• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Large eddy simulation of water flow over series of dunes

    2011-08-16 09:02:29JunLULinglingWANGHaiZHUHuichaoDAI
    Water Science and Engineering 2011年4期

    Jun LU, Ling-ling WANG* Hai ZHU Hui-chao DAI

    1. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, P. R. China

    2. Zhangjiagang Water Conservancy Bureau, Zhangjiagang 215600, P. R. China

    Large eddy simulation of water flow over series of dunes

    Jun LU1,2, Ling-ling WANG*1, Hai ZHU1, Hui-chao DAI1

    1. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, P. R. China

    2. Zhangjiagang Water Conservancy Bureau, Zhangjiagang 215600, P. R. China

    Large eddy simulation was used to investigate the spatial development of open channel flow over a series of dunes. The three-dimensional filtered Navier-Stokes (N-S) equations were numerically solved with the fractional-step method in sigma coordinates. The subgrid-scale turbulent stress was modeled with a dynamic coherent eddy viscosity model proposed by the authors. The computed velocity profiles are in good agreement with the available experimental results. The mean velocity and the turbulent Reynolds stress affected by a series of dune-shaped structures were compared and analyzed. The variation of turbulence statistics along the flow direction affected by the wavy bottom roughness has been studied. The turbulent boundary layer in a complex geographic environment can be simulated well with the proposed large eddy simulation (LES) model.

    large eddy simulation (LES); dunes; turbulent boundary layer; flow separation

    1 Introduction

    In sandy rivers, dunes and ripples are the most common river bed structures. Flow separation and recirculation are enhanced because of the presence of dunes in river beds, which alter the overall flow resistance and, consequently, affect the transport of sediment and contaminants within the river. Flow separation begins at the dune crest. On the lee side of dunes, there exists a series of recirculation eddies, and on the opposite stoss side, that is, on the upstream of the crest, the flow reattaches (Fourniostis et al. 2009).

    The turbulent open channel flow over a river bottom with dunes has been experimentally and numerically studied under the assumption of a fixed bed without sediment movement. Lyn (1993) reported experimental research on the mean flow and turbulent characteristics over artificial space-periodic one-dimensional river bed structures using a laser Doppler velocimetry (LDV). Wiberg and Nelson (1992) conducted experiments under unidirectional flow over much smaller asymmetric and symmetric riverbed structures, including high-angle and low-angle ripples. Similar experiments have been carried out by many other researchers such as Nelson and Smith (1993) and Ojha and Mazumder (2008). Recently, numerical studieson the developing turbulent flow using a solution of the Reynolds-averaged Navier-Stokes equations (RANS) have been carried out by researchers (Huai et al. 2010; Peric et al. 1988). For example, Huai et al. (2010) used the realizablek-εmodel to simulate the buoyant wall jet, and Peric et al. (1988) numerically simulated theflow over a typical dune using thek-εturbulence model. The influence of sand grain roughness was taken into account with the wall function approach. Comparisons with experiments show that the computed separated and reattached flow over a dune is in good agreement with the experimental data. Similar studies were reported by Mendoza and Shen (1990), who presented an algebraic-stress model with wall functions in place of thek-εmodel. They were able to obtain quite realistic predictions of detailed pressure, velocity, and turbulence profiles. Johns et al. (1993) employed the one-equation turbulence model, with the turbulence model length scale prescribed from an empirical correlation. The comparisons show that the near-wall velocity and turbulence data, particularly the wall shear stress, are not in good agreement with experimental data. Yoon et al. (1995) simulated the flow over a fixed dune using thek-ωturbulence model of Wilcox (1993). Comparisons of model prediction results with measured velocity and turbulence fields, as well as the pressure and friction distributions along the dune, show good agreement. Lu and Wang (2009) compared three differentk-εmodels, the standardk-εmodel, the renormalization group (RNG) model, and the V2F model, for simulating the separated flow passing sills. The results show that, of the three models, the performance of the V2F model is the most encouraging. The commercial computational fluid dynamics (CFD) code FLUENT was employed by Fourniostis et al. (2009) to simulate sub-critical, turbulent, and open-channel flows over a bottom with five dunes using the free surface treatment method based on the rigid-lid approximation. They reported that the numerical prediction results of the mean velocity and turbulence are in good agreement with available experimental data.

    Although the RANS model can provide satisfying prediction results of flow features over dune s, it cannot calculate the power spectrum of hydrodynamic turbulence, which is very important for turbulence research and a rather interesting parameter for some specific engineering applications and refined turbulence structures. In recent years, large eddy simulation (LES) has been used to study hydrodynamic turbulence. For example, the separated flow passing sills have been studied by Lu and Wang (2008). The computed results show that LES is very powerful and encouraging. Therefore, it is possible to use the LES technique to obtain a detailed numerical simulation of open channel flow over a series of dunes.

    2 Governing equations and numerical methods

    2.1 Governing equations inσcoordinates and turbul ence model

    The LES approach inσcoordinates was used by Lin and Li (2002). The equatio ns for the large-scale motion can be obtained by integrating a spatial filter with the Navier-Stokes equations (indicated by an over-bar). With a top-hat filter based on the Boussinesq assumptionand the principle of chain differentiation, the governing equations for the incompressible fluid in general coordinates can be written as

    wheretis time,ξkandξlare the coordinate directions in the transformed space,is the Cartesian coordinate,J-1is the Jacobin factor of the transformation,uiis the Cartesian component of the velocity field,fiis the gravitational force,ρis thewater density,pis the static pressure,νis the kinematic viscosity, andis the subgrid stress.

    In natural open chan nel flow, the free surface elevation varies with time and the bottom is unev en. These cause certain difficulties when conventional Cartesian coordinates are used in the discretization of the domain in the vertical direction. To solve the uneven physical domain, the verticalσ-coordinate transformation is used as follows:

    whereηis the surface elevation,zis the vertical direction in Cartesian coordinates, andhis thestatic water depth. The sub grid stresscan be decomposed into the sum of a tra ce-free factorand a diagonal tensor:

    whereis absorbed in the pressure term andδijis the Kronecker sign. In this study, we modeled t he eddy viscosityνtwith the coherent eddy model (Lu and Wang 2009):

    The coefficientCsis computed by a dynamic procedure. The initial dynamic constant,Cl,is calculated as follows (Germano et al. 1991; Lilly 1992):

    where the test filter width, and the coefficientcan be optimized. The coefficientk′is taken to be, andαis taken to be 0.5.can exhibit long-time negative values which will generate numerical instability. To solve this problem, we first calculated the value ofwith the coherent eddy model proposed by Lu et al. (2010), and then filtered it in space with a box filter as follows:

    whereG(x-ξ) is a smooth function andCl(x,t) is the dynamic constant calculated by Eq. (8). Although the smooth function can be in many forms, a box filter function was used for convenience in this study. Therefore, Eq. (11) can be written as

    In fact, we can repeat the averaging procedure above to make the model coefficient smoother. In addition, the conditionνt+ν≥0 was imposed. This condition ensured that the total resolved dissipation remained positive or at zero.

    2.2 Numerical methods and boundary conditions

    The splitting operator approach was used to numerically solve the governing equations. The momentum equations were split into three steps in each time interval: advection, diffusion, and pressure propagation. The advection step was solved using a combination of the quadratic backward characteristic method and the Lax-Wendroff method. The central difference method was used to solve the diffusion step. The pressure propagation step was used to solve pressure and gravitational forces. In order to satisfy the divergence-free condition as imposed by the continuity equation, the projection method was employed to calculate the pressure and velocity fields to obtain the updated velocity field. The conjugate gradient stabilized (CGSTAB) method was used to solve the above equations.

    The governing equations may be solved only when adequate boundary conditions are provided. Several types of boundary conditions are usually imposed in open channel flow problems. The no-slip boundary condition is imposed on the bottom wall and a zero gradient boundary condition is imposed on the two side walls. At the inflow boundary, the inflow rate with a predetermined velocity distribution with added Gaussian distribution random signals is specified and the gradient of the water surface elevation is assumed to be zero. At the outflow boundary, a convective boundary condition is imposed. A Lagrange-Euler method is used to locate the free surface elevation. Details of these boundary conditions can be found in Lin and Li (2002), Li and Ma (2003), and Lu and Wang (2009).

    3 Study case

    Fig. 1 is a typical domain of open channel flow over a series of twelve identical dunes. The numbers and shape of the dunes shown here correspond to those used in the experiments of Ojha and Mazumder (2008). The experimental channel has a length of 10 m, a width of 0.5 m, and a depth of 0.5 m. The dunes have a mean length ofL= 32 cm and a mean height ofHd=3cm at the crest The angles of the stoss side and lee side slopes of the dunes were 6° and 50°, respectively (Fig. 1). Velocity profiles were measured by an acoustic Doppler velocimeter (ADV). The mean flow depthhis 30 cm, the mean horizontal velocityUis 0.5 m/s, and the dischargeQis 0.04 m3/s. The corresponding Reynolds number is=1.5× 105and the Froude number is.

    Fig. 1 Sketch of computed domain and dune profiles of Ojha and Mazumder (2008)

    The simulation domain was carefully chosen in order to properly set up the inflow and outflow boundaries. To ensure that the inlet flow fully developed, the length of the main channel upstream of the first dune was extended to 0.5 m. The length of the main channel downstream of the last dune was also extended to 0.5 m to avoid the influence caused by the downstream outflow. A non-uniform grid of 451 × 11 × 45 nodes in thex,y, andzdirections, respectively, was used to discretize the computational domain (5 m long, 0.1 m wide, and 0.3 m deep). The expansion ratio of the grid did not exceed 1.01. The time step was 0.000 2 s. The grid and time step were small enough to obtain grid-convergent results. The total computing time was 40 s.

    4 Results and discussion

    Fig. 2 shows the computed horizontal mean velocity profiles at the trough and crest points, respectively, of each dune. Corresponding profiles of the vertical mean velocity are shown in Fig. 3. In the figures, odd and even numbers inside circles represent the positions of velocity profiles at the trough and crest points, respectively (Fig. 1). From Fig. 2 and Fig. 3, it can be seen that the computed velocity results agree well with the experimental data. The most evident feature is that the horizontal mean velocity near the trough points is negative except at the trough of the first dune, which means that reversal flow exists at the trough points. Thecomputed results clearly show that the turbulent boundary layer is developing from the first dune to the seventh dune and it reaches a quasi-steady state after the seventh dune.

    Fig. 2 Horizontal velocityUover dunes (dashed lines are whereU= 0)

    Fig. 3 Vertical velocityWover dunes (dashed lines are whereW= 0)

    To keep the figure readable, the velocity field of two adjacent dunes is shown as in Fig. 4. As can be seen, the spatial development of the turbulent open channel flow over the dunes has the characteristic that the flow separates at the dune crest and reattaches on the stoss side of the next dune. A similar phenomenon was shown by Fourniostis et al. (2009) in their computed results of five dunes. In Fig. 5, a closer view of the velocity vector between the ninth and tenth dunes in the fully developed region is shown to provide a better view of the flow field over a complete trough region. The figure contains both the experimental and corresponding computational velocity vector fields. Agreement is seen to be good within the recirculation zone. According to the flow pattern, three distinct layers are observed: (1) the internal layer at, where the mean horizontal velocity always stays negative; (2) the advecting and diffusing layer at, where the mean streamwise velocity becomes positive but is still much smaller than that in turbulent channel flow without dunes at the same position; and (3) the outer flow layer at, where the mean streamwise velocity is almost the same as in turbulent channel flow with a flat bottom (Ojha and Mazumder 2008).

    Fig. 4 Computed velocity field

    Fig. 5 Velocity field between ninth and tenth dunes

    Fig. 6 shows the spatial development of the Reynolds stressalong the flow over dunes. From Fig. 6, it can be seen that the flow characteristics vary up to the seventh dune, beyond which the entrance effect disappears. That is to say, the turbulence fully develops, because the increment of Reynolds stress intensity (the thickness in Fig. 6) grows much smaller after the seventh dune. Again, this is in qualitative agreement with the experimental observations.

    The reattachment point is determined as the location closest to the bottom at which the mean velocity changes sign. The predicted values at each reattachment point are shown in Fig. 7. From Fig. 7, it can be seen that the first two computed reattachment lengths are much larger than the remaining values. Flow reaches the fully developed state after the seventh dune, which is in agreement with the result mentioned above. The predicted reattachment length is=6.0 at the quasi-steady state (as shown in Fig. 5), which is a little larger than the experimental value of 5.8 (Fourniostis et al. 2009), whereXris the reattachment length. Kasagi and Matsunaga (1995) conducted an experiment of the flow over a backward-facing step with a Reynolds number of 5 540, giving a value of 6.5. With the increasing of the Reynolds number in the range of 1200

    Fig. 6 Distribution of Reynolds shear stress

    Fig. 7 Reattachment length at each dune

    The free surface plays a significant role in the open channel over dunes. The normalized free surface level () over dunes is shown in Fig. 8. From the figure, it can be seen that the average water level rises before the first dune because the existence of the dunes increases the roughness of the channel bottom. In the middle of the channel, free surface elevation fluctuates in accordance with the distribution of dunes on the bottom. The average water level is low due to the reduction of the cross-section area. Near the outflow region where dunes disappear, the free surface tends to increase just like the outlet of a sluice.

    Fig. 8 Free surface elevation over dunes

    In order to analyze the head loss caused by dunes, the energy equation of the cross-section between the inflow and outflow boundaries can be expressed as

    whereZinis the inflow water elevation;Zoutis the outflow water elevation;αinandαoutare coefficients, whereαin=1 andαout=1;PinandPoutare the dynamic water pressures at the inlet and outlet positions, respectively;UinandUoutare the mean stream-wise velocities at the inlet and outlet positions, respectively;gis the gravitational acceleration; andhwis the water head loss.

    From Eq. (13), we find that the head loss between the inflow and outflow sections is about 0.014 m.

    5 Conclusions

    Large eddy simulation of open channel flow over a series of dunes in the sigma coordinates were carried out. The subgrid stress was modeled with the dynamic coherent eddymodel proposed by the authors. The computed velocity profiles are in good agreement with the available experimental data. It was found that turbulence does not reach a fully developed state until at the seventh dune. The computed results show that the length of the separation zone at the fully developed region is about 6Hd, which is a little larger than those in the experiment. The spatially mean free surface level decreases in the flow direction. The head loss caused by dunes is about 0.014 m. With the employment of the sigma coordinates and splitting operator method, the dynamic coherent eddy model proposed by the authors has great advantages in simulating turbulent flows in complex geographic environments, which is of great importance and engineering value to river dynamics simulation.

    Bardina, J., Ferziger, J. H., and Reynolds, W. C. 1980. Improved subgrid-scale model for large-eddy simulation.Proceedings of the 13th Fluid and Plasma Dynamics Conference.Snowmass: American Institute of Aeronautics and Astronautics.

    Dejoan, A., and Leschziner, M. A. 2004. Large eddy simulation of periodically perturbed separated flow over a backward-facing step.Fluid and Heat Flow, 25(4), 581-592. [doi:10.1016/j.ijheatfluidflow.2004. 03.004]

    Fourniostis, N. T., Toleris, N. E., and Demetracopoulos, A. C. 2009. Numerical computation of turbulence development in flow over sand dunes.Advances in Water Resources and Hydraulic Engineering, Proceedings of 16th IAHR-APD and 3rd IAHR-ISHS, 943-848. Beijing: Tsinghua University Press. [doi:10.1007/978-3-540-89465-0_148]

    Germano, M., Piomelli, U., Moin, P., and Cabot, W. H. 1991. A dynamic subgrid-scale eddy viscosity model.Physics of Fluids, 3(7), 1760-1765. [doi:10.1063/1.857955]

    Huai, W. X., Sheng, Y. P., and Komatsu, T. 2003. Hybrid finite analytic solutions of shallow water circulation.Applied Mathematics and Mechanics (English Edition), 24(9), 1081-1088. [doi:1000-0887(2003)09-0956-07]

    Huai, W. X., Li, Z. W., Qian, Z. D., Zeng, Y. H., Han, J., and Peng, W. Q. 2010. Numerical simulation of horizontal buoyant wall jet.Journal of Hydrodynamics, 22(1), 58-65. [doi:10.1016/S1001-6058(09) 60028-7]

    Johns, B., Soulsby, R. L., and Xing, J. 1993. A comparison of numerical model experiments of free surface flow over topography with flume and field observations.Journal of Hydraulic Research, 31(2), 215-228. [doi:10.1080/00221689309498846]

    Kasagi, N., and Matsunaga, A. 1995. Three-dimensional particle tracking velocimetry measurement of turbulence statistics and energy budget in a backward-facing step flow.Fluid and Heat Flow, 16(6), 477-485. [doi:10.1016/0142-727X(95)00041-N]

    Li, C. W., and Ma, F. X. 2003. Large eddy simulation of diffusion of a buoyancy source in ambient water.Applied Mathematical Modeling, 27(8), 649-663. [doi:10.1016/S0307-904X(03)00073-8]

    Lilly, D. K. 1992. A proposed modification of the Germano subgrid-scale closure method.Physics of Fluids, 4(3), 633-635. [doi:10.1063/1.858280]

    Lin, P. Z., and Li, C. W. 2002. Aσ-coordinate three-dimensional numerical model for surface wave propagation.International Journal for Numerical Methods in Fluids, 38(11), 1045-1068. [doi:10. 1002/fld.258]

    Lu, J., and Wang, L. L. 2008. Numerical study of large eddy structures-separated flows passing sills.Advances in Water Resources and Hydraulic Engineering, Proceedings of 16th IAHR-APD and 3rd IAHR-ISHS, 1795-1799. Beijing: Tsinghua University Press. [doi:10.1007/978-3-540-89465-0_309]

    Lu, J., and Wang, L. L. 2009. Comparison of several turbulent models for calculating separated flows passing on sill.Advances in Water Science, 20(2), 255-260. (in Chinese)

    Lu, J., Tang, H. W., and Wang, L. L. 2010. A novel dynamic eddy model and its application to LES of turbulent jet with free surface.Science in China, Ser. G, 53(9), 1671-1680. [doi:10.1007/s11433-010-4077-z]

    Lyn, D. A. 1993. Turbulence measurement in open channel flows over artificial bedforms.Journal of Hydraulic Engineering, 119(3), 306-326. [doi:10.1061/(ASCE)0733-9429(1993)119:3(306)]

    Mendoza, C., and Shen, H. W. 1990. Investigation of turbulent flow over dunes. Journal of Hydraulic Engineering, 116(4), 459-477. [doi:10.1061/(ASCE)0733-9429(1990)116:4(459)]

    Nelson, J. M., and Smith, J. D. 1993. Mean flow and turbulence over two-dimensional bed forms.Water Resources Research, 29(12), 3925-3953. [doi:10.1029/93WR01932]

    Ojha, S. P., and Mazumder, B. S. 2008. Turbulence characteristics of flow region over a series of 2-D dune shaped structures.Advance in Water Resources, 31(3), 561-576. [doi:10.1016/j.advwatres.2007.12.001]

    Peric, M., Ruger, M., and Scheuerer, G. 1988.Calculation of the Two-dimensional Turbulent Flow over a Sand Dune Model. Erlangen: University of Erlangen.

    Wiberg, P. L., and Nelson, J. M. 1992. Unidirectional flow over asymmetric and symmetric ripples.Geophysical Research, 97(8), 12745-12761. [doi:10.1029/92JC01228]

    Wilcox, D. C. 1993.Turbulence Modeling for CFD. La Canada: DCW Industries.

    Yoon, J. Y., Patel, V. C., and Ettema, R. 1995. Numerical model of flow in ice-covered channels.Journal of Hydraulic Engineering, 122(1), 19-26. [doi:10.1061/(ASCE)0733-9429(1996)122:1(19)]

    This work was supported by the National Natural Science Foundation of China (Grant No. 51179058), the National Science Fund for Distinguished Young Scholars (Grants No. 51125034 and 50925932), the Special Fund for Public Welfare of the Water Resources Ministry of China (Grant No. 201201017), and the 111 Project (Grant No. B12032).

    *Corresponding author (e-mail:wanglingling@hhu.edu.cn)

    Received Jan. 7, 2011; accepted Aug. 20, 2011

    国产黄色免费在线视频| 一边摸一边抽搐一进一小说| 夜夜夜夜夜久久久久| 国产成人av激情在线播放| 成年版毛片免费区| 久热这里只有精品99| 五月开心婷婷网| 国产精品偷伦视频观看了| 亚洲第一欧美日韩一区二区三区| 男男h啪啪无遮挡| 日韩中文字幕欧美一区二区| 另类亚洲欧美激情| 国产激情久久老熟女| 啦啦啦在线免费观看视频4| 在线观看www视频免费| 国产又爽黄色视频| 亚洲aⅴ乱码一区二区在线播放 | 日本免费一区二区三区高清不卡 | 久久久久九九精品影院| 国产精品一区二区在线不卡| 精品一区二区三区视频在线观看免费 | 亚洲男人天堂网一区| 午夜福利在线观看吧| 中出人妻视频一区二区| 曰老女人黄片| 亚洲片人在线观看| 日韩大码丰满熟妇| www.熟女人妻精品国产| 久久精品91蜜桃| 欧美午夜高清在线| 丝袜人妻中文字幕| 黄片播放在线免费| 精品电影一区二区在线| 精品久久久久久久毛片微露脸| 99国产精品一区二区蜜桃av| 国产一区二区激情短视频| 脱女人内裤的视频| 91九色精品人成在线观看| 一边摸一边做爽爽视频免费| 乱人伦中国视频| 日韩欧美一区视频在线观看| av有码第一页| 一个人观看的视频www高清免费观看 | 免费在线观看亚洲国产| 亚洲成国产人片在线观看| 亚洲精品国产一区二区精华液| 高清在线国产一区| 一级毛片女人18水好多| 亚洲va日本ⅴa欧美va伊人久久| 亚洲专区字幕在线| 欧美激情久久久久久爽电影 | 侵犯人妻中文字幕一二三四区| netflix在线观看网站| 女人爽到高潮嗷嗷叫在线视频| 国产熟女xx| 热99国产精品久久久久久7| 午夜两性在线视频| 国产亚洲精品久久久久久毛片| 日韩免费av在线播放| 伊人久久大香线蕉亚洲五| 亚洲美女黄片视频| 精品人妻在线不人妻| 天堂√8在线中文| 久久99一区二区三区| 久久久国产成人免费| 欧美丝袜亚洲另类 | 日韩成人在线观看一区二区三区| 欧美老熟妇乱子伦牲交| 久久久久久久精品吃奶| 女人被狂操c到高潮| 久久青草综合色| 国产伦一二天堂av在线观看| 国产精品香港三级国产av潘金莲| 久久精品91无色码中文字幕| 黑人欧美特级aaaaaa片| 亚洲精品在线美女| 另类亚洲欧美激情| 女警被强在线播放| 免费在线观看视频国产中文字幕亚洲| 乱人伦中国视频| 91av网站免费观看| 国产人伦9x9x在线观看| 老汉色∧v一级毛片| 久久精品影院6| 久99久视频精品免费| 在线国产一区二区在线| 在线观看一区二区三区| 高清毛片免费观看视频网站 | 精品人妻在线不人妻| 久久精品成人免费网站| 免费一级毛片在线播放高清视频 | 久久中文字幕一级| 国产av一区在线观看免费| 亚洲人成网站在线播放欧美日韩| 欧美老熟妇乱子伦牲交| 老司机午夜十八禁免费视频| 丁香六月欧美| 好男人电影高清在线观看| 视频区欧美日本亚洲| 99热国产这里只有精品6| 看黄色毛片网站| 精品人妻1区二区| 免费观看人在逋| 亚洲欧美精品综合久久99| 热99国产精品久久久久久7| 男女下面进入的视频免费午夜 | www.www免费av| 国产高清国产精品国产三级| 伊人久久大香线蕉亚洲五| 天天添夜夜摸| 女人被狂操c到高潮| 国产精品国产高清国产av| 久久精品国产亚洲av香蕉五月| 中亚洲国语对白在线视频| 制服人妻中文乱码| 亚洲精品中文字幕在线视频| 精品国产乱码久久久久久男人| 99久久国产精品久久久| 日韩精品中文字幕看吧| 天堂√8在线中文| 精品一区二区三区四区五区乱码| 又黄又粗又硬又大视频| 人人妻人人爽人人添夜夜欢视频| 首页视频小说图片口味搜索| 精品少妇一区二区三区视频日本电影| 黄片小视频在线播放| 久99久视频精品免费| 一本综合久久免费| 欧美黑人精品巨大| 一进一出抽搐动态| 成人永久免费在线观看视频| 欧美老熟妇乱子伦牲交| 99香蕉大伊视频| 91在线观看av| 国产免费av片在线观看野外av| 制服诱惑二区| 久久 成人 亚洲| 超碰97精品在线观看| 亚洲精品美女久久av网站| 满18在线观看网站| av福利片在线| 亚洲精品av麻豆狂野| 999久久久精品免费观看国产| 国产蜜桃级精品一区二区三区| 午夜影院日韩av| 久久久久久免费高清国产稀缺| 国产精品免费视频内射| 啦啦啦免费观看视频1| 国产午夜精品久久久久久| 国产黄色免费在线视频| 美女扒开内裤让男人捅视频| 91在线观看av| 亚洲人成网站在线播放欧美日韩| 热99re8久久精品国产| 高清在线国产一区| 狂野欧美激情性xxxx| 在线观看免费午夜福利视频| 在线观看免费午夜福利视频| 亚洲国产中文字幕在线视频| 成人18禁在线播放| 高清欧美精品videossex| 九色亚洲精品在线播放| 亚洲一区高清亚洲精品| 长腿黑丝高跟| 国产三级黄色录像| 亚洲自拍偷在线| 热99国产精品久久久久久7| 不卡一级毛片| 身体一侧抽搐| 亚洲自拍偷在线| 搡老岳熟女国产| 精品国产乱码久久久久久男人| 99热国产这里只有精品6| 在线播放国产精品三级| 亚洲av片天天在线观看| 欧美乱色亚洲激情| 妹子高潮喷水视频| 日本黄色视频三级网站网址| 9色porny在线观看| 精品久久久久久成人av| 日韩高清综合在线| 在线播放国产精品三级| 91老司机精品| 女人爽到高潮嗷嗷叫在线视频| 人人妻,人人澡人人爽秒播| 成在线人永久免费视频| 女警被强在线播放| 午夜福利影视在线免费观看| 日韩成人在线观看一区二区三区| 人成视频在线观看免费观看| 午夜久久久在线观看| 黄色成人免费大全| 婷婷六月久久综合丁香| 交换朋友夫妻互换小说| e午夜精品久久久久久久| 啦啦啦在线免费观看视频4| 大型黄色视频在线免费观看| 欧美日韩亚洲综合一区二区三区_| 99久久国产精品久久久| 不卡av一区二区三区| 免费av毛片视频| 成人手机av| 一级毛片高清免费大全| 嫩草影视91久久| 中文字幕人妻丝袜制服| 丰满人妻熟妇乱又伦精品不卡| 午夜视频精品福利| 人人妻人人爽人人添夜夜欢视频| 99香蕉大伊视频| 久久久久久久久免费视频了| 在线十欧美十亚洲十日本专区| 精品一区二区三卡| 这个男人来自地球电影免费观看| 欧美中文综合在线视频| 精品福利永久在线观看| 日韩大尺度精品在线看网址 | 黄网站色视频无遮挡免费观看| 一二三四社区在线视频社区8| 久久99一区二区三区| 视频区图区小说| 中文字幕精品免费在线观看视频| 亚洲自拍偷在线| 黑丝袜美女国产一区| 日本一区二区免费在线视频| 高清欧美精品videossex| 日韩精品免费视频一区二区三区| 一区二区三区精品91| 久久午夜综合久久蜜桃| 黄色 视频免费看| 成人免费观看视频高清| 亚洲人成伊人成综合网2020| 午夜日韩欧美国产| 免费少妇av软件| 免费女性裸体啪啪无遮挡网站| 可以免费在线观看a视频的电影网站| 亚洲欧美日韩高清在线视频| 999久久久国产精品视频| 成人亚洲精品一区在线观看| 亚洲欧美精品综合久久99| 女人爽到高潮嗷嗷叫在线视频| 午夜福利影视在线免费观看| 两性午夜刺激爽爽歪歪视频在线观看 | 可以在线观看毛片的网站| 午夜91福利影院| 少妇 在线观看| 在线视频色国产色| 亚洲国产精品一区二区三区在线| 欧美中文综合在线视频| 国产成人精品久久二区二区免费| 国产真人三级小视频在线观看| 一区二区三区精品91| 国产精品 欧美亚洲| 亚洲av五月六月丁香网| av天堂在线播放| 亚洲视频免费观看视频| 国产亚洲欧美在线一区二区| 久久九九热精品免费| 国产精品久久电影中文字幕| 久久国产精品人妻蜜桃| 女性被躁到高潮视频| 色老头精品视频在线观看| 国产三级在线视频| 亚洲性夜色夜夜综合| a级毛片在线看网站| 久久久国产成人精品二区 | 亚洲,欧美精品.| 美女 人体艺术 gogo| 欧美日韩国产mv在线观看视频| 国产高清videossex| 久久久国产成人精品二区 | 亚洲黑人精品在线| 中文字幕最新亚洲高清| 18禁观看日本| 黄频高清免费视频| 国产aⅴ精品一区二区三区波| 亚洲中文字幕日韩| 99国产综合亚洲精品| 日韩欧美在线二视频| 精品国产亚洲在线| 一二三四社区在线视频社区8| x7x7x7水蜜桃| 国产乱人伦免费视频| 亚洲精品美女久久久久99蜜臀| 青草久久国产| 中文字幕高清在线视频| 亚洲美女黄片视频| a在线观看视频网站| 亚洲国产欧美网| 一区福利在线观看| 成人手机av| 好看av亚洲va欧美ⅴa在| av欧美777| 中亚洲国语对白在线视频| 色综合婷婷激情| 精品久久久久久,| 18禁裸乳无遮挡免费网站照片 | 亚洲男人天堂网一区| 在线观看日韩欧美| 美女福利国产在线| 久久久久久人人人人人| 亚洲精品美女久久av网站| www.www免费av| 成人精品一区二区免费| 国产在线观看jvid| 欧美在线一区亚洲| 久久影院123| 妹子高潮喷水视频| 亚洲成av片中文字幕在线观看| 免费在线观看黄色视频的| 99久久99久久久精品蜜桃| 国产三级在线视频| 久久久久久久精品吃奶| 精品午夜福利视频在线观看一区| 成年版毛片免费区| 国产精品香港三级国产av潘金莲| 亚洲人成电影观看| 亚洲欧美日韩高清在线视频| 亚洲av成人不卡在线观看播放网| 日本a在线网址| 日韩欧美在线二视频| 色哟哟哟哟哟哟| 成人亚洲精品一区在线观看| 久久久久国产一级毛片高清牌| 久久国产精品影院| 91精品三级在线观看| 精品国产一区二区久久| 欧美激情久久久久久爽电影 | 国产一区二区三区在线臀色熟女 | 亚洲熟女毛片儿| 久久精品国产综合久久久| 女同久久另类99精品国产91| 99国产精品免费福利视频| 如日韩欧美国产精品一区二区三区| xxxhd国产人妻xxx| 亚洲伊人色综图| 亚洲aⅴ乱码一区二区在线播放 | 女人爽到高潮嗷嗷叫在线视频| 国产一区在线观看成人免费| 亚洲国产欧美一区二区综合| 级片在线观看| 日本黄色视频三级网站网址| 午夜福利免费观看在线| 亚洲国产中文字幕在线视频| 999久久久精品免费观看国产| 五月开心婷婷网| 国产激情久久老熟女| 国产视频一区二区在线看| 亚洲av日韩精品久久久久久密| 高清av免费在线| 亚洲成人久久性| 免费人成视频x8x8入口观看| 黑人欧美特级aaaaaa片| 久热爱精品视频在线9| 久久久久久免费高清国产稀缺| 免费高清在线观看日韩| 精品免费久久久久久久清纯| av网站在线播放免费| 丝袜在线中文字幕| 国产伦人伦偷精品视频| 中文字幕最新亚洲高清| 韩国精品一区二区三区| 大型av网站在线播放| 精品国产乱子伦一区二区三区| 乱人伦中国视频| 黄色视频不卡| 法律面前人人平等表现在哪些方面| 亚洲精品在线美女| 午夜福利免费观看在线| 亚洲第一欧美日韩一区二区三区| 成人特级黄色片久久久久久久| 国产一区二区三区综合在线观看| av片东京热男人的天堂| 亚洲成人免费电影在线观看| 国产一区二区激情短视频| 亚洲第一欧美日韩一区二区三区| 亚洲精品成人av观看孕妇| 19禁男女啪啪无遮挡网站| 成人三级做爰电影| 好男人电影高清在线观看| 老鸭窝网址在线观看| 久久精品亚洲熟妇少妇任你| 精品福利永久在线观看| 国产亚洲精品久久久久久毛片| 黄片大片在线免费观看| 黄色 视频免费看| 在线观看日韩欧美| 久久人人97超碰香蕉20202| 午夜精品久久久久久毛片777| 亚洲成人久久性| 精品熟女少妇八av免费久了| 男人舔女人的私密视频| 亚洲成a人片在线一区二区| 涩涩av久久男人的天堂| 一级片'在线观看视频| 亚洲片人在线观看| xxx96com| 女性生殖器流出的白浆| 一区二区三区国产精品乱码| 少妇裸体淫交视频免费看高清 | 欧美午夜高清在线| 黄色a级毛片大全视频| 亚洲熟妇中文字幕五十中出 | 免费观看人在逋| 欧美人与性动交α欧美软件| 国产精品 国内视频| 久久香蕉精品热| 如日韩欧美国产精品一区二区三区| 老司机靠b影院| 免费在线观看黄色视频的| 日韩欧美国产一区二区入口| 十分钟在线观看高清视频www| 亚洲第一av免费看| 亚洲欧洲精品一区二区精品久久久| 亚洲,欧美精品.| 黄色怎么调成土黄色| 女性生殖器流出的白浆| 国产免费男女视频| 午夜福利在线观看吧| 动漫黄色视频在线观看| 久久久精品国产亚洲av高清涩受| 国产在线观看jvid| 伦理电影免费视频| 国产午夜精品久久久久久| 国产亚洲精品综合一区在线观看 | 午夜两性在线视频| 欧美日韩福利视频一区二区| 国产三级在线视频| 国产成人啪精品午夜网站| 一进一出好大好爽视频| 可以在线观看毛片的网站| 91成年电影在线观看| 亚洲自偷自拍图片 自拍| 久久久久久久精品吃奶| 在线观看www视频免费| 在线观看免费午夜福利视频| 天天躁狠狠躁夜夜躁狠狠躁| 午夜成年电影在线免费观看| 美女高潮喷水抽搐中文字幕| 亚洲中文日韩欧美视频| 免费女性裸体啪啪无遮挡网站| 老司机在亚洲福利影院| 两性夫妻黄色片| 午夜视频精品福利| 国产单亲对白刺激| 他把我摸到了高潮在线观看| 亚洲精品av麻豆狂野| 日本a在线网址| 老汉色∧v一级毛片| 老鸭窝网址在线观看| av免费在线观看网站| 一级片免费观看大全| 女人爽到高潮嗷嗷叫在线视频| 国产免费现黄频在线看| 麻豆一二三区av精品| 老汉色av国产亚洲站长工具| 欧美一级毛片孕妇| 亚洲国产精品999在线| 日韩一卡2卡3卡4卡2021年| 日本五十路高清| bbb黄色大片| 伊人久久大香线蕉亚洲五| 99热国产这里只有精品6| 女人被躁到高潮嗷嗷叫费观| 国产av精品麻豆| 美国免费a级毛片| 叶爱在线成人免费视频播放| 国产99久久九九免费精品| 天堂√8在线中文| 国产aⅴ精品一区二区三区波| 午夜福利一区二区在线看| 精品久久久久久成人av| 亚洲成人免费av在线播放| 日韩有码中文字幕| 欧美日韩黄片免| 亚洲五月婷婷丁香| 少妇 在线观看| 91麻豆精品激情在线观看国产 | 国产成人一区二区三区免费视频网站| 国产成人欧美| 少妇裸体淫交视频免费看高清 | 成年女人毛片免费观看观看9| 国产高清视频在线播放一区| 欧美成狂野欧美在线观看| 亚洲成人免费电影在线观看| 免费看十八禁软件| av免费在线观看网站| 欧美在线一区亚洲| 欧美激情久久久久久爽电影 | 日韩大码丰满熟妇| 一级a爱视频在线免费观看| av超薄肉色丝袜交足视频| 激情在线观看视频在线高清| 国产成人精品久久二区二区91| 欧美日韩瑟瑟在线播放| 亚洲一码二码三码区别大吗| 久久精品亚洲熟妇少妇任你| 亚洲精品中文字幕一二三四区| 国产精品久久久久成人av| 国产精品自产拍在线观看55亚洲| 91精品国产国语对白视频| 亚洲av日韩精品久久久久久密| 国产成人精品久久二区二区免费| 久久中文字幕人妻熟女| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精品中文字幕一二三四区| 欧美日韩瑟瑟在线播放| 国产精品一区二区免费欧美| 香蕉丝袜av| 黑人巨大精品欧美一区二区mp4| 视频区图区小说| av欧美777| 99精品在免费线老司机午夜| 国产成人精品久久二区二区91| 欧美亚洲日本最大视频资源| 中文字幕色久视频| 亚洲精品美女久久久久99蜜臀| 亚洲自偷自拍图片 自拍| 国产精品偷伦视频观看了| 涩涩av久久男人的天堂| 丰满迷人的少妇在线观看| 亚洲狠狠婷婷综合久久图片| 一二三四在线观看免费中文在| 人人妻人人澡人人看| 久久精品aⅴ一区二区三区四区| 日日爽夜夜爽网站| 母亲3免费完整高清在线观看| 亚洲一区二区三区色噜噜 | 韩国精品一区二区三区| 丰满人妻熟妇乱又伦精品不卡| videosex国产| 亚洲欧美日韩另类电影网站| 午夜老司机福利片| 国产欧美日韩一区二区三| 精品卡一卡二卡四卡免费| 亚洲精华国产精华精| 日韩欧美国产一区二区入口| 日韩欧美在线二视频| 亚洲av日韩精品久久久久久密| 亚洲精品一卡2卡三卡4卡5卡| 国产成人一区二区三区免费视频网站| 在线观看一区二区三区激情| 亚洲欧美日韩高清在线视频| 亚洲国产精品一区二区三区在线| 久久久久久人人人人人| 午夜久久久在线观看| 国产精品日韩av在线免费观看 | 国产蜜桃级精品一区二区三区| 亚洲中文日韩欧美视频| 中国美女看黄片| 国产无遮挡羞羞视频在线观看| 精品熟女少妇八av免费久了| 亚洲自拍偷在线| 黄片播放在线免费| 久久人妻熟女aⅴ| 日本黄色视频三级网站网址| 成年女人毛片免费观看观看9| 免费高清视频大片| 看片在线看免费视频| 淫秽高清视频在线观看| 在线十欧美十亚洲十日本专区| 久久午夜亚洲精品久久| 国产三级在线视频| 亚洲avbb在线观看| 亚洲激情在线av| 在线国产一区二区在线| 桃红色精品国产亚洲av| 搡老岳熟女国产| 啦啦啦在线免费观看视频4| av超薄肉色丝袜交足视频| 99国产极品粉嫩在线观看| 久久热在线av| 一夜夜www| 老汉色∧v一级毛片| 亚洲avbb在线观看| 亚洲人成77777在线视频| 中文亚洲av片在线观看爽| 欧美丝袜亚洲另类 | 大香蕉久久成人网| 一级a爱片免费观看的视频| 精品国内亚洲2022精品成人| 69av精品久久久久久| 好男人电影高清在线观看| 欧美大码av| 日本a在线网址| 男人舔女人的私密视频| 亚洲欧洲精品一区二区精品久久久| 精品国产乱码久久久久久男人| 久久婷婷成人综合色麻豆| 午夜成年电影在线免费观看| 大陆偷拍与自拍| 999精品在线视频| 午夜成年电影在线免费观看| 国产av精品麻豆| 黄色 视频免费看| svipshipincom国产片| 午夜福利在线免费观看网站| 丰满饥渴人妻一区二区三| 91麻豆av在线| 91成年电影在线观看| 激情视频va一区二区三区| 人妻久久中文字幕网| 久久久久久大精品| 久久久久久免费高清国产稀缺| 亚洲精品国产一区二区精华液| 天天添夜夜摸| 在线观看www视频免费| 精品久久久久久成人av| 国产欧美日韩精品亚洲av| 好看av亚洲va欧美ⅴa在| 一级片免费观看大全| 老司机靠b影院| 操出白浆在线播放| 亚洲国产精品999在线| 久久久国产一区二区| 日韩欧美一区二区三区在线观看|