• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Two-dimensional physical habitat modeling of effects of habitat structures on urban stream restoration

    2011-08-16 09:02:28DongkyunIMHyeongsikKANG
    Water Science and Engineering 2011年4期

    Dongkyun IM, Hyeongsik KANG*

    1. Water Infrastructure Division, Samsung C & T Corporation, Seoul 1321-20, Korea

    2. Division of Water and Environment, Korea Environment Institute, Seoul 122-706, Korea

    Two-dimensional physical habitat modeling of effects of habitat structures on urban stream restoration

    Dongkyun IM1, Hyeongsik KANG*2

    1. Water Infrastructure Division, Samsung C & T Corporation, Seoul 1321-20, Korea

    2. Division of Water and Environment, Korea Environment Institute, Seoul 122-706, Korea

    River corridors, even if highly modified or degraded, still provide important habitats for numerous biological species, and carry high aesthetic and economic values. One of the keys to urban stream restoration is recovery and maintenance of ecological flows sufficient to sustain aquatic ecosystems. In this study, the Hongje Stream in the Seoul metropolitan area of Korea was selected for evaluating a physically-based habitat with and without habitat structures. The potential value of the aquatic habitat was evaluated by a weighted usable area (WUA) using River2D, a two-dimensional hydraulic model. The habitat suitability forZacco platypusin the Hongje Stream was simulated with and without habitat structures. The computed WUA values for the boulder, spur dike, and riffle increased by about 2%, 7%, and 131%, respectively, after their construction. Also, the three habitat structures, especially the riffle, can contribute to increasing hydraulic heterogeneity and enhancing habitat diversity.

    stream restoration; physical habitat; River2D; weighted usable area

    1 Introduction

    Urban streams provide not only aesthetic and economic values but also aquatic ecosystems. However, most urban streams have been degraded due to urban development. Urbanization has altered stream flow and channel geometry, and degraded water quality and ecology. In particular, channel morphology is modified by channelization, straightening, grading and paving of bank slopes, and removal of physical habitat.

    Environmental improvements in urban streams are achievable through strategic methods that are different from those applied to unregulated streams. These methods include control of runoff and pollutant sources (Nolan and Guthrie 1998), reduction of peak flows (Harremoes et al. 1996), and physical habitat enhancements. A key to urban stream restoration is recovery of the physical habitat and maintenance of ecological flows sufficient to sustain aquatic ecosystems.

    Aquatic ecosystems that include fish and benthic organisms can be limited by food, habitat, cover, substrate, flow and depth fluctuations, and water quality. Each or any combination of these factors affects aquatic ecosystems. The physical habitat simulationsystem (Bovee 1982; Bovee et al. 1998) is a suite of numerical models that predict aquatic habitat quality in terms of changes of its physical properties (velocity, depth, and channel indices). There has been much criticism when physical habitat simulation results have been applied and interpreted without consideration of other limiting factors such as food availability and water quality. However, studies have shown that there is a positive relationship between outputs simulated by physical habitat models and observed distributions and abundance of fish (Jowett 1992; Railsback et al. 1993; Nehring and Anderson 1993; Bovee et al. 1994). Also, in recent years many researchers have studied fish habitat using physical habitat models (Lee et al. 2010; Mouton et al. 2007; Crowder and Diplas 2000; Im et al. 2011).

    Improvement of physical habitat conditions for aquatic ecosystems should take into account natural recovery processes (Reice et al. 1990; Nagaya et al. 2008; Konrad 2009) and the biogenic capacity of nature to improve the stream by itself (White and Brynildson 1967). Both non-structural and structural approaches for the recovery of habitats adapted to target species have been proposed (Garcia 1995). The structures constructed for aquatic habitat enhancement generally have been current deflectors, riffles, boulders, backwaters, and bank covers. These structures change local hydraulic and geomorphologic characteristics, leading to either an improvement or a decrement of habitat quality and quantity under different stream conditions (Garcia and Gortazar 2006; Crowder and Diplas 2000). However, the quantitative evaluation of the flow change or environmental enhancement effects of such structures has never been carried out.

    The objective of this study was to evaluate the enhancement effects of different habitat structures on habitat conditions. A physical habitat simulation of those structures provided predictions of the changes in fish abundance occurring with changes in flow. In this study, habitat improvement was evaluated by the instream flow incremental methodology (IFIM). This is a decision-support system designed to help natural resource managers and their constituencies determine the benefits or consequences of different water management alternatives. IFIM should primarily be considered a process for solving water resources allocation issues that involve concerns for river habitats (Bovee et al. 1998). IFIM can be used to determine ecologically acceptable discharge or to evaluate the effects of habitat structures. It is a series of concepts, techniques, and computer programs that combine channel morphology, flow characteristics, and biological preferences of target organisms in order to predict physical habitat gains or losses under new or modified flow regimes (Bovee 1982). In these ways, IFIM allows for comparison of useable habitats under different conditions and, thereby, for prediction of the success or failure of particular physical habitat structures.

    2 Methodology

    2.1 Study site

    The Hongje Stream, a tributary of the Han River, was selected for the purpose ofevaluation of a physically-based habitat with and without habitat structures. The study site served as a representation of urban streams with decreased morphological and ecological diversities resulting from channel modifications. It is located in the Seoul metropolitan area, 4.7 km away from the confluence of the Hongje Stream and Han River (Fig. 1). The stream is a regulated river with an average bed slope of 0.48%, a design flood discharge of 280 m3/s, and a predominantly sand substrate. The majority of daily flow rates throughout the year do not exceed 0.6 m3/s, except in the rainy season. The habitat appeared to be monotonous owing to channelization, straightening, graded bank slopes, and paving with revetments. The Pale Chub (Zacco platypus) was selected as the target fish species for evaluation of the site’s physical habitat. The choice ofZacco platypuswas based on the following several factors: this species was confirmed to be dominant at the site, there are already many cases in which the habitat suitability indices (HSI) forZacco platypushave been developed and applied through various methods (Kim 1999; Sung et al. 2005), andZacco platypusis a native Korean species that is most commonly found in Korea’s rivers.

    Fig. 1 Sketch of Hongje Stream and study site

    2.2 River habitat model

    River2D, a two-dimensional depth-averaged finite element model based on a conservative upwind Petrov-Galerkin method and developed by Steffler and Blackburn (2002), was used to simulate the river flow and fish habitat at the study site. The River2D model can simulate the transient flow between subcritical and supercritical flows. It also offers both wet and dry solutions by allowing for the change of surface flow equations to groundwater flow equations in dry areas. The governing equations employed in this study were shallow-water equations expressed in conservative form. The equations for the conservation of mass and two equations for the conservation of momentum are as follows:

    wherexandyare the streamwise and transverse directions, respectively;UandVare the depth-averaged velocities in thexandydirections, respectively;His the water depth;qx(=UH) andqy(=VH) are the discharges per unit width in thexandydirections, respectively;gis the gravitational acceleration;ρis the water density;S0iandSfiare the bed slope and friction slope in theidirection (i=x,y), respectively; andτijis the component of the horizontal turbulent shear stress tensor (i,j=x,y).

    River2D, developed specifically for use in natural and regulated rivers, simulates hydraulic characteristics and estimates population potentials for target species according to the weighted usable area (WUA). It incorporates a finite element method that is based on a conservative Petrov-Galerkin upwind formulation. It is characterized by the subcritical/ supercritical and wet/dry solution capabilities.

    Fish and other aquatic organisms tolerate only certain ranges of current velocity, water depth, and bed substrate. Certainly, a key assumption of ecohydraulics modeling is that target species exhibit behavior reflecting quantifiable preferences for certain physical habitats. These habitat conditions are represented by HSI, which are preference curves indicating suitability on a scale of 0 to 1. As individual target species and life stages exhibit different habitat requirements, it is necessary to develop HSI relationships for each species and life stage. HSI have been derived from professional experience, various information sources, and field measurements. In this study,Zacco platypuswas selected as the target fish in an investigation of the impact of habitat structures on the physical habitat. For deriving the habitat suitability indices, substrate, velocity, and water depth were considered. Fig. 2 and Fig. 3 show the three habitat suitability indices forZacco platypusderived from field monitoring data. They are based on those developed by Kim (1999), and were somewhat modified taking into account the field observations by Sung et al. (2005).

    Fig. 2 Substrate preference forZacco platypusin Korea

    Fig. 3 Velocity and water depth preference curves forZacco platypusin Korea

    3 Results and discussion

    As the hydraulic model was applied to the steady-state flow, it was assumed that for each specific discharge, the hydraulic characteristic values did not change with time. This assumption is possibly invalid for some cases of downstream flood-wave propagation. The Hongje Stream was altered by channelization involved the installation of a sewage pipe, and thus has almost uniform discharge. The government decided to release the maintenance flow in order to sustain aquatic ecosystems. The maintenance flow discharge was 0.55 m3/s, and it was a significant discharge at the study site. The boundary conditions of the hydraulic model were derived using a rating curve developed from the field survey data obtained in the flood season.

    Fig. 4 represents the geomorphology of the study site as recorded in field work undertaken prior to channel restoration. As can be seen, the topology of the channel is monotonous, and it seems that it is difficult to conserve the biodiversity of aquatic species. One of the simulation results can be seen in Fig. 5, where the contour plot indicates the water depth, and the vector is the velocity for the maintenance flow discharge of 0.55 m3/s. The water depth and velocity were almost 0.1 m and 0.2 m/s, respectively. These almost uniform values of water depth and velocity lead to degradation of the physical habitat conditions. Fig. 6 shows the distribution of the combined habitat suitability for the target fish. This suitability was calculated using the geometric mean of the depth, velocity, and substrate suitability. The calculated values were between 0 and 1, and the values closer to 1 represented more optimal physical habitats. In most regions, the computed combined suitability was below 0.1. This means that the habitat conditions of the river are seldom suitable for the target fish.

    Fig. 4 Bed topography at study site

    Fig. 5 Water depth contour and velocity vectors

    Fig. 6 Combined suitability without habitat structure

    For the habitat enhancement, three different habitat structures, a boulder, a riffle, and a spur dike, were positioned on the previously unmodified channel bed (Fig. 7). The boulder shape was assumed, based on the field survey data, to be that of a regular hexahedron with a side length of 1 m. The riffle was hexagonal in shape, with an upstream face with a 10:1 slope, a crest of 20 cm, and a downstream face with a 16.7:1 slope. Also, the arm length of the spur dike was 5 m.

    Fig. 7 Shapes of habitat structures for numerical simulations

    Fig. 8 shows the distribution of the combined suitability after the construction of the habitat structures. The results for the boulder and spur dike (Figs. 8(a) and (c)) are similar to those for the previously unmodified stream (Fig. 6). For a given discharge, the WUA is calculated by summing the products of the cell areas and their respective combined suitability values. Fig. 9 shows the WUA changes with flow discharges for each structure. The WUA represents the physical habitat quantity in response to flow regimes. These curves are the key to assessment of the impact of proposed river restoration projects (Waddle 2001). At the study site, the average WUA increased by about 2% and 7% for the boulder and spur dike, respectively, with a discharge ranging from 0.55 to 15 m3/s. This is a reasonable result because these habitat structures have only a limited effect spatially. Thus, a group of boulders and dikes have greater influences on the improvement of fish habitat. Also, microhabitats formed by boulders provide localized refuges or reproductive habitats for a variety of other aquaticorganisms. For example, the downstream face of a boulder, which experiences lower velocities, is often used as a habitat site for invertebrates in many stream systems.

    Fig. 8 Combined suitabilities after construction of different habitat structures

    Fig. 9 WUA changes with different flow discharges

    Fig. 8(b) shows the combined suitability after the construction of the riffle. The riffle is more effective in improving hydraulic conditions for fish than a boulder or a dike: it creates accelerated flow through the structure, causing aeration. The accelerated flow through the riffle typically creates a scour pool at the bottom of the riffle. The overall velocity gradient increases around the riffle structure. Ultimately, a riffle provides a diverse habitat and cover for an aquatic ecosystem. In the present case, the riffle significantly enhanced the habitat suitability for the target fish, especially in upstream of the riffle. The computed WUA after the construction of the riffle increased by about 131% on average for a flow discharge of 0.55 to 15 m3/s. The flow discharge for the peak WUA was about 3 m3/s. After the construction of the riffle, the peak WUA value was slightly increased. It is also interesting to note that the riffle has the effect of reducing the flow discharge for an equivalent WUA. For instance, before theconstruction of the riffle, the flow discharge for the peak WUA of about 2 000 m2was about 3 m3/s, but after the construction of the riffle, a flow discharge of only about 2 m3/s provided the same WUA as before the construction. That is, for the same WUA of 2 000 m2, about 1 m3/s of flow discharge was eliminated due to the construction of the riffle. This shows that riffles or porous weirs are effective habitat structures in urban streams that have insufficient water depths. However, in this study, the physical habitat for only one fish species was considered. Thus, for estimation of the ecological flow rate for various fish species, development of HSI for various fish species from the field monitoring is necessary.

    The change of the water surface elevation caused by the habitat structures was investigated. Fig. 10 shows the water surface elevations for the design flood discharge of 280 m3/s in the downstream direction. The computed water surface elevations are the values at the center of each structure. Compared with the initial condition, the computed water surface elevations after the construction of the boulder increase locally around the boulder. Also, the spur dike increases the water surface elevation upstream of the spur dike. The maximum increment of water surface elevation is about 1.5 cm. The riffle increases the water surface elevation except around the riffle. The introduction of habitat structures into monotonoustopology urban streams can contribute to the enhancement of habitat diversity without flood control.

    Fig. 10 Water surface elevation changes

    4 Conclusions

    IFIM was developed originally as a specific tool for assessment of impacts caused by flow alterations or changes in channel morphology and water quality. IFIM can be used in restoration projects to evaluate a new available habitat, either by comparing it with the original conditions or with alternative restoration scenarios. In this study, using the two-dimensional hydraulic model River2D, a physical habitat evaluation was carried out through comparison of the natural conditions with aquatic habitat improvement conditions affected by construction of habitat structures.

    The habitat simulation results show that, after the construction of the boulder and spur dike, the WUA values increased by about 2% and 7%, respectively, which is not a significantimprovement. However, an approximately 131% increase in WUA was produced by construction of the riffle, thus enhancing the habitat suitability for the target fish at the site. Therefore, the riffle-type habitat enhancement structure is recommended in this case. The construction of a riffle-type habitat enhancement structure in riverbeds yields better results for urban streams that are very homogeneous and monotonous, and can increase hydraulic heterogeneity and enhance habitat diversity.

    Bovee, K. D. 1982.A Guide to Stream Habitat Analysis Using the Instream Flow Incremental Methodology. Washington, D.C.: Western Energy and Land Use Team, U.S. Department of the Interior.

    Bovee, K. D., Lamb, B. L., Bartholow, J. M., Stalnaker, C. B., Taylor, J., and Henriksen, J. 1998.Stream Habitat Analysis Using the Instream Flow Incremental Methodolgy. Fort Collins: USGS Biological Resources Division.

    Bovee, K. D., Newcomb, T. J., and Coon, T. G. 1994.Relations Between Habitat Variability and Population Dynamics of Bass in the Huron River,Michigan. Washington, D.C.: U.S. Department of the Interior, National Biological Survey.

    Crowder, D. W., and Diplas, P. 2000. Using two-dimentional hydrodynamic models at scales of ecological importance. Journal of Hydrology, 230(3-4), 172-191. [doi:10.1016/S0022-1694(00)00177-3]

    Garcia, de J. D. 1995. Management of physical habitat for fish stocks. Harper, D. M., and Ferguson, A. J. D., eds.,The Ecological Basis for River Management, 363-374. Chichester: John Wiley & Sons.

    Garcia, de J. D., and Gortazar, J. 2006. Evaluation of instream habitat enhancement options using fish habitat simulations: Case-studies in the river Pas (Spain).Aquatic Ecology, 41(3), 461-474. [doi:10.1007/ S10452-0006-9030-x]

    Harremoes, P., Napstjert, L., Rye, C., Larsen, H. O., and Dahl, A. 1996. Impact of rain runoff on oxygen in an urban river.Water Science and Technology, 34(12), 41-48. [doi:10.1016/S0273-1223(96)00852-9]

    Im, D., Kang, H., Kim, K. H., and Choi, S. U. 2011. Changes of river morphology and physical fish habitat following weir removal.Ecological Engineering, 37(6), 883-892. [doi:10.1016/j.ecoleng.2011.01.005]

    Jowett, I. G. 1992. Models of the abundance of large brown trout in New Zealand rivers.North American Journal of Fisheries Management, 12(3), 417-432. [doi:10.1577/1548-8675(1992)]

    Kim, K. H. 1999.Evaluation of Habitat Conditions and Estimation of Optimum Flow for the Freshwater Fish. Ph. D. Dissertation. Seoul: Yonsei University. (in Korean)

    Konrad, C. P. 2009. Simulating the recovery of suspended sediment transport and river-bed stability in response to dam removal on the Elwha River, Washington.Ecological Engineering, 35(7), 1104-1115. [doi:10.1016/j.ecoleng.2009.03.18]

    Lee, J. H., Kil, J. T., and Jeong, S. 2010. Evaluation of physical fish habitat quality enhancement designs in urban streams using a 2D hydrodynamic model.Ecological Engineering, 36(10), 1251-1259. [doi:10. 1016/j.ecoleng.2010.05.004]

    Mouton, A. M., Schneider, M., Depestele, J., Goethals, P. L. M., and Pauw, N. D. 2007. Fish habitat modelling as a tool for river management.Ecological Engineering, 29(3), 305-315. [doi:10.1016/j.ecoleng. 2006.11.002]

    Nagaya, T., Shiraishi, Y., Onitsuka, K., Higashino, M., Takami, T., Otsuka, N., Akiyama, J., and Ozeki, H. 2008. Evaluation of suitable hydraulic conditions for spawning of ayu with horizontal 2D numerical simulation and PHABSIM.Ecological Modeling, 215(1-3), 133-143. [doi:10.1016/j.ecolmodel. 2008.02.043]

    Nehring, R. B., and Anderson, R. M. 1993. Determination of population-limiting critical salmonid habitats in Colorado streams using IFIM/PHABSIM.Rivers, 4(1), 1-19.

    Nolan, P. A., and Guthrie, N. 1998. River rehabilitation in an urban environment: Examples from the Mersey Basin, North West England.Aquatic Conservation: Marine and Freshwater Ecosystems, 8(5), 685-700.[doi:10.1002/(SICI)1099-0755(199809/10)8:5<685::AID-AQC308>3.0.CO;2-9]

    Railsback, S. F., Blackett, R. F., and Pottinger, N. D. 1993. Evaluation of the fisheries impact assessment and monitoring program for the Terror Lake hydroelectric project.Rivers, 4(4), 312-327.

    Reice, S. R., Wissmar, R. C., and Naiman, R. J. 1990. Disturbance regimes, resilience, and recovery of animal communities and habitats in lotic ecosystems.Environmental Management, 14(5), 647-659. [doi:10. 1007/BF02394715]

    Steffler, P., and Blackburn, J. 2002.River2D, Two-dimensional Depth Averaged Model of River Hydrodynamics and Fish Habitat, Introduction to Depth Averaged Modeling and User’s Manual. Edmonton: University of Alberta.

    Sung, Y. D., Park, B. J., Joo, G. J., and Jung, K. S. 2005. The estimation of ecological flow recommendations for fish habitat.Journal of Korea Water Resources Association, 38(7), 545-554. (in Korean)

    Waddle, T. J. 2001. PHABSIM for Windows: User’s Manual and Exercises. Fort Collins: U.S. Geological Survey.

    White, R. J., and Brynildson, O. M. 1967.Guidelines for Management of Trout Stream Habitat in Wisconsin. Madison: Department of Natural Resources.

    *Corresponding author (e-mail:hskang@kei.re.kr)

    Received Feb. 24, 2011; accepted Sep. 9, 2011

    非洲黑人性xxxx精品又粗又长| 欧美成人a在线观看| 18禁黄网站禁片免费观看直播| 精品人妻偷拍中文字幕| 永久网站在线| 日本黄色视频三级网站网址| 成人永久免费在线观看视频| 日韩大尺度精品在线看网址| 老司机福利观看| bbb黄色大片| 91在线精品国自产拍蜜月| 草草在线视频免费看| 不卡一级毛片| 成人高潮视频无遮挡免费网站| 亚洲男人的天堂狠狠| 禁无遮挡网站| 制服丝袜大香蕉在线| 最新中文字幕久久久久| 白带黄色成豆腐渣| 在线播放国产精品三级| 给我免费播放毛片高清在线观看| 亚洲av日韩精品久久久久久密| 国产一区二区三区av在线 | 久久久色成人| 俄罗斯特黄特色一大片| 日韩欧美一区二区三区在线观看| 亚洲人成网站在线播放欧美日韩| 99精品在免费线老司机午夜| x7x7x7水蜜桃| a在线观看视频网站| 精品久久国产蜜桃| 国产精品亚洲美女久久久| 99精品在免费线老司机午夜| 国产成人av教育| 午夜免费激情av| 制服丝袜大香蕉在线| 精品一区二区免费观看| 精品人妻偷拍中文字幕| 国内精品一区二区在线观看| 乱码一卡2卡4卡精品| 国产中年淑女户外野战色| 欧美xxxx黑人xx丫x性爽| 床上黄色一级片| 他把我摸到了高潮在线观看| 此物有八面人人有两片| 欧美日韩国产亚洲二区| 99热这里只有精品一区| 69av精品久久久久久| 丰满人妻一区二区三区视频av| 麻豆久久精品国产亚洲av| 亚洲,欧美,日韩| 天堂网av新在线| 国产久久久一区二区三区| 国产真实乱freesex| 国产精品女同一区二区软件 | 国产精品爽爽va在线观看网站| 深夜a级毛片| 精品人妻偷拍中文字幕| 内射极品少妇av片p| 淫妇啪啪啪对白视频| 亚洲不卡免费看| x7x7x7水蜜桃| 简卡轻食公司| 性色avwww在线观看| 制服丝袜大香蕉在线| 在线免费观看的www视频| 国产 一区精品| 成人国产一区最新在线观看| 波野结衣二区三区在线| 级片在线观看| 欧洲精品卡2卡3卡4卡5卡区| 人妻少妇偷人精品九色| 91久久精品国产一区二区成人| 五月玫瑰六月丁香| 色综合亚洲欧美另类图片| 国产女主播在线喷水免费视频网站 | 国产精品一区二区三区四区免费观看 | 女同久久另类99精品国产91| 在线国产一区二区在线| 久久精品国产亚洲av天美| bbb黄色大片| 亚洲国产色片| 一本一本综合久久| 色精品久久人妻99蜜桃| 日韩强制内射视频| 十八禁网站免费在线| 国内精品美女久久久久久| 女的被弄到高潮叫床怎么办 | 久久99热6这里只有精品| 毛片一级片免费看久久久久 | 香蕉av资源在线| 国产一区二区在线观看日韩| 国产爱豆传媒在线观看| av.在线天堂| 一个人看视频在线观看www免费| 看片在线看免费视频| 免费黄网站久久成人精品| 国产日本99.免费观看| 午夜免费激情av| 日本一二三区视频观看| 欧美性感艳星| 最近视频中文字幕2019在线8| 免费电影在线观看免费观看| 色在线成人网| 欧美日本亚洲视频在线播放| 日韩欧美精品v在线| 国产高清激情床上av| 亚州av有码| 最近中文字幕高清免费大全6 | 蜜桃亚洲精品一区二区三区| 亚洲av电影不卡..在线观看| 级片在线观看| 日韩在线高清观看一区二区三区 | 国产精品嫩草影院av在线观看 | 天堂av国产一区二区熟女人妻| 中国美白少妇内射xxxbb| 成人高潮视频无遮挡免费网站| 亚洲经典国产精华液单| 成人特级黄色片久久久久久久| 成人国产一区最新在线观看| 亚洲精品成人久久久久久| 国产91精品成人一区二区三区| 天堂√8在线中文| 一级毛片久久久久久久久女| 亚洲黑人精品在线| 国产精品美女特级片免费视频播放器| 免费黄网站久久成人精品| 免费观看精品视频网站| 在线播放无遮挡| 国产熟女欧美一区二区| 波多野结衣高清无吗| 国产一区二区在线观看日韩| 国产精品国产三级国产av玫瑰| 国产精品三级大全| 夜夜爽天天搞| 狂野欧美白嫩少妇大欣赏| 欧美成人免费av一区二区三区| av在线老鸭窝| 久久久久国产精品人妻aⅴ院| 国产视频一区二区在线看| 国产精品久久久久久亚洲av鲁大| 日韩中字成人| 国产一区二区在线av高清观看| 制服丝袜大香蕉在线| 日本一二三区视频观看| 亚洲成a人片在线一区二区| 日本在线视频免费播放| 欧美最黄视频在线播放免费| 搞女人的毛片| 国产免费一级a男人的天堂| 午夜福利18| 国产一区二区在线av高清观看| 一级毛片久久久久久久久女| 欧美黑人巨大hd| 18禁黄网站禁片午夜丰满| 蜜桃久久精品国产亚洲av| 国产淫片久久久久久久久| xxxwww97欧美| 国产麻豆成人av免费视频| 午夜福利成人在线免费观看| 午夜精品一区二区三区免费看| 欧美日韩国产亚洲二区| 夜夜看夜夜爽夜夜摸| 欧美日本亚洲视频在线播放| 91麻豆精品激情在线观看国产| 中文字幕熟女人妻在线| 男女视频在线观看网站免费| 别揉我奶头~嗯~啊~动态视频| 亚洲欧美精品综合久久99| av在线老鸭窝| av福利片在线观看| 亚洲成人中文字幕在线播放| 天堂动漫精品| 日韩欧美精品免费久久| 桃色一区二区三区在线观看| 亚洲第一电影网av| 少妇熟女aⅴ在线视频| 亚洲第一区二区三区不卡| 精品久久久久久,| 亚洲熟妇熟女久久| 性色avwww在线观看| 女人被狂操c到高潮| 最近最新中文字幕大全电影3| 亚洲成av人片在线播放无| 国产av在哪里看| 在线免费观看的www视频| 一夜夜www| 51国产日韩欧美| 人妻丰满熟妇av一区二区三区| 内射极品少妇av片p| 一区二区三区高清视频在线| 成人国产麻豆网| 俄罗斯特黄特色一大片| 一本一本综合久久| av黄色大香蕉| 老熟妇乱子伦视频在线观看| 欧美+亚洲+日韩+国产| 日韩欧美一区二区三区在线观看| 俄罗斯特黄特色一大片| 欧美色视频一区免费| 精品日产1卡2卡| 尾随美女入室| 日韩人妻高清精品专区| 丰满的人妻完整版| 一个人观看的视频www高清免费观看| 能在线免费观看的黄片| 成熟少妇高潮喷水视频| 99热这里只有是精品50| 欧美日本视频| 欧美最新免费一区二区三区| 午夜福利在线在线| 少妇的逼好多水| 美女cb高潮喷水在线观看| 乱系列少妇在线播放| 内地一区二区视频在线| 可以在线观看毛片的网站| 女同久久另类99精品国产91| 国产 一区精品| 欧美一区二区亚洲| 午夜激情福利司机影院| 精品一区二区三区av网在线观看| 欧美精品啪啪一区二区三区| 久久久午夜欧美精品| 天堂动漫精品| 国内精品久久久久久久电影| 国产精品永久免费网站| 搡老熟女国产l中国老女人| 日韩中文字幕欧美一区二区| 日本五十路高清| АⅤ资源中文在线天堂| 91久久精品国产一区二区成人| 狂野欧美白嫩少妇大欣赏| 亚洲avbb在线观看| 精品久久久噜噜| 国产精品亚洲一级av第二区| 91午夜精品亚洲一区二区三区 | 女人被狂操c到高潮| 联通29元200g的流量卡| 国产精品国产高清国产av| 男人舔奶头视频| 长腿黑丝高跟| 免费观看的影片在线观看| 在线播放国产精品三级| 成人国产综合亚洲| 男人舔女人下体高潮全视频| 超碰av人人做人人爽久久| 亚洲成人久久爱视频| 欧美一级a爱片免费观看看| 女同久久另类99精品国产91| 国产不卡一卡二| 女人十人毛片免费观看3o分钟| 国产69精品久久久久777片| 午夜视频国产福利| 欧美日韩黄片免| 国产成年人精品一区二区| а√天堂www在线а√下载| 日本欧美国产在线视频| 亚洲精品456在线播放app | 天堂动漫精品| 午夜老司机福利剧场| 好男人在线观看高清免费视频| 亚洲一区高清亚洲精品| 淫妇啪啪啪对白视频| 亚洲精品一卡2卡三卡4卡5卡| 波多野结衣高清无吗| 波多野结衣高清作品| 免费人成视频x8x8入口观看| 少妇人妻精品综合一区二区 | 在线观看av片永久免费下载| 99久久精品热视频| 毛片一级片免费看久久久久 | 欧美绝顶高潮抽搐喷水| 亚洲成人久久性| 精品乱码久久久久久99久播| 日韩av在线大香蕉| 91麻豆av在线| 国产成人一区二区在线| 麻豆久久精品国产亚洲av| 免费av毛片视频| 亚洲五月天丁香| 99久久成人亚洲精品观看| 国产探花极品一区二区| 精品人妻1区二区| 欧美一区二区亚洲| 啦啦啦啦在线视频资源| 午夜免费男女啪啪视频观看 | 国产一区二区三区视频了| 日本 av在线| 国产精品久久视频播放| 亚洲av不卡在线观看| 日日摸夜夜添夜夜添av毛片 | 在线免费观看不下载黄p国产 | 久久精品综合一区二区三区| 精品欧美国产一区二区三| 啦啦啦观看免费观看视频高清| 欧美日韩黄片免| 有码 亚洲区| 久久99热6这里只有精品| 欧美人与善性xxx| 国内揄拍国产精品人妻在线| 啪啪无遮挡十八禁网站| 蜜桃久久精品国产亚洲av| 伦理电影大哥的女人| 久久精品久久久久久噜噜老黄 | 日本黄色片子视频| 熟妇人妻久久中文字幕3abv| av天堂在线播放| 18禁在线播放成人免费| 狂野欧美白嫩少妇大欣赏| 免费人成在线观看视频色| av.在线天堂| 精品久久久久久久久av| 一本一本综合久久| 国产欧美日韩精品一区二区| av在线蜜桃| 久久久久久大精品| 美女高潮的动态| 免费看光身美女| 男女下面进入的视频免费午夜| 成人午夜高清在线视频| 国产精品久久久久久久久免| 一个人看视频在线观看www免费| 村上凉子中文字幕在线| 亚洲性夜色夜夜综合| 少妇人妻精品综合一区二区 | 久久99热这里只有精品18| 久久亚洲真实| 九色国产91popny在线| 国产精品亚洲一级av第二区| 国产精品久久久久久精品电影| 日韩av在线大香蕉| 老师上课跳d突然被开到最大视频| 精品福利观看| 色吧在线观看| 久久久国产成人免费| 窝窝影院91人妻| 色在线成人网| 亚洲五月天丁香| 亚洲在线自拍视频| 两个人的视频大全免费| 日韩中字成人| 狠狠狠狠99中文字幕| 成人av在线播放网站| 国产成人a区在线观看| 亚洲一区二区三区色噜噜| 国产蜜桃级精品一区二区三区| 久久久久国内视频| 成人综合一区亚洲| av中文乱码字幕在线| 欧美一区二区亚洲| 亚洲不卡免费看| 不卡一级毛片| 乱人视频在线观看| 亚洲男人的天堂狠狠| 精品福利观看| 国产男人的电影天堂91| 午夜精品久久久久久毛片777| 99久久精品一区二区三区| 91午夜精品亚洲一区二区三区 | 国产在线男女| 国内揄拍国产精品人妻在线| 色精品久久人妻99蜜桃| 亚洲天堂国产精品一区在线| 亚洲中文字幕日韩| a级毛片a级免费在线| 亚洲欧美激情综合另类| 亚洲性久久影院| 久久久久久伊人网av| 亚洲最大成人手机在线| 99精品在免费线老司机午夜| 久久精品人妻少妇| 日本a在线网址| 一本精品99久久精品77| 1000部很黄的大片| 观看美女的网站| 老女人水多毛片| 久久久午夜欧美精品| 亚洲av一区综合| 中文字幕人妻熟人妻熟丝袜美| 日本成人三级电影网站| 国产成年人精品一区二区| 成人av在线播放网站| 免费av观看视频| 男人舔女人下体高潮全视频| 欧美xxxx黑人xx丫x性爽| 精品一区二区三区av网在线观看| 成人毛片a级毛片在线播放| 琪琪午夜伦伦电影理论片6080| 国产亚洲欧美98| 国产亚洲精品久久久久久毛片| 欧美精品国产亚洲| 又爽又黄无遮挡网站| 亚洲av二区三区四区| 亚洲av美国av| aaaaa片日本免费| 在线观看免费视频日本深夜| 天堂动漫精品| 男人狂女人下面高潮的视频| 看十八女毛片水多多多| 深夜a级毛片| 国内毛片毛片毛片毛片毛片| 国产精品伦人一区二区| 黄色欧美视频在线观看| 999久久久精品免费观看国产| 久久久久久大精品| 亚洲图色成人| 此物有八面人人有两片| 欧美成人性av电影在线观看| 精品久久久久久久久久久久久| 亚洲成人久久性| 久久久久久久精品吃奶| 国产又黄又爽又无遮挡在线| 国产爱豆传媒在线观看| 日本免费a在线| 国产高清三级在线| 亚洲精品日韩av片在线观看| 国模一区二区三区四区视频| 美女被艹到高潮喷水动态| 国产精品无大码| 亚洲欧美日韩高清专用| 18+在线观看网站| 久久久成人免费电影| 久久久色成人| 国内精品一区二区在线观看| 精品乱码久久久久久99久播| 狂野欧美白嫩少妇大欣赏| 看免费成人av毛片| 女生性感内裤真人,穿戴方法视频| 欧美3d第一页| 国产极品精品免费视频能看的| 国产一区二区亚洲精品在线观看| 两人在一起打扑克的视频| 色综合色国产| 成年女人永久免费观看视频| 女人被狂操c到高潮| 国产视频一区二区在线看| 国产一区二区在线av高清观看| 国产精品伦人一区二区| 日韩中文字幕欧美一区二区| 国产一区二区三区在线臀色熟女| 人妻久久中文字幕网| 久久精品91蜜桃| 亚洲av熟女| 赤兔流量卡办理| 国产精品,欧美在线| 在线看三级毛片| 不卡一级毛片| 啪啪无遮挡十八禁网站| 免费人成在线观看视频色| 亚洲精品日韩av片在线观看| 午夜福利视频1000在线观看| 亚洲午夜理论影院| 久久久久久久久久黄片| 最新在线观看一区二区三区| av福利片在线观看| 我要搜黄色片| 日日摸夜夜添夜夜添小说| 国产不卡一卡二| 在线看三级毛片| 国产精品一区二区性色av| 校园人妻丝袜中文字幕| 乱码一卡2卡4卡精品| 日本与韩国留学比较| 桃红色精品国产亚洲av| 91狼人影院| 国产国拍精品亚洲av在线观看| 国产伦在线观看视频一区| 热99在线观看视频| 日韩 亚洲 欧美在线| 色综合色国产| 18禁在线播放成人免费| 99热这里只有精品一区| av天堂中文字幕网| 嫩草影院新地址| 色综合婷婷激情| 亚洲国产欧洲综合997久久,| 老司机午夜福利在线观看视频| 黄色配什么色好看| 我要看日韩黄色一级片| 在线播放国产精品三级| 国产精品久久久久久亚洲av鲁大| 欧美xxxx黑人xx丫x性爽| netflix在线观看网站| 亚洲中文字幕一区二区三区有码在线看| or卡值多少钱| 99热这里只有精品一区| 熟女电影av网| 免费人成视频x8x8入口观看| 亚洲中文日韩欧美视频| 香蕉av资源在线| 欧美另类亚洲清纯唯美| 精品人妻偷拍中文字幕| 中国美女看黄片| 黄色一级大片看看| 一级毛片久久久久久久久女| 亚洲在线自拍视频| 他把我摸到了高潮在线观看| 久久99热6这里只有精品| 精品一区二区三区视频在线观看免费| 亚洲aⅴ乱码一区二区在线播放| 国产伦精品一区二区三区四那| 久久精品国产亚洲av香蕉五月| 无人区码免费观看不卡| 在线天堂最新版资源| 超碰av人人做人人爽久久| 九色国产91popny在线| 亚洲真实伦在线观看| 欧美成人a在线观看| 免费一级毛片在线播放高清视频| 久久精品夜夜夜夜夜久久蜜豆| x7x7x7水蜜桃| 亚洲 国产 在线| 在线免费十八禁| 国内精品美女久久久久久| 亚洲黑人精品在线| 看免费成人av毛片| 免费看美女性在线毛片视频| 精品久久久久久久久久久久久| 亚洲成人中文字幕在线播放| 久久久国产成人免费| 在线a可以看的网站| 久久6这里有精品| 色综合色国产| 69av精品久久久久久| 欧美日韩国产亚洲二区| 色综合站精品国产| 免费一级毛片在线播放高清视频| 97超视频在线观看视频| 精品人妻一区二区三区麻豆 | 老熟妇仑乱视频hdxx| 免费观看的影片在线观看| 又紧又爽又黄一区二区| 欧美在线一区亚洲| 国语自产精品视频在线第100页| 欧美性感艳星| 国产午夜精品论理片| 丰满乱子伦码专区| 小蜜桃在线观看免费完整版高清| 国产精品免费一区二区三区在线| 欧美成人免费av一区二区三区| 亚洲精品亚洲一区二区| 精品一区二区三区视频在线| 日本成人三级电影网站| 岛国在线免费视频观看| 亚洲性久久影院| 日韩欧美免费精品| 91狼人影院| 欧美日韩乱码在线| 欧美人与善性xxx| 日本免费a在线| 欧美激情国产日韩精品一区| 久久久久久大精品| 免费av观看视频| 久久久精品欧美日韩精品| 久久草成人影院| 亚洲一区二区三区色噜噜| 亚洲精品久久国产高清桃花| 欧美最黄视频在线播放免费| 2021天堂中文幕一二区在线观| 一进一出抽搐动态| 此物有八面人人有两片| 国产人妻一区二区三区在| 夜夜看夜夜爽夜夜摸| 国产精品久久久久久av不卡| 黄色一级大片看看| www.www免费av| 国产女主播在线喷水免费视频网站 | 夜夜看夜夜爽夜夜摸| 97热精品久久久久久| 国产高清不卡午夜福利| 亚洲精品久久国产高清桃花| 小说图片视频综合网站| 亚洲精品久久国产高清桃花| 欧美区成人在线视频| 国产成人影院久久av| 亚洲国产高清在线一区二区三| 亚洲最大成人手机在线| 不卡一级毛片| 熟女人妻精品中文字幕| 国产精品一区二区性色av| 国产精华一区二区三区| 麻豆成人av在线观看| 欧美黑人巨大hd| 在线a可以看的网站| 在线观看午夜福利视频| 国产精品98久久久久久宅男小说| 岛国在线免费视频观看| 国产免费男女视频| 欧美在线一区亚洲| .国产精品久久| 日本一二三区视频观看| 中文亚洲av片在线观看爽| 精品久久久久久久末码| 国产黄片美女视频| 97热精品久久久久久| 三级男女做爰猛烈吃奶摸视频| 毛片一级片免费看久久久久 | 一区福利在线观看| 亚洲第一电影网av| 亚洲精品色激情综合| 又黄又爽又刺激的免费视频.| 99久久中文字幕三级久久日本| 久久久久精品国产欧美久久久| 久久99热这里只有精品18| 别揉我奶头 嗯啊视频| 久久精品国产亚洲av香蕉五月| 欧美高清性xxxxhd video| 欧美日韩精品成人综合77777| 99久国产av精品| 国产一区二区在线观看日韩| 极品教师在线视频| 丰满的人妻完整版| av在线老鸭窝| 国产一区二区亚洲精品在线观看| 欧美最黄视频在线播放免费|