex function,and its minimal value is only obtained under the condition that each hop distance is equal to d(ovp)tim=d(nv,sink)/K(v)according to Jensen′s inequality.And then the optimal hop-counts(Eq.(4))is calculated by imposing the derivative operation,i.e.,?P total(di)/?K=0.

    where T1 and T2 are node energy parameters.We set vector J(v)as the coordinate sequence of theoretical points,i.e.,J(v)={n(v)(t)},t∈ [1,K(v)]. The rectangular coordinates of each theoretical point for minimal P total is deduced as follows

    At c(j)hop, the distance-error between theoretical optimal sensor and actual counterpart is calculated by Eq.(6).

    Defining that triple S=(B,R,H)is the current state obtained by the ant agent for next hop selection,i.e.,during the process of routing building,the bias B,the remaining energy level R and the hop counts H are taken into account.Assuming that state vector Sj=(Bj,Rj,Hj)∈S,and each tuple of S j is defined as follows

    where Bj provides the location-aided energyefficiency information for the process of path building and helps ant agent to adjust the forward direction to sink based on the bias value.Rj shows the energy status of nj and Hj the hops of ant agent to reach the source node through node nj.With the accumulation of hop-counts, the probability of reached nj belonging to data-merging region V c increases and the higher energy consumption is consequently expended. Therefore, according to the distribution trait of energy cost in routing tree,the relationship between each tuple in S is defined as Eq.(10),which indicates that the closer the current sensor to sink,the larger the weight of remaining-energy-level regarded as energy efficiency factor.∈

    The cost W is associated with each nj∈AK as local evaluation information for noderobustness. The higher the value of,the greater the probability that njis selected as the next hop node on the building of optimal routing path.If k=argmax n j∈the ant at current sensor ni tends to choose nk as the next hop sensor.Therefore,the structure of heuristic factor for ACO is designed as

    Eq.(11)embodies the idea that artificial ant can adaptively choose the high-energy-efficient sensor as its next hop in each step and adjust corresponding variable weight to improve the reliability of data-gathering tree.In two extreme cases,i.e.,if Hj=0 or E(lef)j=0,then Zij→0,which indicates that nj belongs to data-sensing region(nj∈V s),or it runs out of energy,then the ant agent should abandon the selection of njduring the path building.

    2.2 Algorithm f low

    At the initial stage of TORA,the optimal routing tree t mult is empty and each sensor in V s?V takes sink as common destination.The sink instructs sensors in V s to create ant-like agents for constructing optimal routing paths and compute the corresponding theoretic point sequence J(v). The above task is sent by″interest″, which also contains the address coordinate of sink, i.e., (x sink,y sink), and propagates through the network to Vs.The ant dispatched from sensor nv∈V s is denoted as aforwk .In each step,aforwk chooses the next unvisited node in current feasible neighborhood with the improved transition probability given by Eq.(12)and constructs p(v)∈t mult from source to sink,if it does not meet any sensor which has been added to t mult.

    When afkorwarrives at sink,the corresponding backward ant abkackis created and backes along the built p(v)to nv,and any sensor visited by akbackis set with a mark,which denotes that the sensor belongs to t mult.Meanwhile,akbackcarries the path information copied from afkorwand deposits the pheromone trails on visited sensors according to

    where d∈(0,1)represents the volatility degree of pheromone. Total remaining energy ratioRiand chopcarried by akfo

    rware used to update pheromone.

    According to the updating rule,pheromones of those sensors in tmultshould be adaptively reinforced and subjected to constraint conditions Eqs.(1,2)of A.abackk dies when it arrives at nv∈V s,and the optimal routing from nv to sink is set up.In the other case,if aforwk meets nj∈ tmult,it stops further search to set the current graft sensor nj as destination and comes back to source for re-executing the above algorithm. The algorithm is terminated when all sour cesensors in V s are added into t mult,which is composed of those corresponding optimal routing paths from each source sensor to sink.In TORA,it is proved that the final routing tree structure is loop-free by using the taboo list in memory of ant and the time-complexity of TORA has the linear relationship with the steps moved by artificial ants. According to the function connection between the solution quality and the steps,the optimal solution can be obtained by the concurrent processing of m ant agents in k log2 m steps and the time-complexity is deduced as O(mk log2m).

    3 SIMULATION RESULTS

    TORA is simulated by using NS2 platform in a network of adjustable-density sensors(25—140)randomly distributed over a square of 500×500 units with the base station at(15,480).The link layer is implemented using IEEE802.11 MAC protocol.Each sensor has tunable communication radius a c(a c≥d(v)optim).In the radio model,each radio dissipates Eelec=50 nJ/bit to run the transmitter or the receiver circuitry and X amp=100 p J/bit/m2for the transmitter amplifies. The parameters of ACO are set in Table 2.

    Table 2 Experimental parameters and results

    The parameter e MSE is defined as the factor to evaluate the degree of approximation between t mult and the theoretical optimum counterpart.

    where d(v)tis actual tth-hop distance and|V s|the number of sensors in Vs.The better the degree of the approximation between actual routing and the theoretical model,the less the total energy cost.The percentages of deviation among classical geographic-aided routing GPRS,minimum energy consumption routing, MEC[13], greedy algorithm[14]and TORA are compared with respect to e MSE.As shown in Fig.1,the deviation in TORA always keeps the smallest value compared with the other schemes with an increase of node density,which denotes that TORA performs better than other schemes on the realization of minimal total energy-cost level in networks,because the prior theoretical results are adapted to the design of heuristic factor in TORA.

    Energy balance analysis is shown in Fig.2 at the node level after 80 times of transmission-operations,where R is the ratio of remaining and initial energy levels. In annular domain with center at sink and radius r∈[5,10],we randomly select 40 deployed sensors for energy-status observation by using different routing algorithms.The peak values of each curve in Fig.2 are corresponding to the normalized remaining energy level.Simulation results show that the average level of TORA is higher than the other two algorithms(GPRS and MEC)because that the adaptive ant-agents mode is used in TORA.

    Fig.1 Fitting degree to theoretical optimal structure

    Fig.2 Comparison of remaining energy level

    In Fig.3,based on the final routing structure t mult,the performance of TORA with and without variable weight j j=Rj/Bj(i.e.,energy factor)in heuristic factors is compared according to the number of rounds versus the survival rate of sensors.An important objective of TORA is to extend the QoS-service lifetime of WSNs,which is measured with respect to the spent time until 30% nodes in G deplete their energy.R2 and R1 are defined as the corresponding lower bounds of QoS-service lifetime when Z ij with or without the variable weight jj.Fig.3 shows that R1<R2,which means that the QoS-service lifetime of WSNs is prolonged and the robustness of the final optimal routing tree is improved by introducing the variable weight j j into heuristic factor.Therefore,TORA with variable weight outperforms that without variable weight.

    Because the average delay is restricted below scheduled delay QoS-constraint,it is set as 8 ms in the simulation.Fig.4 shows the mean of endto-end delay comparison and the average delay of TORA is less than those of M EC and GPRS,which is benefited by the updating pheromone rule(Eq.(14))based on the delay constraint to reinforce the trails on optimal paths and weaken the trails on those bad ones.

    Fig.3 Survival ratevs rounds

    Fig.4 End-to-end packet delay

    4 CONCLUSION

    For constructing the optimal routing structure in WSNs,it is important to minimize the total energy cost of data transfer from the data-sensing region to a fixed sink with delay constraint of QoS, and to improve energy robustness of routing tree structure for reducing the probability of disconnected subnets,which is caused by unreasonable energy distribution on sensors in data-gathering routing structure.This paper presents an optimal tree algorithm based on ACO,i.e.,TORA,to achieve the above two important objectives. By dividing WSNs into different kinds of functional regions, energy consumption of each sensor can be roughly estimated in advance. The novel designs of heuristic factor construction and pheromone updating rule can endow artificial ants the ability to adaptively detect the local energy status in WSNs and intelligently approach the prior theoretic model in the process of routing construction.Experimental results prove that the proposed optimal routing tree can improve the energy efficiency and the QoS-service performance of data gathering routing scheme in WSNs.

    [1] Bouabdallah F,Bouabdallah N,Boutaba R.On balancing energy consumption in wireless sensor networks [J].IEEE Transactions on Vehicular Technology,2009,58(6):2909-2924.

    [2] Zhang Habo, Shen Hong. Balancing energy consumption to maximize network lifetime in dataga thering sensor networks[J].IEEE Transactions on Parallel and Distributed Systems, 2009,20(10):1526-1539.

    [3] Bruck J,Gao Jie,Jiang Anxiao.M AP:medial axis based geometric routing in sensor networks[J].Journal of Wireless Networks, Springer Netherlands,2007,13(6):835-853.

    [4] Yu Fucai,Choi Younghwan,Park S,et al.Sink location service for geographic routing in wireless sensor networks[C]//Wireless Communications and Networking Conference.USA:IEEE,2008:2111-2116.

    [5] Chen Chi,Aksoy D,Demir T.Processed data collection using opportunistic routing in location aware wireless sensor networks [C]//The 7th International Conference on Mobile Data Management.Japan:IEEE,2006:150.

    [6] Deb D,Srijita B R,Chaki N.Design of a low-cost positioning framework for location aided energy efficient routing[C]//The 5th IEEE Conference on Wireless Communication and Sensor Networks(WCSN).India:IEEE,2009:1-6.

    [7] Karp B,Kung H T.GPSR: greedy perimeter stateless routing for wireless networks[C]//The 6th Annual International Conference on Mobile Computing and Networking.USA:IEEE,2000:243-254.

    [8] Zhong Zhicheng,Tian Zhizhong,Li Zhe,et al.An ant colony optimization competition routing algorithm for WSN [C]//The 4th International Conference on Wireless Communications,Networking and Mobile Computing.China:IEEE,2008:1-4.

    [9] Park J,Sahni S.An online heuristic for maximum lifetime routing in wireless sensor networks[J].IEEE Transactions on Computers,2006,55(8):1048-1056.

    [10]Xie Hui,Zhang Zhigang,Zhou Xueguang.A novel routing protocol in wireless sensor networks based on ant colony optimization [C]//International Conference on Environmental Science and Information Application Technology. Wuhai,China: [s.n.],2009:646-649.

    [11]Boukerche A,Cheng X,Linus J.Energy-aware data-centric routing in microsensor networks[C]//The 6th ACM International Workshop on Modeling Analysis and Simulation of Wireless and Mobile Systems.USA:ACM,2003:42-49.

    [12]Heinzelman W,Chandrakasan A,Balakrishnan H.Energy-efficient communication protocol for wireless microsensor networks [C]//Hawaii Conference on System Sciences. USA: IEEE,2000:1-10.

    [13]Park N,Kim D,Doh Y,et al.An optimal and lightweight routing for minimum energy consumption in wireless sensor networks[C]//The 11st IEEE International Conference on Embedded and Real-Time Computing Systems and Applications.China:IEEE,2005:387-393.

    [14]Panigrahi B,De S,Sun Luk J.A greedy minimum energy consumption forwarding protocol for wireless sensor networks [C]//International Communication Systems and Networks and Workshops.USA:IEEE,2009:1-6.

    久久久国产一区二区| 最近最新中文字幕大全免费视频| 欧美黄色淫秽网站| 久热这里只有精品99| av欧美777| 一区二区三区激情视频| 亚洲一区二区三区不卡视频| 欧美性长视频在线观看| 亚洲精品av麻豆狂野| 亚洲精品av麻豆狂野| 亚洲午夜理论影院| 午夜日韩欧美国产| av电影中文网址| 99久久99久久久精品蜜桃| 国产成人免费无遮挡视频| 国产熟女xx| 777久久人妻少妇嫩草av网站| 一进一出抽搐gif免费好疼 | 国产av一区二区精品久久| 亚洲视频免费观看视频| 亚洲精品美女久久av网站| 亚洲av日韩精品久久久久久密| 交换朋友夫妻互换小说| 99在线视频只有这里精品首页| 精品久久蜜臀av无| 精品国产一区二区久久| 91九色精品人成在线观看| 精品电影一区二区在线| 免费高清视频大片| 精品国产一区二区久久| 欧美 亚洲 国产 日韩一| 人人妻,人人澡人人爽秒播| 在线观看免费视频网站a站| 国产午夜精品久久久久久| 国产成人影院久久av| 中文字幕色久视频| 曰老女人黄片| 在线观看一区二区三区激情| 黄频高清免费视频| 成熟少妇高潮喷水视频| 中文字幕精品免费在线观看视频| 国产野战对白在线观看| 一夜夜www| 两人在一起打扑克的视频| 在线观看免费高清a一片| 身体一侧抽搐| 久久精品影院6| 亚洲精华国产精华精| 夫妻午夜视频| 亚洲五月色婷婷综合| 日韩欧美一区视频在线观看| 在线看a的网站| 可以免费在线观看a视频的电影网站| 在线观看舔阴道视频| 亚洲成人久久性| 亚洲成人国产一区在线观看| 这个男人来自地球电影免费观看| av国产精品久久久久影院| 身体一侧抽搐| 久久久精品欧美日韩精品| 视频区图区小说| 午夜日韩欧美国产| 国产不卡一卡二| 欧美在线一区亚洲| 久久久久久久久免费视频了| 亚洲 国产 在线| 久久久久久大精品| 国产成人欧美在线观看| 亚洲专区国产一区二区| 国产精品二区激情视频| 国产极品粉嫩免费观看在线| 午夜日韩欧美国产| 亚洲精品一区av在线观看| 久久中文字幕一级| 精品久久久久久成人av| 黑人巨大精品欧美一区二区mp4| 80岁老熟妇乱子伦牲交| 十八禁人妻一区二区| 国产精品一区二区在线不卡| 亚洲成人免费电影在线观看| 19禁男女啪啪无遮挡网站| 久久香蕉激情| 香蕉久久夜色| 80岁老熟妇乱子伦牲交| 在线观看日韩欧美| 国产伦一二天堂av在线观看| 在线视频色国产色| 麻豆av在线久日| 天堂影院成人在线观看| 麻豆成人av在线观看| 国产91精品成人一区二区三区| 国产成人影院久久av| 精品一区二区三区av网在线观看| 自线自在国产av| 精品久久久久久久毛片微露脸| 日本wwww免费看| 一本综合久久免费| 久久精品国产亚洲av香蕉五月| 麻豆av在线久日| 黄片播放在线免费| 国产精品影院久久| av网站免费在线观看视频| 国产精品 欧美亚洲| 国产亚洲av高清不卡| 欧美激情 高清一区二区三区| 中文欧美无线码| 黄色怎么调成土黄色| 12—13女人毛片做爰片一| 啦啦啦 在线观看视频| 亚洲人成伊人成综合网2020| a级毛片黄视频| 久久精品国产亚洲av香蕉五月| 十八禁人妻一区二区| 看免费av毛片| 亚洲国产毛片av蜜桃av| 日日干狠狠操夜夜爽| 亚洲男人的天堂狠狠| 亚洲人成网站在线播放欧美日韩| 一区福利在线观看| 久久久久国内视频| 久久人人爽av亚洲精品天堂| 亚洲国产欧美日韩在线播放| 国产有黄有色有爽视频| 国产aⅴ精品一区二区三区波| 色哟哟哟哟哟哟| 国产一区二区激情短视频| 精品一区二区三区四区五区乱码| 国产精品99久久99久久久不卡| 91麻豆精品激情在线观看国产 | 99久久久亚洲精品蜜臀av| 久久香蕉精品热| 电影成人av| 免费看十八禁软件| 欧美人与性动交α欧美精品济南到| 日韩一卡2卡3卡4卡2021年| 日本三级黄在线观看| 亚洲精品av麻豆狂野| 国产精品一区二区精品视频观看| ponron亚洲| 日本 av在线| 欧美日韩中文字幕国产精品一区二区三区 | 免费看十八禁软件| 久99久视频精品免费| 美女扒开内裤让男人捅视频| 亚洲中文日韩欧美视频| 亚洲欧美日韩另类电影网站| 国产高清视频在线播放一区| 国产一区二区激情短视频| 久久久精品国产亚洲av高清涩受| 成人永久免费在线观看视频| 精品乱码久久久久久99久播| 女人被狂操c到高潮| 国产精品免费视频内射| 成年人免费黄色播放视频| aaaaa片日本免费| 一本综合久久免费| 亚洲激情在线av| 黄片大片在线免费观看| 午夜91福利影院| 国产又爽黄色视频| 国产精品久久久久久人妻精品电影| 亚洲久久久国产精品| 亚洲国产精品一区二区三区在线| 久久人人爽av亚洲精品天堂| 国产男靠女视频免费网站| 他把我摸到了高潮在线观看| 欧美日韩一级在线毛片| 无限看片的www在线观看| 国产又色又爽无遮挡免费看| 成年人黄色毛片网站| 久久 成人 亚洲| 国产三级在线视频| 国产精品av久久久久免费| 中出人妻视频一区二区| 中文亚洲av片在线观看爽| 国产精品一区二区三区四区久久 | 日本五十路高清| 免费女性裸体啪啪无遮挡网站| 可以免费在线观看a视频的电影网站| 色婷婷久久久亚洲欧美| 男女做爰动态图高潮gif福利片 | 最近最新免费中文字幕在线| 一级毛片高清免费大全| 精品人妻在线不人妻| 亚洲精华国产精华精| 人人澡人人妻人| 12—13女人毛片做爰片一| 国产精品爽爽va在线观看网站 | 美国免费a级毛片| 精品一品国产午夜福利视频| 男人操女人黄网站| 无限看片的www在线观看| 他把我摸到了高潮在线观看| 精品一区二区三区四区五区乱码| 少妇 在线观看| 深夜精品福利| 在线av久久热| 丰满饥渴人妻一区二区三| 国产一区二区三区综合在线观看| x7x7x7水蜜桃| 亚洲一区中文字幕在线| 老汉色av国产亚洲站长工具| 少妇的丰满在线观看| 亚洲欧美精品综合一区二区三区| 国产精品日韩av在线免费观看 | av网站在线播放免费| 国产亚洲精品久久久久久毛片| 久久久久久久午夜电影 | 男人舔女人下体高潮全视频| 欧美人与性动交α欧美精品济南到| 欧美乱色亚洲激情| 亚洲精品一二三| 99久久国产精品久久久| 中文字幕精品免费在线观看视频| 亚洲精品一二三| 日本撒尿小便嘘嘘汇集6| 757午夜福利合集在线观看| 国产精品免费一区二区三区在线| 操出白浆在线播放| 午夜激情av网站| 日韩三级视频一区二区三区| 亚洲欧美精品综合久久99| 亚洲人成网站在线播放欧美日韩| 久久中文字幕人妻熟女| 首页视频小说图片口味搜索| 亚洲精品中文字幕在线视频| 色精品久久人妻99蜜桃| 搡老熟女国产l中国老女人| 久久精品aⅴ一区二区三区四区| 真人一进一出gif抽搐免费| 成人精品一区二区免费| 国产精品久久久人人做人人爽| 欧美日韩视频精品一区| 日韩精品中文字幕看吧| 美女高潮到喷水免费观看| 91麻豆av在线| 91成人精品电影| 超色免费av| 亚洲自偷自拍图片 自拍| 老汉色av国产亚洲站长工具| 国产精品一区二区在线不卡| 在线观看一区二区三区激情| 操美女的视频在线观看| 国产高清视频在线播放一区| 成人手机av| 女性被躁到高潮视频| 黄色视频不卡| 精品国产乱子伦一区二区三区| 丁香欧美五月| 性少妇av在线| 欧美日韩亚洲高清精品| 在线观看午夜福利视频| 777久久人妻少妇嫩草av网站| 黑丝袜美女国产一区| 欧美大码av| 欧美在线黄色| 少妇的丰满在线观看| 三上悠亚av全集在线观看| 亚洲国产欧美一区二区综合| 中文字幕精品免费在线观看视频| 国产一区二区三区在线臀色熟女 | 国产一区二区三区在线臀色熟女 | 久久久久久久午夜电影 | 成人三级黄色视频| 国产一区二区在线av高清观看| 人成视频在线观看免费观看| 在线观看免费午夜福利视频| 咕卡用的链子| 国产不卡一卡二| 一区二区三区精品91| 亚洲中文日韩欧美视频| 亚洲第一av免费看| 久久精品成人免费网站| 国产精品一区二区免费欧美| 侵犯人妻中文字幕一二三四区| 亚洲精品美女久久久久99蜜臀| 一区在线观看完整版| 99久久99久久久精品蜜桃| 啦啦啦免费观看视频1| 视频在线观看一区二区三区| 黄片播放在线免费| 亚洲精品一区av在线观看| 免费人成视频x8x8入口观看| xxx96com| 99久久人妻综合| 狠狠狠狠99中文字幕| 天堂影院成人在线观看| 精品电影一区二区在线| 精品福利永久在线观看| 精品一区二区三区av网在线观看| 涩涩av久久男人的天堂| 亚洲黑人精品在线| 精品国内亚洲2022精品成人| 日本五十路高清| 午夜精品久久久久久毛片777| av免费在线观看网站| 香蕉丝袜av| 一区二区三区国产精品乱码| 长腿黑丝高跟| 9色porny在线观看| 99热只有精品国产| 9色porny在线观看| 美女高潮喷水抽搐中文字幕| 国产精品一区二区在线不卡| 1024香蕉在线观看| 久久午夜综合久久蜜桃| 日本五十路高清| 免费看十八禁软件| 欧美日韩av久久| 国产精品av久久久久免费| 久久 成人 亚洲| 亚洲熟妇中文字幕五十中出 | 国产一区二区在线av高清观看| xxx96com| 99精品欧美一区二区三区四区| 国产av一区在线观看免费| 欧美日韩亚洲高清精品| а√天堂www在线а√下载| 亚洲色图综合在线观看| 欧美中文日本在线观看视频| 婷婷丁香在线五月| 岛国在线观看网站| www.999成人在线观看| 天堂中文最新版在线下载| 精品欧美一区二区三区在线| 色老头精品视频在线观看| 在线免费观看的www视频| 日韩一卡2卡3卡4卡2021年| 国产乱人伦免费视频| 国产午夜精品久久久久久| 亚洲精品国产一区二区精华液| 亚洲精品在线美女| 亚洲性夜色夜夜综合| 美女扒开内裤让男人捅视频| 丝袜在线中文字幕| 亚洲av第一区精品v没综合| 国产精品一区二区免费欧美| 午夜影院日韩av| 在线观看免费日韩欧美大片| 一本大道久久a久久精品| 两个人免费观看高清视频| 操出白浆在线播放| 97人妻天天添夜夜摸| 视频区欧美日本亚洲| 欧美中文综合在线视频| 伊人久久大香线蕉亚洲五| 亚洲一区二区三区欧美精品| 久久久久久久久中文| 美女午夜性视频免费| 一区在线观看完整版| 欧美日韩黄片免| 青草久久国产| 国产成人欧美| 国产色视频综合| 一区二区三区激情视频| 十八禁人妻一区二区| 欧美日韩国产mv在线观看视频| 少妇被粗大的猛进出69影院| 国产精品综合久久久久久久免费 | 久久久久久久久中文| 美国免费a级毛片| 久久久水蜜桃国产精品网| 精品日产1卡2卡| 一边摸一边做爽爽视频免费| 欧美激情 高清一区二区三区| 精品久久久久久电影网| 久久青草综合色| 在线十欧美十亚洲十日本专区| 久久亚洲精品不卡| 无人区码免费观看不卡| 欧美人与性动交α欧美软件| 午夜a级毛片| 夜夜夜夜夜久久久久| 欧美亚洲日本最大视频资源| 老鸭窝网址在线观看| 国产激情欧美一区二区| 宅男免费午夜| 自拍欧美九色日韩亚洲蝌蚪91| 999精品在线视频| 免费观看人在逋| 久久 成人 亚洲| 欧美黄色片欧美黄色片| 中出人妻视频一区二区| 国产99白浆流出| 中文字幕人妻丝袜一区二区| 大香蕉久久成人网| 曰老女人黄片| 亚洲av成人av| 一级片免费观看大全| 精品无人区乱码1区二区| 一区二区三区精品91| 欧美日韩瑟瑟在线播放| 黄色视频不卡| 在线播放国产精品三级| av中文乱码字幕在线| tocl精华| 女人爽到高潮嗷嗷叫在线视频| 999精品在线视频| 日韩av在线大香蕉| 免费一级毛片在线播放高清视频 | 久久久水蜜桃国产精品网| √禁漫天堂资源中文www| 亚洲精品美女久久av网站| 成人三级做爰电影| 99久久人妻综合| 欧美精品一区二区免费开放| 国产精品久久久久成人av| 国产精品日韩av在线免费观看 | 精品国产国语对白av| 99国产精品免费福利视频| 法律面前人人平等表现在哪些方面| 99国产极品粉嫩在线观看| 欧美成狂野欧美在线观看| 亚洲色图av天堂| 天天添夜夜摸| 国产精品电影一区二区三区| 亚洲视频免费观看视频| 国产精品 欧美亚洲| 亚洲国产精品sss在线观看 | 丁香六月欧美| 中文字幕高清在线视频| av在线播放免费不卡| 国产精品秋霞免费鲁丝片| 日本黄色视频三级网站网址| 19禁男女啪啪无遮挡网站| 久久影院123| 久久精品aⅴ一区二区三区四区| 国产av又大| 精品少妇一区二区三区视频日本电影| 久久中文字幕人妻熟女| 丁香六月欧美| 国产成年人精品一区二区 | 亚洲伊人色综图| 99香蕉大伊视频| av免费在线观看网站| 性色av乱码一区二区三区2| 黑人操中国人逼视频| 亚洲熟妇熟女久久| 精品第一国产精品| 久久精品国产综合久久久| 99精品欧美一区二区三区四区| 国产精品 欧美亚洲| 精品一区二区三卡| 日韩一卡2卡3卡4卡2021年| 999久久久国产精品视频| 麻豆国产av国片精品| 美女国产高潮福利片在线看| 亚洲狠狠婷婷综合久久图片| 91老司机精品| 国产蜜桃级精品一区二区三区| 首页视频小说图片口味搜索| 久久人人精品亚洲av| av有码第一页| 午夜福利影视在线免费观看| 久久久久久久久久久久大奶| 丝袜在线中文字幕| 久久久国产成人精品二区 | 看免费av毛片| 中文字幕另类日韩欧美亚洲嫩草| 日韩国内少妇激情av| 亚洲精华国产精华精| 欧美亚洲日本最大视频资源| 国产区一区二久久| 国产高清激情床上av| 美女扒开内裤让男人捅视频| www.999成人在线观看| 亚洲午夜理论影院| 一级片免费观看大全| 999精品在线视频| 免费不卡黄色视频| 午夜福利一区二区在线看| 精品久久久久久成人av| 老汉色av国产亚洲站长工具| 欧美乱色亚洲激情| 18禁裸乳无遮挡免费网站照片 | 国产成人精品久久二区二区免费| 男女下面插进去视频免费观看| 一边摸一边做爽爽视频免费| 久久这里只有精品19| 男人舔女人下体高潮全视频| 人妻丰满熟妇av一区二区三区| 99精国产麻豆久久婷婷| 国产精品免费视频内射| 中亚洲国语对白在线视频| 一级a爱视频在线免费观看| 夜夜爽天天搞| 国产精品98久久久久久宅男小说| av网站免费在线观看视频| 又紧又爽又黄一区二区| 视频在线观看一区二区三区| 亚洲熟女毛片儿| 成年人黄色毛片网站| 一进一出抽搐gif免费好疼 | 日本免费一区二区三区高清不卡 | 一区在线观看完整版| 国产无遮挡羞羞视频在线观看| 999久久久国产精品视频| 免费看十八禁软件| 日韩精品中文字幕看吧| 欧美激情高清一区二区三区| 丝袜美足系列| 女生性感内裤真人,穿戴方法视频| 免费在线观看日本一区| 中文字幕人妻丝袜一区二区| 级片在线观看| 另类亚洲欧美激情| 夫妻午夜视频| 少妇被粗大的猛进出69影院| 精品久久久久久成人av| 久久精品国产亚洲av香蕉五月| 亚洲精品国产一区二区精华液| avwww免费| 夫妻午夜视频| 欧美午夜高清在线| 久久热在线av| 婷婷六月久久综合丁香| 成人影院久久| 久久中文看片网| 国产在线精品亚洲第一网站| 18禁国产床啪视频网站| 久久午夜综合久久蜜桃| 日本精品一区二区三区蜜桃| 亚洲精品av麻豆狂野| 国产免费现黄频在线看| netflix在线观看网站| 成在线人永久免费视频| 又黄又粗又硬又大视频| 亚洲精品中文字幕一二三四区| 亚洲av五月六月丁香网| 免费人成视频x8x8入口观看| 变态另类成人亚洲欧美熟女 | 国产成人精品在线电影| 好看av亚洲va欧美ⅴa在| 黄频高清免费视频| 欧美不卡视频在线免费观看 | 久久人人爽av亚洲精品天堂| 深夜精品福利| 国产人伦9x9x在线观看| a级片在线免费高清观看视频| 免费观看精品视频网站| 精品久久久久久久毛片微露脸| 又黄又爽又免费观看的视频| 丝袜人妻中文字幕| 悠悠久久av| 精品一区二区三区四区五区乱码| 亚洲成人精品中文字幕电影 | 国产99白浆流出| 一进一出抽搐动态| 亚洲国产精品sss在线观看 | 欧美日韩黄片免| 欧美色视频一区免费| 自线自在国产av| 操美女的视频在线观看| 日韩欧美一区视频在线观看| 亚洲情色 制服丝袜| 亚洲成人国产一区在线观看| 国产精品电影一区二区三区| 成在线人永久免费视频| 免费在线观看视频国产中文字幕亚洲| 51午夜福利影视在线观看| 在线十欧美十亚洲十日本专区| 久久久久国内视频| 三上悠亚av全集在线观看| 99久久精品国产亚洲精品| 天天躁狠狠躁夜夜躁狠狠躁| 美女大奶头视频| 在线观看免费日韩欧美大片| 一进一出抽搐gif免费好疼 | 777久久人妻少妇嫩草av网站| 亚洲av熟女| 757午夜福利合集在线观看| 国产黄色免费在线视频| 侵犯人妻中文字幕一二三四区| 青草久久国产| 亚洲午夜精品一区,二区,三区| 国产无遮挡羞羞视频在线观看| 90打野战视频偷拍视频| 国产亚洲精品一区二区www| 成人亚洲精品一区在线观看| 无限看片的www在线观看| 电影成人av| 国产一区二区三区视频了| 三级毛片av免费| 国产又爽黄色视频| 搡老乐熟女国产| 一二三四社区在线视频社区8| 99久久99久久久精品蜜桃| 亚洲aⅴ乱码一区二区在线播放 | 日韩精品青青久久久久久| 成人亚洲精品av一区二区 | 久久人妻av系列| 黄色视频不卡| 欧美人与性动交α欧美软件| 一级,二级,三级黄色视频| 精品国产超薄肉色丝袜足j| 国产成人av教育| 免费少妇av软件| 国产激情久久老熟女| 亚洲久久久国产精品| 亚洲欧美一区二区三区久久| 久久久久久久久久久久大奶| 亚洲精品在线美女| netflix在线观看网站| 日韩av在线大香蕉| 国产无遮挡羞羞视频在线观看| x7x7x7水蜜桃| 欧美在线黄色| 国产精品一区二区在线不卡| 五月开心婷婷网| 亚洲一区中文字幕在线| 久久精品亚洲av国产电影网| 黑人巨大精品欧美一区二区蜜桃| 亚洲男人的天堂狠狠| 国产欧美日韩精品亚洲av| 精品久久久精品久久久|