• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    SI-INSPIRED ENERGY AWARE QoSROUTING TREE FOR WSN

    2011-10-08 12:09:56HuangRuZhuYuMiaoPengZhuJie

    Huang Ru,Zhu Yu,Miao Peng,Zhu Jie

    (1.School of Information Science&Engineering,East China University of Science and Technology,Shanghai,200237,P.R.China;2.Institute of RF-&OE-ICs,Southeast University,Nanjing,210096,P.R.China;3.Department of Electronic Engineering,Shanghai Jiaotong University,Shanghai,200240,P.R.China)

    INTRODUCTION

    Data-gathering is a critical operation in wireless sensor networks(WSNs)for extracting the useful information from the operating environment to the base station sink.Constrained by the limited and non-replenished energy resources,minimizing energy consumption is regarded as a major performance criterion to provide the maximum network lifetime in WSNs.Technologies used to balance the energy consumption in networks are universally accepted as a key factor for prolonging the lifetime[1-2].However,without the geographic information support, the periodic low-rate data flooding throughout the network would cost lots of energy. Therefore,many current researches[3-6]focus on energy optimizing location-aided routing protocols with both low power and fault tolerance to overcome the above disadvantages.And the core technologies in above researches are realized by efficiently using geographic-aware information to limit the new route search into a smaller″request zone″,which is estimated according to the prior position and the mobility information of destination,thus conserving more energy.The size of the ″request zone″is too large if the obtained information is inaccurate.To solve the above problems,the greedy perimeter stateless routing(GPSR)[7]is proposed to utilize the greedy decisions forwarding perimeter-mode packets in a derived simple planar graph.The energy of those nodes on the planar graph should be quickly depleted for concentrated traffic on the promiscuous listening mode.The above routing problems can be proved by NP-hard.Swarm intelligence, which is the emergent collective intelligence of groups of simple agents,is an efficient way to solve the concerned problems.Swarm is a population of interacting individuals,which contributes to optimize some global objectives via collaborative operations. As an important research domain of swarm intelligence,ant colony optimization(ACO)is a constructive meta-heuristic optimization method and has been successfully used to build energy-saving routing[8-10]. In the process of routing construction in WSNs, ant-like agents concurrently and asynchronously build optimal solutions via applying a stochastic local decision policy and using pheromone trails and heuristic information.However,those swarm intelligent themes only put emphasis on the positivefeedback mechanism to search optimization and have made some modifications to fit different network types,which cannot satisfy the special characteristics of WSNs.This paper proposes a heuristic theoretical optimal routing algorithm(TORA). In the algorithm,prior theoretical results can be combined with the swarm intelligence-inspired mode to further enhance the energy-efficiency of routing construction in WSNs.

    1 SYSTEM MODEL

    WSNs can be represented by a weighted undirected graph G=(V,E,W),where V and E represent the set of nodes and links in G respectively,while W denotes the set of weights with E?G.Each link<i,j>∈ E is associated with a delay parameter D<i,j>∈ W and the total delay requirement for QoS is set as D Threshold.In WSNs,the energy consumption of sensors should be unbalanced for the asymmetric traffic distribution in data flow.In the data-gathering routing rooted at sink,the energy cost of each sensor is related with its own locality hierarchy in the tree structure.If the geographical position of sensor is closer to the sink,its hierarchy in the tree structure and its corresponding energy cost are higher due to the large amount of data aggregation.According to the above analyses,WSNs are divided into three categories of functional regions according to the event radius(ER)model[11]with disparity in the energy cost caused by the unbalanced streams distribution.In the ER model,events are sensed by a subset of nodes V s?V,i.e.the data-sensing region.The data-merging region V c?V is defined as a disk centered at sink with radius d crical denoting the critical distance of the V c boundary from the sink. And the sensors in V r=V- V s∪V c compose the data-relaying region. It is assumed that each sensor node maintains the information of a cache storing neighborhood and the self-address obtained by GPS and known by sink as a priori,and each artificial ant ak(k=1,2,…,|V s|)has a memory Mk,whose components are denoted in Table 1.

    The current feasible neighborhood of ak is defined as AK=(V-L(v))∩O(i),where O(i)is the set of neighbors in ni.Via the functional region division of sensor networks and the ability of ant memory,the artificial ant can roughly estimate the energy-cost-level of each reached sensor and correspondingly adjust the weight in heuristic information of routing selection to improve the reliability of data-gathering tree.

    Let Ri=Ei(lef)/Ei(ini), which denotes the remaining energy level of ni∈V.The routing tree problem A is defined to find a series of optimal paths t mult=from V s?V to destination sink subjected to the following conditions Eqs.(1,2)are constraint conditions for QoS requirement of energy optimization and temporal consistency,wheredenotes the average remaining energy ratio of optimal path p*k,A a NP-hard constrained path optimization(CPO)problem and solved by Lagrange multiplier(LM)algorithm.The Lagrange function is described as

    The solutions can be obtained by calculating the partial differential of Lagrange function matrix,but it is not suitable for the resource-limited sensor nodes in WSNs.Therefore,this paper proposes TORA algorithm to solve this primary problem A with a fully distributed way in ACO approach.

    2 OPTIMAL ROUTING STRUC-TURE

    2.1 Design of heuristic factor

    It is assumed that nv∈V s sends l bit message on multi-hop way to sink,which requires K(v)-1 relay nodes and the i th hop distance di,where K(v)shows the number of theoretic hops from nv to sink. Based on the first-order-radiomodel[12],the energy expended by relaying l bit message over distance d i is E relay(l,di)=(2E elec+X amp dni)×l. Denoting that d(nv,sink)is the distance between the source nv(v∈[1,|V s|])and sink.The total cost on path from nv to sink iswhich can be proved as a strict convex function,and its minimal value is only obtained under the condition that each hop distance is equal to d(ovp)tim=d(nv,sink)/K(v)according to Jensen′s inequality.And then the optimal hop-counts(Eq.(4))is calculated by imposing the derivative operation,i.e.,?P total(di)/?K=0.

    where T1 and T2 are node energy parameters.We set vector J(v)as the coordinate sequence of theoretical points,i.e.,J(v)={n(v)(t)},t∈ [1,K(v)]. The rectangular coordinates of each theoretical point for minimal P total is deduced as follows

    At c(j)hop, the distance-error between theoretical optimal sensor and actual counterpart is calculated by Eq.(6).

    Defining that triple S=(B,R,H)is the current state obtained by the ant agent for next hop selection,i.e.,during the process of routing building,the bias B,the remaining energy level R and the hop counts H are taken into account.Assuming that state vector Sj=(Bj,Rj,Hj)∈S,and each tuple of S j is defined as follows

    where Bj provides the location-aided energyefficiency information for the process of path building and helps ant agent to adjust the forward direction to sink based on the bias value.Rj shows the energy status of nj and Hj the hops of ant agent to reach the source node through node nj.With the accumulation of hop-counts, the probability of reached nj belonging to data-merging region V c increases and the higher energy consumption is consequently expended. Therefore, according to the distribution trait of energy cost in routing tree,the relationship between each tuple in S is defined as Eq.(10),which indicates that the closer the current sensor to sink,the larger the weight of remaining-energy-level regarded as energy efficiency factor.∈

    The cost W is associated with each nj∈AK as local evaluation information for noderobustness. The higher the value of,the greater the probability that njis selected as the next hop node on the building of optimal routing path.If k=argmax n j∈the ant at current sensor ni tends to choose nk as the next hop sensor.Therefore,the structure of heuristic factor for ACO is designed as

    Eq.(11)embodies the idea that artificial ant can adaptively choose the high-energy-efficient sensor as its next hop in each step and adjust corresponding variable weight to improve the reliability of data-gathering tree.In two extreme cases,i.e.,if Hj=0 or E(lef)j=0,then Zij→0,which indicates that nj belongs to data-sensing region(nj∈V s),or it runs out of energy,then the ant agent should abandon the selection of njduring the path building.

    2.2 Algorithm f low

    At the initial stage of TORA,the optimal routing tree t mult is empty and each sensor in V s?V takes sink as common destination.The sink instructs sensors in V s to create ant-like agents for constructing optimal routing paths and compute the corresponding theoretic point sequence J(v). The above task is sent by″interest″, which also contains the address coordinate of sink, i.e., (x sink,y sink), and propagates through the network to Vs.The ant dispatched from sensor nv∈V s is denoted as aforwk .In each step,aforwk chooses the next unvisited node in current feasible neighborhood with the improved transition probability given by Eq.(12)and constructs p(v)∈t mult from source to sink,if it does not meet any sensor which has been added to t mult.

    When afkorwarrives at sink,the corresponding backward ant abkackis created and backes along the built p(v)to nv,and any sensor visited by akbackis set with a mark,which denotes that the sensor belongs to t mult.Meanwhile,akbackcarries the path information copied from afkorwand deposits the pheromone trails on visited sensors according to

    where d∈(0,1)represents the volatility degree of pheromone. Total remaining energy ratioRiand chopcarried by akfo

    rware used to update pheromone.

    According to the updating rule,pheromones of those sensors in tmultshould be adaptively reinforced and subjected to constraint conditions Eqs.(1,2)of A.abackk dies when it arrives at nv∈V s,and the optimal routing from nv to sink is set up.In the other case,if aforwk meets nj∈ tmult,it stops further search to set the current graft sensor nj as destination and comes back to source for re-executing the above algorithm. The algorithm is terminated when all sour cesensors in V s are added into t mult,which is composed of those corresponding optimal routing paths from each source sensor to sink.In TORA,it is proved that the final routing tree structure is loop-free by using the taboo list in memory of ant and the time-complexity of TORA has the linear relationship with the steps moved by artificial ants. According to the function connection between the solution quality and the steps,the optimal solution can be obtained by the concurrent processing of m ant agents in k log2 m steps and the time-complexity is deduced as O(mk log2m).

    3 SIMULATION RESULTS

    TORA is simulated by using NS2 platform in a network of adjustable-density sensors(25—140)randomly distributed over a square of 500×500 units with the base station at(15,480).The link layer is implemented using IEEE802.11 MAC protocol.Each sensor has tunable communication radius a c(a c≥d(v)optim).In the radio model,each radio dissipates Eelec=50 nJ/bit to run the transmitter or the receiver circuitry and X amp=100 p J/bit/m2for the transmitter amplifies. The parameters of ACO are set in Table 2.

    Table 2 Experimental parameters and results

    The parameter e MSE is defined as the factor to evaluate the degree of approximation between t mult and the theoretical optimum counterpart.

    where d(v)tis actual tth-hop distance and|V s|the number of sensors in Vs.The better the degree of the approximation between actual routing and the theoretical model,the less the total energy cost.The percentages of deviation among classical geographic-aided routing GPRS,minimum energy consumption routing, MEC[13], greedy algorithm[14]and TORA are compared with respect to e MSE.As shown in Fig.1,the deviation in TORA always keeps the smallest value compared with the other schemes with an increase of node density,which denotes that TORA performs better than other schemes on the realization of minimal total energy-cost level in networks,because the prior theoretical results are adapted to the design of heuristic factor in TORA.

    Energy balance analysis is shown in Fig.2 at the node level after 80 times of transmission-operations,where R is the ratio of remaining and initial energy levels. In annular domain with center at sink and radius r∈[5,10],we randomly select 40 deployed sensors for energy-status observation by using different routing algorithms.The peak values of each curve in Fig.2 are corresponding to the normalized remaining energy level.Simulation results show that the average level of TORA is higher than the other two algorithms(GPRS and MEC)because that the adaptive ant-agents mode is used in TORA.

    Fig.1 Fitting degree to theoretical optimal structure

    Fig.2 Comparison of remaining energy level

    In Fig.3,based on the final routing structure t mult,the performance of TORA with and without variable weight j j=Rj/Bj(i.e.,energy factor)in heuristic factors is compared according to the number of rounds versus the survival rate of sensors.An important objective of TORA is to extend the QoS-service lifetime of WSNs,which is measured with respect to the spent time until 30% nodes in G deplete their energy.R2 and R1 are defined as the corresponding lower bounds of QoS-service lifetime when Z ij with or without the variable weight jj.Fig.3 shows that R1<R2,which means that the QoS-service lifetime of WSNs is prolonged and the robustness of the final optimal routing tree is improved by introducing the variable weight j j into heuristic factor.Therefore,TORA with variable weight outperforms that without variable weight.

    Because the average delay is restricted below scheduled delay QoS-constraint,it is set as 8 ms in the simulation.Fig.4 shows the mean of endto-end delay comparison and the average delay of TORA is less than those of M EC and GPRS,which is benefited by the updating pheromone rule(Eq.(14))based on the delay constraint to reinforce the trails on optimal paths and weaken the trails on those bad ones.

    Fig.3 Survival ratevs rounds

    Fig.4 End-to-end packet delay

    4 CONCLUSION

    For constructing the optimal routing structure in WSNs,it is important to minimize the total energy cost of data transfer from the data-sensing region to a fixed sink with delay constraint of QoS, and to improve energy robustness of routing tree structure for reducing the probability of disconnected subnets,which is caused by unreasonable energy distribution on sensors in data-gathering routing structure.This paper presents an optimal tree algorithm based on ACO,i.e.,TORA,to achieve the above two important objectives. By dividing WSNs into different kinds of functional regions, energy consumption of each sensor can be roughly estimated in advance. The novel designs of heuristic factor construction and pheromone updating rule can endow artificial ants the ability to adaptively detect the local energy status in WSNs and intelligently approach the prior theoretic model in the process of routing construction.Experimental results prove that the proposed optimal routing tree can improve the energy efficiency and the QoS-service performance of data gathering routing scheme in WSNs.

    [1] Bouabdallah F,Bouabdallah N,Boutaba R.On balancing energy consumption in wireless sensor networks [J].IEEE Transactions on Vehicular Technology,2009,58(6):2909-2924.

    [2] Zhang Habo, Shen Hong. Balancing energy consumption to maximize network lifetime in dataga thering sensor networks[J].IEEE Transactions on Parallel and Distributed Systems, 2009,20(10):1526-1539.

    [3] Bruck J,Gao Jie,Jiang Anxiao.M AP:medial axis based geometric routing in sensor networks[J].Journal of Wireless Networks, Springer Netherlands,2007,13(6):835-853.

    [4] Yu Fucai,Choi Younghwan,Park S,et al.Sink location service for geographic routing in wireless sensor networks[C]//Wireless Communications and Networking Conference.USA:IEEE,2008:2111-2116.

    [5] Chen Chi,Aksoy D,Demir T.Processed data collection using opportunistic routing in location aware wireless sensor networks [C]//The 7th International Conference on Mobile Data Management.Japan:IEEE,2006:150.

    [6] Deb D,Srijita B R,Chaki N.Design of a low-cost positioning framework for location aided energy efficient routing[C]//The 5th IEEE Conference on Wireless Communication and Sensor Networks(WCSN).India:IEEE,2009:1-6.

    [7] Karp B,Kung H T.GPSR: greedy perimeter stateless routing for wireless networks[C]//The 6th Annual International Conference on Mobile Computing and Networking.USA:IEEE,2000:243-254.

    [8] Zhong Zhicheng,Tian Zhizhong,Li Zhe,et al.An ant colony optimization competition routing algorithm for WSN [C]//The 4th International Conference on Wireless Communications,Networking and Mobile Computing.China:IEEE,2008:1-4.

    [9] Park J,Sahni S.An online heuristic for maximum lifetime routing in wireless sensor networks[J].IEEE Transactions on Computers,2006,55(8):1048-1056.

    [10]Xie Hui,Zhang Zhigang,Zhou Xueguang.A novel routing protocol in wireless sensor networks based on ant colony optimization [C]//International Conference on Environmental Science and Information Application Technology. Wuhai,China: [s.n.],2009:646-649.

    [11]Boukerche A,Cheng X,Linus J.Energy-aware data-centric routing in microsensor networks[C]//The 6th ACM International Workshop on Modeling Analysis and Simulation of Wireless and Mobile Systems.USA:ACM,2003:42-49.

    [12]Heinzelman W,Chandrakasan A,Balakrishnan H.Energy-efficient communication protocol for wireless microsensor networks [C]//Hawaii Conference on System Sciences. USA: IEEE,2000:1-10.

    [13]Park N,Kim D,Doh Y,et al.An optimal and lightweight routing for minimum energy consumption in wireless sensor networks[C]//The 11st IEEE International Conference on Embedded and Real-Time Computing Systems and Applications.China:IEEE,2005:387-393.

    [14]Panigrahi B,De S,Sun Luk J.A greedy minimum energy consumption forwarding protocol for wireless sensor networks [C]//International Communication Systems and Networks and Workshops.USA:IEEE,2009:1-6.

    另类亚洲欧美激情| 电影成人av| 国产精品国产av在线观看| a 毛片基地| 亚洲成国产人片在线观看| 日本午夜av视频| 成人亚洲欧美一区二区av| 在线 av 中文字幕| 在线观看三级黄色| 成人亚洲精品一区在线观看| 晚上一个人看的免费电影| 亚洲精品日韩在线中文字幕| 久久久久久久久久人人人人人人| 成人午夜精彩视频在线观看| 精品视频人人做人人爽| 国产老妇伦熟女老妇高清| √禁漫天堂资源中文www| 国产成人精品婷婷| 欧美日韩成人在线一区二区| 日本黄色日本黄色录像| 男人添女人高潮全过程视频| 国产又爽黄色视频| 精品卡一卡二卡四卡免费| 性色avwww在线观看| 激情五月婷婷亚洲| 午夜福利在线观看免费完整高清在| 大陆偷拍与自拍| 少妇的逼水好多| 亚洲国产精品999| 午夜福利,免费看| 久久人人爽人人片av| 国产精品久久久久成人av| 丰满少妇做爰视频| 欧美日韩av久久| 欧美日韩视频高清一区二区三区二| 免费观看性生交大片5| 精品第一国产精品| av国产久精品久网站免费入址| 丝袜美足系列| 亚洲精品成人av观看孕妇| 国产精品久久久久成人av| 日韩成人av中文字幕在线观看| 香蕉国产在线看| 久久人人97超碰香蕉20202| 亚洲av免费高清在线观看| av在线播放精品| 国产人伦9x9x在线观看 | 伊人久久国产一区二区| 高清在线视频一区二区三区| 国产日韩欧美亚洲二区| 蜜桃国产av成人99| 黄网站色视频无遮挡免费观看| av女优亚洲男人天堂| 一级毛片我不卡| 国产av国产精品国产| 日韩精品有码人妻一区| 极品人妻少妇av视频| 看非洲黑人一级黄片| 亚洲欧洲国产日韩| 国产精品成人在线| 国产有黄有色有爽视频| 久久久精品免费免费高清| tube8黄色片| 久热久热在线精品观看| 国产精品久久久久久精品古装| 亚洲伊人色综图| www.自偷自拍.com| 美女午夜性视频免费| 天天影视国产精品| 另类亚洲欧美激情| 免费高清在线观看日韩| h视频一区二区三区| 欧美 亚洲 国产 日韩一| 亚洲欧美清纯卡通| 精品一区二区三区四区五区乱码 | 人妻系列 视频| 水蜜桃什么品种好| 亚洲国产成人一精品久久久| 亚洲三级黄色毛片| 成年女人在线观看亚洲视频| 久热久热在线精品观看| 成人二区视频| tube8黄色片| 丰满饥渴人妻一区二区三| 校园人妻丝袜中文字幕| 日韩三级伦理在线观看| 欧美精品一区二区大全| 天天躁夜夜躁狠狠久久av| 26uuu在线亚洲综合色| 国产欧美日韩综合在线一区二区| 精品国产露脸久久av麻豆| 十八禁高潮呻吟视频| 91在线精品国自产拍蜜月| 免费播放大片免费观看视频在线观看| 久久久欧美国产精品| 十八禁网站网址无遮挡| 久久精品aⅴ一区二区三区四区 | 日韩一卡2卡3卡4卡2021年| 国产精品亚洲av一区麻豆 | 国产极品粉嫩免费观看在线| 日韩中字成人| 一级毛片 在线播放| 日韩一卡2卡3卡4卡2021年| 一级毛片 在线播放| 久久久精品94久久精品| 国产精品久久久久久av不卡| 9热在线视频观看99| 国产乱人偷精品视频| 蜜桃在线观看..| 国产av精品麻豆| 一区二区三区精品91| 国产精品人妻久久久影院| 久久青草综合色| 国产片特级美女逼逼视频| 欧美成人午夜免费资源| 另类亚洲欧美激情| 在线天堂最新版资源| 欧美精品国产亚洲| 超碰97精品在线观看| 老汉色av国产亚洲站长工具| 中国三级夫妇交换| 国产精品99久久99久久久不卡 | 2022亚洲国产成人精品| 久久国产亚洲av麻豆专区| 国产在线一区二区三区精| 免费观看在线日韩| 成人漫画全彩无遮挡| 老汉色∧v一级毛片| 国产精品.久久久| 国产成人免费观看mmmm| 亚洲精品成人av观看孕妇| 在线精品无人区一区二区三| 中国三级夫妇交换| 青春草国产在线视频| 91精品三级在线观看| 国产国语露脸激情在线看| 性色avwww在线观看| 国产精品香港三级国产av潘金莲 | 大话2 男鬼变身卡| 两个人看的免费小视频| 丝瓜视频免费看黄片| 精品国产一区二区三区久久久樱花| 亚洲综合色网址| 一级黄片播放器| 免费大片黄手机在线观看| 精品一区二区三区四区五区乱码 | 搡女人真爽免费视频火全软件| 午夜老司机福利剧场| 在线观看免费视频网站a站| 最近最新中文字幕大全免费视频 | 大码成人一级视频| 婷婷色av中文字幕| 满18在线观看网站| 久久99热这里只频精品6学生| av线在线观看网站| 国产极品天堂在线| 日韩成人av中文字幕在线观看| 韩国精品一区二区三区| 亚洲精品日韩在线中文字幕| 午夜91福利影院| 国产淫语在线视频| 少妇被粗大猛烈的视频| 亚洲国产精品成人久久小说| 午夜福利视频在线观看免费| 少妇人妻精品综合一区二区| 午夜免费鲁丝| 亚洲国产最新在线播放| 男人舔女人的私密视频| 久久精品国产亚洲av涩爱| 国产成人精品无人区| 18在线观看网站| 久久精品久久久久久噜噜老黄| 成人国语在线视频| 有码 亚洲区| 最近中文字幕高清免费大全6| 精品国产国语对白av| 不卡av一区二区三区| 99热全是精品| 久久久久久久亚洲中文字幕| 国产一区二区三区综合在线观看| 男女下面插进去视频免费观看| av网站免费在线观看视频| 久久这里只有精品19| 一本久久精品| 久久精品国产亚洲av涩爱| 女人精品久久久久毛片| 精品国产超薄肉色丝袜足j| 波野结衣二区三区在线| 免费久久久久久久精品成人欧美视频| 国产一级毛片在线| 久久人妻熟女aⅴ| 国产亚洲最大av| 18禁观看日本| 一级,二级,三级黄色视频| 国精品久久久久久国模美| 午夜福利视频在线观看免费| 欧美日韩一级在线毛片| 水蜜桃什么品种好| 欧美激情高清一区二区三区 | 日日爽夜夜爽网站| av视频免费观看在线观看| 亚洲熟女精品中文字幕| 高清欧美精品videossex| 国产成人午夜福利电影在线观看| 成人国产av品久久久| 亚洲国产成人一精品久久久| 久久免费观看电影| 中文字幕av电影在线播放| 美女午夜性视频免费| 国产精品无大码| 国产免费一区二区三区四区乱码| 亚洲成av片中文字幕在线观看 | 18禁动态无遮挡网站| 制服丝袜香蕉在线| 免费观看无遮挡的男女| 熟女av电影| 日本wwww免费看| 国产精品免费视频内射| 熟女电影av网| 观看美女的网站| 丝袜喷水一区| 久久精品国产自在天天线| av不卡在线播放| 欧美黄色片欧美黄色片| 中文字幕色久视频| 中文字幕亚洲精品专区| 2022亚洲国产成人精品| 欧美人与性动交α欧美软件| 女性生殖器流出的白浆| 亚洲情色 制服丝袜| 老女人水多毛片| 欧美亚洲 丝袜 人妻 在线| 午夜日韩欧美国产| 在线精品无人区一区二区三| 久久久精品94久久精品| 精品亚洲成a人片在线观看| 国产黄色免费在线视频| 老司机影院成人| 日本黄色日本黄色录像| 男女边吃奶边做爰视频| 欧美精品高潮呻吟av久久| 大香蕉久久成人网| 亚洲国产色片| 丝袜美腿诱惑在线| 一二三四中文在线观看免费高清| 免费看不卡的av| 极品人妻少妇av视频| 青春草国产在线视频| 精品国产露脸久久av麻豆| 午夜免费鲁丝| 蜜桃在线观看..| av免费在线看不卡| 999精品在线视频| 亚洲欧美一区二区三区黑人 | 男女下面插进去视频免费观看| 啦啦啦在线免费观看视频4| 久久精品熟女亚洲av麻豆精品| 一区二区av电影网| 美女视频免费永久观看网站| 汤姆久久久久久久影院中文字幕| 美女国产高潮福利片在线看| av.在线天堂| 日日摸夜夜添夜夜爱| 国产午夜精品一二区理论片| 久久久国产一区二区| 亚洲国产精品国产精品| 少妇被粗大猛烈的视频| 婷婷成人精品国产| 18在线观看网站| 日本欧美国产在线视频| 最近中文字幕2019免费版| 国产综合精华液| 欧美在线黄色| 亚洲一级一片aⅴ在线观看| 亚洲av综合色区一区| 欧美精品人与动牲交sv欧美| 最近手机中文字幕大全| 人人妻人人澡人人爽人人夜夜| 中国国产av一级| 国产日韩欧美在线精品| 亚洲成国产人片在线观看| 国产精品蜜桃在线观看| 国产精品无大码| 欧美日韩av久久| 国产av码专区亚洲av| 校园人妻丝袜中文字幕| 少妇的逼水好多| 亚洲精品乱久久久久久| 女人高潮潮喷娇喘18禁视频| 精品国产乱码久久久久久小说| 777久久人妻少妇嫩草av网站| 18禁观看日本| 欧美精品人与动牲交sv欧美| 国产精品久久久久成人av| 精品人妻熟女毛片av久久网站| 欧美日韩亚洲国产一区二区在线观看 | 一二三四在线观看免费中文在| 人体艺术视频欧美日本| 亚洲欧美一区二区三区久久| 亚洲成色77777| 久久久久久久精品精品| 精品国产一区二区三区四区第35| 国产一区亚洲一区在线观看| av在线老鸭窝| 十分钟在线观看高清视频www| 国产爽快片一区二区三区| 国产精品国产三级专区第一集| av女优亚洲男人天堂| 最近中文字幕2019免费版| 日日摸夜夜添夜夜爱| a级片在线免费高清观看视频| 亚洲av福利一区| 国产野战对白在线观看| 日韩制服骚丝袜av| 精品亚洲乱码少妇综合久久| 国产极品粉嫩免费观看在线| 男人舔女人的私密视频| 最黄视频免费看| 久久久精品区二区三区| 免费高清在线观看视频在线观看| 国产日韩欧美视频二区| 这个男人来自地球电影免费观看 | 两个人免费观看高清视频| 最近最新中文字幕免费大全7| 国产无遮挡羞羞视频在线观看| 欧美精品一区二区大全| 女性被躁到高潮视频| 午夜福利在线免费观看网站| 99九九在线精品视频| 捣出白浆h1v1| xxxhd国产人妻xxx| 国产精品二区激情视频| 人人妻人人添人人爽欧美一区卜| 伦精品一区二区三区| 久久久久人妻精品一区果冻| 国产成人午夜福利电影在线观看| 成人影院久久| 久久亚洲国产成人精品v| 国产精品欧美亚洲77777| 国产精品麻豆人妻色哟哟久久| 少妇人妻久久综合中文| 97在线人人人人妻| 精品一区二区三区四区五区乱码 | 午夜日韩欧美国产| 国产成人精品在线电影| 久久韩国三级中文字幕| 色94色欧美一区二区| 啦啦啦在线免费观看视频4| 精品少妇黑人巨大在线播放| 搡老乐熟女国产| 亚洲人成网站在线观看播放| 国产视频首页在线观看| 国产毛片在线视频| 综合色丁香网| 免费大片黄手机在线观看| 综合色丁香网| 精品酒店卫生间| 看免费av毛片| 黄色一级大片看看| 啦啦啦视频在线资源免费观看| 久久精品国产亚洲av涩爱| 美女xxoo啪啪120秒动态图| 亚洲精品一二三| 丰满乱子伦码专区| 欧美黄色片欧美黄色片| 欧美日韩视频高清一区二区三区二| 人妻一区二区av| www.精华液| 在线观看免费视频网站a站| 亚洲av福利一区| 精品一区二区三卡| 熟女少妇亚洲综合色aaa.| 国产免费又黄又爽又色| 亚洲精品国产一区二区精华液| 国产免费又黄又爽又色| 成年女人毛片免费观看观看9 | 亚洲欧美一区二区三区国产| 婷婷色麻豆天堂久久| 久久久久国产精品人妻一区二区| 日产精品乱码卡一卡2卡三| 免费黄色在线免费观看| 亚洲美女黄色视频免费看| 韩国高清视频一区二区三区| 美女主播在线视频| 三上悠亚av全集在线观看| 欧美bdsm另类| 亚洲精品一区蜜桃| 一本—道久久a久久精品蜜桃钙片| 久久精品国产鲁丝片午夜精品| 久久久久久伊人网av| 极品少妇高潮喷水抽搐| 日韩大片免费观看网站| 欧美97在线视频| 久久久国产一区二区| 精品国产一区二区三区四区第35| 国产精品三级大全| 黄片小视频在线播放| 丰满迷人的少妇在线观看| 欧美黄色片欧美黄色片| 最近中文字幕高清免费大全6| www.av在线官网国产| 黄色毛片三级朝国网站| 国产男女超爽视频在线观看| 久久精品国产综合久久久| 国产精品一区二区在线观看99| 亚洲精品av麻豆狂野| 成人亚洲精品一区在线观看| 欧美日韩国产mv在线观看视频| 一级毛片黄色毛片免费观看视频| av不卡在线播放| 男的添女的下面高潮视频| 国产精品99久久99久久久不卡 | 男女高潮啪啪啪动态图| 久久av网站| 啦啦啦中文免费视频观看日本| 欧美激情极品国产一区二区三区| videossex国产| 国产熟女欧美一区二区| 欧美人与性动交α欧美软件| 久久免费观看电影| 在线观看www视频免费| 日本色播在线视频| 国产欧美日韩一区二区三区在线| 日韩一卡2卡3卡4卡2021年| 精品亚洲成a人片在线观看| av又黄又爽大尺度在线免费看| 男人添女人高潮全过程视频| 在线观看国产h片| 人人妻人人爽人人添夜夜欢视频| 国精品久久久久久国模美| 性高湖久久久久久久久免费观看| 一本大道久久a久久精品| 男女免费视频国产| 国产日韩欧美视频二区| 婷婷色综合大香蕉| 久久久国产欧美日韩av| 国产亚洲欧美精品永久| 久久av网站| 久久精品久久精品一区二区三区| 99精国产麻豆久久婷婷| 国产片特级美女逼逼视频| 亚洲av国产av综合av卡| 国产精品蜜桃在线观看| 国产精品亚洲av一区麻豆 | 中文天堂在线官网| 在线观看美女被高潮喷水网站| 久久av网站| av国产精品久久久久影院| 老司机影院毛片| 一本大道久久a久久精品| 久久久久久久久久久久大奶| 性色av一级| 人人妻人人澡人人看| videos熟女内射| 欧美中文综合在线视频| 亚洲国产精品999| 久久国产亚洲av麻豆专区| 国产av精品麻豆| 曰老女人黄片| 欧美日韩成人在线一区二区| 久久人人97超碰香蕉20202| 女人精品久久久久毛片| 亚洲天堂av无毛| 中文字幕制服av| 成人国语在线视频| av视频免费观看在线观看| 天美传媒精品一区二区| 亚洲av电影在线进入| 国产精品熟女久久久久浪| 天天躁夜夜躁狠狠久久av| 亚洲av综合色区一区| 亚洲伊人久久精品综合| 日韩精品免费视频一区二区三区| 亚洲情色 制服丝袜| 伦理电影大哥的女人| 春色校园在线视频观看| 视频在线观看一区二区三区| 国产欧美日韩一区二区三区在线| 18禁裸乳无遮挡动漫免费视频| av视频免费观看在线观看| 人人妻人人添人人爽欧美一区卜| 国产有黄有色有爽视频| 久久久久国产精品人妻一区二区| 99热国产这里只有精品6| 国产亚洲精品第一综合不卡| 激情五月婷婷亚洲| 国产白丝娇喘喷水9色精品| 人妻人人澡人人爽人人| 国产黄色免费在线视频| 亚洲精品国产av蜜桃| 日韩三级伦理在线观看| 亚洲欧美成人精品一区二区| 久久午夜福利片| 满18在线观看网站| 亚洲精品中文字幕在线视频| 99热网站在线观看| kizo精华| 久久精品国产综合久久久| 天天操日日干夜夜撸| 超碰97精品在线观看| 欧美精品一区二区免费开放| 人妻系列 视频| 大香蕉久久成人网| 日韩伦理黄色片| av又黄又爽大尺度在线免费看| 一区二区日韩欧美中文字幕| 欧美日韩亚洲国产一区二区在线观看 | 高清av免费在线| 一级爰片在线观看| 亚洲一级一片aⅴ在线观看| 国产野战对白在线观看| 最黄视频免费看| 久久久久久久国产电影| 日韩中字成人| 18禁观看日本| 搡女人真爽免费视频火全软件| 一区二区三区激情视频| 美女脱内裤让男人舔精品视频| 国产成人免费无遮挡视频| 亚洲久久久国产精品| 9色porny在线观看| 久久av网站| 中文字幕最新亚洲高清| 久久毛片免费看一区二区三区| 极品人妻少妇av视频| 黑人巨大精品欧美一区二区蜜桃| 日韩伦理黄色片| 欧美日韩亚洲高清精品| 国产欧美日韩综合在线一区二区| av线在线观看网站| 一本色道久久久久久精品综合| 黑人巨大精品欧美一区二区蜜桃| 久久精品久久久久久噜噜老黄| 精品99又大又爽又粗少妇毛片| 人人妻人人澡人人看| 熟妇人妻不卡中文字幕| 久久久久精品久久久久真实原创| 熟妇人妻不卡中文字幕| 日本wwww免费看| 99久久人妻综合| 亚洲成国产人片在线观看| 日韩电影二区| 观看美女的网站| 国产又色又爽无遮挡免| 最近最新中文字幕免费大全7| 少妇精品久久久久久久| 桃花免费在线播放| 国产深夜福利视频在线观看| 亚洲欧美成人综合另类久久久| 欧美成人午夜免费资源| 国产国语露脸激情在线看| 国产在线一区二区三区精| 美女国产视频在线观看| 精品亚洲成国产av| 成人国产av品久久久| 久久综合国产亚洲精品| 日韩,欧美,国产一区二区三区| xxxhd国产人妻xxx| 久久久久久久久久久免费av| videossex国产| 永久网站在线| 中文乱码字字幕精品一区二区三区| 精品人妻偷拍中文字幕| 亚洲三区欧美一区| 男人操女人黄网站| 韩国精品一区二区三区| 十分钟在线观看高清视频www| 亚洲三级黄色毛片| 国产视频首页在线观看| 国产在线视频一区二区| 9191精品国产免费久久| 国产免费福利视频在线观看| 少妇 在线观看| av免费观看日本| 十八禁高潮呻吟视频| 又大又黄又爽视频免费| 久久久久久人妻| 美女脱内裤让男人舔精品视频| 久久综合国产亚洲精品| 国产在线免费精品| 国产成人av激情在线播放| 国产白丝娇喘喷水9色精品| 最近中文字幕高清免费大全6| 久久精品人人爽人人爽视色| 欧美国产精品va在线观看不卡| 久久久精品区二区三区| 免费观看性生交大片5| 亚洲欧美清纯卡通| 天天操日日干夜夜撸| 久久精品国产综合久久久| 男的添女的下面高潮视频| 久久久精品区二区三区| 99热网站在线观看| 少妇被粗大的猛进出69影院| 黄色毛片三级朝国网站| 美女脱内裤让男人舔精品视频| 黄色视频在线播放观看不卡| 在线观看免费日韩欧美大片| 免费黄频网站在线观看国产| 国产日韩一区二区三区精品不卡| 国产精品一区二区在线观看99| 在线免费观看不下载黄p国产| 精品国产一区二区久久| 人妻 亚洲 视频| 国产精品久久久久久av不卡| 亚洲精品视频女| av线在线观看网站| 亚洲内射少妇av| 国产精品.久久久| 免费黄色在线免费观看| 日韩不卡一区二区三区视频在线| 午夜福利乱码中文字幕| 国产精品久久久久久av不卡| 免费人妻精品一区二区三区视频| 日本91视频免费播放|