• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Temperature control and cracking prevention in coastal thin-wall concrete structures

    2011-11-02 13:35:02LixiaGUOXiaohongBAILingZHONGShengQIANG
    Water Science and Engineering 2011年4期

    Li-xia GUO*, Xiao-hong BAI, Ling ZHONG, Sheng QIANG

    1. Faculty of Water Conservancy Engineering, North China University of Water Conservancy and Electric Power,Zhengzhou 450011, P. R. China

    2. College of Planning and Architectural Engineering, Henan University of Science and Technology,Luoyang 471003, P. R. China

    3. College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, P. R. China

    1 Introduction

    Due to its versatility and acceptability, steel-reinforced concrete is one of the most common materials for construction; the embedded steel is protected from corrosion by concrete.But the hydration heat results in tensile stress in cement paste due to restraint from the aggregates, which may induce micro-cracking or macro-cracking (Bordas et al. 2008; Rabczuk et al. 2008)and lead to steel corrosion when concrete is subjected to seawater because chlorine in seawater destroys the corrosion-inhibitive properties of non-buffered alkalis (Vassie 1984;Al-Gahtani and Maslehuddin 2002; Ahmad 2003). The volume of steel corrosion products is two to four times of the original steel. The subsequent stress evolution may lead to the enlargement of concrete cracks, even structure failure. There are many examples of reinforced concrete structures that cannot remain durable in seawater for 30 years and more. To solve this problem, cooling plastic pipes are used to lower the temperature rise and to prevent cracking,because plastic pipes cannot be corroded by seawater and their prices are very cheap (Hedlund and Groth 1998; Li 2000; Liu et al. 2009; Deng and Murakawa 2006). This paper provides an introduction of a three-dimensional finite element program for thermal analysis of hydration heat in concrete structures with a plastic pipe cooling system, for analysis and design of hydraulic, coastal, and offshore engineering. The purposes of this study were to summarize the cooling results for the Cao’e Sluice and to validate the effect of plastic pipe cooling.

    2 Finite element formulation

    2.1 Equilibrium equation of heat transfer

    A mass concrete structure that generates internal heat due to hydration can be subjected to various boundary conditions. Eq. (1)and the following boundary conditions govern the spatialtemporal variation of temperature (del Coz Diaz et al. 2008; Yaghi et al. 2006; Zhu 1998):

    When t = 0,

    where T is the transient temperature; T0is the initial temperature; t is time; λx, λy, and λzare, respectively, the thermal conductivities in the x, y, and z directions; and θ is the adiabatic temperature rise of concrete.

    For boundary condition C1, the temperature Tbis known. This is a specified temperature condition, such as a constant source of heat:

    For boundary condition C2, the adiabatic condition is satisfied, which means that the heat flux is equal to zero through the boundary:

    where n is the outer normal direction of the boundary.

    For boundary condition C3, the heat flux generated by atmosphere and cooling water convection is represented as

    where β is the coefficient of heat convection for the atmosphere or cooling water, Tcis the concrete temperature on the convection boundary surface, and lx, ly, and lzare the direction cosines of the outer normal of the boundary.

    The heat transfer problem can be solved using the three-dimensional finite element method. The equation for the method is (Zhu 1998)

    where H is the matrix of heat conductivity, R is the added matrix for heat conductivity, Fm+1is the total heat flux vector for internal hydration heat and heat convection at time tm+1, Tmand Tm+1are the temperature matrices at time tmand tm+1, respectively, and the time interval between them is Δtm.

    Therefore, if the temperature at time tmis known, then the temperature at time tm+1can be calculated with Eq. (6). When T0is known, the temperature at any time can be calculated.

    2.2 Formulation of internal flow

    The variation of the concrete temperature induced by hydration heat is controlled by circulating the cooling water through plastic pipes embedded in concrete. The outlet temperature of cooling water is mostly higher than the inlet temperature when the hydration heat of concrete is absorbed by the cooling water. This phenomenon is called heat transfer through internal flow. To calculate the temperature distribution of cooling water along the pipe,the energy conservation principle was used, which means that the heat supplied to the pipe is equal to the heat absorbed by the flowing water. In general, the temperature increment of internal flow ΔTwiis shown in Eq. (7)(Zhu and Xu 2003):

    where λ is the thermal conductivity, cwis the specific heat of water, ρwis the density of water, qwis the inflow rate of water, s is the area along the cooling pipe, and Γ0is the boundary of pipe.

    If the temperature of water at the inlet is known, the unknown temperature of the cooling water along the pipe can be calculated with Eq. (7).

    2.3 Formulations of strain and stress

    In the numerical process for stress analysis, the strain was calculated first, and then the corresponding stress could be obtained. If the time interval [t0, t]is subdivided into K steps,the strain increment Δεkat a typical step [tk-1,tk](k =1,2,… ,K)can be expressed as

    After the strain increment is calculated, the corresponding stress increment Δσkcan be obtained:

    where μ is Poisson’s ratio.

    The total stress at the moment of the kth step is

    where σk-1is the total stress at the (k-1)th step.

    3 Application of cooling pipe in Cao’e Sluice

    3.1 Background of Cao’e Sluice

    The estuary of the Qiantang River is a typical tidal estuary with a strong current and large tidal range that have caused serious damage to the sea dikes on both banks. The Cao’e Sluice, a hydraulic project constructed to solve this problem, is known as China’s first sluice of a tidal estuary for its large-scale and complicated conditions.

    The spread footing is a concrete structure placed on the rock foundation. A footing was cast once on December 1, 2005. After 20 days, a sluice pier was cast with two lifts and the heights of the two lifts were both 0.4 m. The geometrical layout is illustrated in Fig. 1. The layout of the pipe loop was located at the center the sluice pier. There were 12 layers of pipes in all, and the first layer of pipes was laid 0.2 m above the footing. The distance between each group of cooling pipes was 0.4 m. Feature points S1 through S4 are also shown in Fig. 1, in which S1 is the surface point and other points are located in the concrete.

    Fig. 1 Size of sluice and layout of feature points (unit: m)

    The footing and pipe loop were modeled as shown in Fig. 2 by using eight-node isoperimetric solid elements. The dimension of rock was considered to be 45 m × 24 m × 6 m to simulate the effect of heat transferring from placed concrete to rock. As the temperature gradient of rock was smaller than that of the placed concrete, the mesh of the placed concrete was generated more finely than that of the rock. Hence, the total number of solids of the finite element mesh is 21 719 and the total number of nodes is 26 177.

    Fig. 2 FEM mesh for simulation

    3.2 Properties of materials

    Table 1 Thermal properties of materials

    The concrete of the sluice pier was mixed with 138.3 kg/m3of ordinary Portland cement(CEM I 42.5), 241.0 kg/m3of milled slag, and 1 308 kg/m3of limestone aggregate, and the concrete has a water/cement ratio of 0.41. The 28-day split concrete tensile strength obtained by in situ tests was 3.72 MPa, with a safety factor of 1.65. That is, the allowed 28-day tensile strength was 2.3 MPa. The creep compliance model is shown as follows:

    where tcis the age of concrete at the time of loading.

    3.3 Results and discussion

    With the three-dimensional finite element program, the construction process of the Cao’e Sluice with no pipe cooling system and dynamically updated geometry of the FEM mesh were simulated, and the temperature and stress of the sluice pier were analyzed. Fig. 3 shows the temperature history of the feature points. The temperature increased due to the hydration heat(Song et al. 2006; Mo and Deng 1998), and reached its maximum value at about two days after casting. Because of the heat transferring from concrete to the outside air, the peak temperature was less than the sum of the initial temperature and the adiabatic hydration temperature rise.After two days, the block began to cool down, but still required a long time to reach the environmental temperature. The peak temperature occurred at point S4 because point S4 was located on the centerline of the section and was far away from the heat dispersing surface.Fig. 4 shows the variation of stress at the same points of the sluice pier. At first, a compression stress developed inside the block and a tensile stress developed on the surface; this is because concrete tended to expand due to the temperature rise, while the boundary conditions restricted its expansion. The maximum compression stress also occurred at about one day after the sluice pier was cast. Compression stress decreased as expected because the block began to cool down.Finally, the compression stress changed to tensile stress and the tensile stress became increasingly large and exceeded the allowed tensile strength (2.3 MPa). Thus, cracks may have appeared. Cracks accelerate steel corrosion because steel is subjected directly to seawater, then,corrosion products cause the concrete to crack seriously, and the concrete structure may be damaged.

    Fig. 3 Temperature of feature points without pipe

    Fig. 4 Stress of feature points without pipe

    The temperature histories of concrete with plastic pipe at the feature points due to the hydration heat are presented in Fig. 5. The figure shows that the temperature of concrete with the pipe cooling system decreases more rapidly than the non-cooled concrete, and the peak temperature at the feature points with pipe is less than that without pipe. This trend is much more apparent at point S3, which is at a location close to cooling pipe. In the cooled concrete,however, the stress did not reach the allowed tensile strength, 2.3 MPa, either before or after the stripping of forms (Fig. 6). The disconnection of the water after five days can be found for the cooled cases, but did not cause any increase in the risk of cracking.

    Fig. 5 Temperature of feature points with pipe

    Fig. 6 Stress of feature points with pipe

    Fig. 7 shows the possible critical zones at the longitudinal section. In general, the tensile stress at interface corners and the footing area where cracks usually occur is more commonly than that in other areas, but the stress does not reach the allowed tensile strength. That is to say,the plastic pipe cooling system is applicable to preventing cracking.

    Fig. 7 Profile of concrete stress with plastic pipes at 30th day (unit: MPa)

    4 Conclusions

    A dynamic computer simulation of a sluice with and without cooling pipe system has been presented in this paper. The level of thermal stress in the construction was significantly improved by embedded cooling water. The following conclusions can be drawn:

    (1)In general, the cooling effect of steel pipes is better than that of plastic pipes, but plastic pipes cannot be corroded by seawater and have the properties of good flexility and low price; therefore, they are usually used for temperature control. Results in this paper show that plastic pipes have the ability to reduce the temperature rise effectively, and that the maximum temperature at all feature points of concrete without plastic pipes is 3.5℃ higher than that at the same feature points of concrete embedded with pipes.

    (2)The thermal stress of concrete without plastic pipes is larger than that with pipes,preventing the Cao’e Sluice from cracking. Post-cooling of concrete with plastic pipes is applicable to cracking prevention in hydraulic, coastal, and offshore engineering.

    Ahmad, S. 2003. Reinforcement corrosion in concrete structures, its monitoring and service life prediction: A review. Cement and Concrete Composites, 25(4-5), 459-471. [doi:10.1016/s0958-9465(02)00086-0]

    Al-Gahtani, A. S., and Maslehuddin, M. 2002. Characteristics of the Arabian gulf environment and its impact on concrete durability: An overview. Proceedings of the 6th Saudi Engineering Conference, 169-184.Dhahran: King Fahd University of Petroleum and Minerals.

    Bordas, S., Rabczuk, T., and Zi, G. 2008. Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended mesh free method without asymptotic enrichment.Engineering Fracture Mechanics, 75(5), 943-960. [doi:10.1016/j.engfracmech.2007.05.010]

    del Coz Diaz, J. J., Garcia Nieto, P. J., Suarez Sierra, J. L., and Penuelas Sanchez, I. 2008. Non-linear thermal optimization and design improvement of a new internal light concrete multi-holed brick walls by FEM.Applied Thermal Engineering, 28(8-9), 1090-1100. [doi:10.1016/j.applthermaleng.2007.06.023]

    Deng, D., and Murakawa, H. 2006. Numerical simulation of temperature field and residual stress in multi-pass welds in stainless steel pipe and comparison with experimental measurements. Computational Materials Science, 37(3), 269-277. [doi:10.1016/j.mcn.2008.03.006]

    Hedlund, H., and Groth, P. 1998. Air cooling of concrete by means of embedded cooling pipes, Part I:Laboratory tests of heat transfer coefficients. Materials and Structures, 31(5), 329-334.[doi:10.1007/BF02480675]

    Li, R. C. 2000. Field test on cooling water plastic pipes for Three Gorges Dam. China Three Gorges Construction, (5), 20-23. (in Chinese)

    Liu, X. Q., Li, T. C., and Han, B. 2009. Direct algorithm for simulating cooling effect of water pipes in concrete. Journal of Hydraulic Engineering, 40(7), 892-896. (in Chinese)

    Mo, L. W., and Deng, M. 2006. Thermal behavior of cement matrix with high-volume mineral admixtures at early hydration age. Cement and Concrete Research, 36(10), 1992-1998. [doi:10.1016/j.cemconres.2006.07.002]

    Rabczuk, T., Zi, G., Bordas, S., and Nguyen-Xuan, H. 2008. A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures. Engineering Fracture Mechanics, 75(16),4740-4758. [doi:10.1016/j.engfracmech.2008.06.019]

    Song, H. W., Kwon, S. J., Byun, K. J., and Park, C. K. 2006. Predicting carbonation in early-aged cracked concrete. Cement and Concrete Research, 36(5), 979-989. [doi:10.1016/j.cemconres.2005.12.019]

    Vassie, P. 1984. Reinforcement corrosion and the durability of concrete bridge. Ice proceedings, 713-723.Hamburg: Der Versuchsanstalt.

    Yaghi, A., Hyde, T. H., Becke, A. A., Sun, W., and Williams, J. A. 2006. Residual stress simulation in thin and thick-walled stainless steel pipe welds including pipe diameter effects. International Journal of Pressure Vessels and Piping, 83(11-12), 864-874. [doi:10.1061/(ASCE)0733-9372(2007)133:4(447)]

    Zhu, B. F. 1998. Thermal Stresses and Temperature Control of Mass Concrete. Beijing: China Electric Power Press. (in Chinese)

    Zhu, Y. M., and Xu, Z. Q. 2003. A calculation method for solving temperature field of mass concrete with cooling pipes. Journal of Yangtze River Scientific Research Institute, 20(2), 19-22. (in Chinese)

    后天国语完整版免费观看| 久久 成人 亚洲| 超碰成人久久| a 毛片基地| 搡老熟女国产l中国老女人| 老司机午夜福利在线观看视频 | 九色亚洲精品在线播放| 极品人妻少妇av视频| 久久久国产精品麻豆| 两个人免费观看高清视频| 999久久久精品免费观看国产| 国产av国产精品国产| 狂野欧美激情性xxxx| 国产一区二区三区av在线| 国产精品国产av在线观看| 久久久国产欧美日韩av| 老熟妇仑乱视频hdxx| 亚洲欧美清纯卡通| 欧美 亚洲 国产 日韩一| 一本色道久久久久久精品综合| 日韩大码丰满熟妇| 一进一出抽搐动态| 久久精品成人免费网站| 俄罗斯特黄特色一大片| 91精品三级在线观看| 巨乳人妻的诱惑在线观看| 国产免费视频播放在线视频| 午夜91福利影院| 国产成人免费无遮挡视频| 一级毛片女人18水好多| 亚洲国产精品999| 久久毛片免费看一区二区三区| a级毛片黄视频| 嫁个100分男人电影在线观看| 亚洲精品自拍成人| 午夜福利在线观看吧| 欧美精品人与动牲交sv欧美| www.av在线官网国产| 亚洲精品久久成人aⅴ小说| 日韩 欧美 亚洲 中文字幕| 亚洲成人免费电影在线观看| 啦啦啦啦在线视频资源| 国产亚洲精品一区二区www | 国产精品九九99| 亚洲九九香蕉| 国产精品九九99| 国产日韩欧美在线精品| 亚洲成人免费av在线播放| 国产无遮挡羞羞视频在线观看| 欧美激情久久久久久爽电影 | 午夜两性在线视频| 啦啦啦视频在线资源免费观看| 中文字幕高清在线视频| 国产男人的电影天堂91| 日本一区二区免费在线视频| 操美女的视频在线观看| 亚洲精品国产一区二区精华液| 99精品久久久久人妻精品| 亚洲精品中文字幕一二三四区 | 欧美日韩福利视频一区二区| 免费在线观看黄色视频的| 亚洲男人天堂网一区| videos熟女内射| 国产成人系列免费观看| 久久亚洲国产成人精品v| 少妇被粗大的猛进出69影院| 欧美成人午夜精品| 蜜桃国产av成人99| 嫩草影视91久久| 欧美日韩精品网址| 黄色毛片三级朝国网站| 国产成人免费观看mmmm| 国产成人精品无人区| 高清视频免费观看一区二区| 乱人伦中国视频| 精品人妻1区二区| 亚洲专区中文字幕在线| 亚洲精品在线美女| 三上悠亚av全集在线观看| 伊人久久大香线蕉亚洲五| 亚洲精品一区蜜桃| 国产一卡二卡三卡精品| 国产av精品麻豆| 久久免费观看电影| 久久久久久久久免费视频了| 精品亚洲乱码少妇综合久久| 国产成人精品久久二区二区91| 熟女少妇亚洲综合色aaa.| 男人爽女人下面视频在线观看| 一区二区日韩欧美中文字幕| tocl精华| 王馨瑶露胸无遮挡在线观看| 日韩 欧美 亚洲 中文字幕| 大型av网站在线播放| 最新在线观看一区二区三区| 无限看片的www在线观看| 免费少妇av软件| av网站免费在线观看视频| 一级毛片电影观看| 老司机靠b影院| 日韩熟女老妇一区二区性免费视频| 日本vs欧美在线观看视频| 我要看黄色一级片免费的| 日韩电影二区| 成人黄色视频免费在线看| 啦啦啦视频在线资源免费观看| 乱人伦中国视频| 少妇裸体淫交视频免费看高清 | 人人妻,人人澡人人爽秒播| 亚洲九九香蕉| www.熟女人妻精品国产| 国产一级毛片在线| 丝袜美腿诱惑在线| 一级片'在线观看视频| 国产精品一区二区精品视频观看| 亚洲精品美女久久久久99蜜臀| 99香蕉大伊视频| 亚洲成人手机| 久久精品熟女亚洲av麻豆精品| 亚洲一区二区三区欧美精品| 午夜免费鲁丝| 韩国精品一区二区三区| 美女高潮喷水抽搐中文字幕| 亚洲 国产 在线| 国产高清国产精品国产三级| 久久久久久久精品精品| 91九色精品人成在线观看| 婷婷色av中文字幕| 精品一品国产午夜福利视频| 叶爱在线成人免费视频播放| 菩萨蛮人人尽说江南好唐韦庄| 成年动漫av网址| 满18在线观看网站| 久久99热这里只频精品6学生| 婷婷成人精品国产| 久久精品国产亚洲av高清一级| 国产精品欧美亚洲77777| 国产精品久久久久久精品古装| 日韩三级视频一区二区三区| 可以免费在线观看a视频的电影网站| 九色亚洲精品在线播放| 美女高潮到喷水免费观看| 女人精品久久久久毛片| 国产精品国产三级国产专区5o| 欧美日本中文国产一区发布| 国产一区二区在线观看av| 在线十欧美十亚洲十日本专区| kizo精华| 操出白浆在线播放| 不卡av一区二区三区| 他把我摸到了高潮在线观看 | 菩萨蛮人人尽说江南好唐韦庄| 搡老熟女国产l中国老女人| 日韩电影二区| 欧美日韩一级在线毛片| 免费日韩欧美在线观看| 久久av网站| 国产精品秋霞免费鲁丝片| 一本综合久久免费| 国产免费av片在线观看野外av| 国产欧美日韩一区二区精品| 我要看黄色一级片免费的| 日韩欧美一区二区三区在线观看 | 国产亚洲精品第一综合不卡| 国产亚洲午夜精品一区二区久久| 一级片免费观看大全| 美女高潮到喷水免费观看| 老汉色av国产亚洲站长工具| 久久中文字幕一级| 高清黄色对白视频在线免费看| 波多野结衣一区麻豆| 欧美国产精品一级二级三级| 天堂8中文在线网| 丝袜美足系列| 乱人伦中国视频| 国产成人精品在线电影| 亚洲精品自拍成人| 日韩大片免费观看网站| 大片免费播放器 马上看| 韩国精品一区二区三区| www.999成人在线观看| 99re6热这里在线精品视频| 满18在线观看网站| 亚洲欧美精品自产自拍| 欧美日韩成人在线一区二区| 极品人妻少妇av视频| 久久影院123| 婷婷成人精品国产| 90打野战视频偷拍视频| 别揉我奶头~嗯~啊~动态视频 | 亚洲精品中文字幕在线视频| 深夜精品福利| 亚洲精品日韩在线中文字幕| 人妻久久中文字幕网| www日本在线高清视频| 午夜免费成人在线视频| 成年人免费黄色播放视频| 极品人妻少妇av视频| 亚洲成人手机| 亚洲 国产 在线| 99国产综合亚洲精品| 日本wwww免费看| 熟女少妇亚洲综合色aaa.| 麻豆乱淫一区二区| 另类亚洲欧美激情| 男女下面插进去视频免费观看| 中文字幕色久视频| 91老司机精品| 久久精品国产a三级三级三级| 国产在线视频一区二区| 久久精品亚洲av国产电影网| 亚洲欧洲精品一区二区精品久久久| 91精品伊人久久大香线蕉| 韩国精品一区二区三区| 在线天堂中文资源库| tocl精华| 日本av手机在线免费观看| 国产深夜福利视频在线观看| 在线精品无人区一区二区三| 欧美人与性动交α欧美精品济南到| 91老司机精品| 天堂俺去俺来也www色官网| 他把我摸到了高潮在线观看 | 国产精品九九99| tocl精华| 法律面前人人平等表现在哪些方面 | 亚洲av成人一区二区三| 午夜视频精品福利| 在线精品无人区一区二区三| 免费高清在线观看视频在线观看| 夫妻午夜视频| 国产一级毛片在线| 亚洲精品美女久久久久99蜜臀| 汤姆久久久久久久影院中文字幕| 亚洲av电影在线观看一区二区三区| 国产精品1区2区在线观看. | 菩萨蛮人人尽说江南好唐韦庄| 我要看黄色一级片免费的| 精品视频人人做人人爽| 亚洲人成电影观看| 久久午夜综合久久蜜桃| 欧美日韩黄片免| 美女脱内裤让男人舔精品视频| 亚洲av成人一区二区三| 国产97色在线日韩免费| 久久久精品区二区三区| 精品国产乱码久久久久久男人| 国产高清videossex| 老熟女久久久| 亚洲精品久久久久久婷婷小说| 无限看片的www在线观看| 国产欧美亚洲国产| 青青草视频在线视频观看| 欧美在线黄色| 成人国语在线视频| av线在线观看网站| 免费观看a级毛片全部| 狂野欧美激情性bbbbbb| 日韩欧美免费精品| 99久久综合免费| 考比视频在线观看| 99热网站在线观看| 欧美+亚洲+日韩+国产| 又大又爽又粗| 国产精品一区二区精品视频观看| 大型av网站在线播放| 亚洲国产欧美网| 深夜精品福利| 9色porny在线观看| 亚洲成人国产一区在线观看| 精品一区在线观看国产| 人妻 亚洲 视频| 亚洲精品乱久久久久久| 精品人妻一区二区三区麻豆| 精品一区二区三区四区五区乱码| 欧美日韩亚洲高清精品| 免费人妻精品一区二区三区视频| 亚洲专区国产一区二区| 纵有疾风起免费观看全集完整版| 欧美国产精品va在线观看不卡| av有码第一页| 日日爽夜夜爽网站| 啦啦啦 在线观看视频| 精品一区在线观看国产| 国产av一区二区精品久久| 一本—道久久a久久精品蜜桃钙片| 18禁观看日本| 99热国产这里只有精品6| 欧美成人午夜精品| 丝袜人妻中文字幕| 秋霞在线观看毛片| 亚洲一区二区三区欧美精品| 曰老女人黄片| 国产福利在线免费观看视频| 免费日韩欧美在线观看| 51午夜福利影视在线观看| 亚洲成人手机| 国产成人精品在线电影| 亚洲 欧美一区二区三区| 亚洲视频免费观看视频| 男女国产视频网站| 国产免费av片在线观看野外av| 久久久久国产一级毛片高清牌| 久久久久久人人人人人| 亚洲熟女精品中文字幕| 欧美日韩黄片免| 亚洲精品日韩在线中文字幕| av不卡在线播放| 91成年电影在线观看| 黄色怎么调成土黄色| 18禁国产床啪视频网站| 丰满迷人的少妇在线观看| 午夜免费观看性视频| 桃花免费在线播放| 91成人精品电影| 日韩有码中文字幕| 男人舔女人的私密视频| 日本wwww免费看| 国产高清视频在线播放一区 | 免费在线观看视频国产中文字幕亚洲 | 久久久国产一区二区| 男女午夜视频在线观看| e午夜精品久久久久久久| 久久人人97超碰香蕉20202| 波多野结衣一区麻豆| 在线观看www视频免费| 国产黄色免费在线视频| 侵犯人妻中文字幕一二三四区| 日本a在线网址| 亚洲欧美清纯卡通| 51午夜福利影视在线观看| 国产成+人综合+亚洲专区| 90打野战视频偷拍视频| 在线观看舔阴道视频| 国产精品一区二区在线观看99| 亚洲 欧美一区二区三区| 99re6热这里在线精品视频| 精品第一国产精品| 中文字幕人妻丝袜一区二区| 国产成人av激情在线播放| 午夜视频精品福利| 日本一区二区免费在线视频| 国产深夜福利视频在线观看| 日本撒尿小便嘘嘘汇集6| 老熟女久久久| 亚洲免费av在线视频| 精品人妻一区二区三区麻豆| 各种免费的搞黄视频| 久久久国产欧美日韩av| 婷婷丁香在线五月| 国产精品久久久av美女十八| 色综合欧美亚洲国产小说| 亚洲第一av免费看| 熟女少妇亚洲综合色aaa.| 欧美97在线视频| 中文字幕色久视频| 久久精品熟女亚洲av麻豆精品| 久久久国产一区二区| 日韩 欧美 亚洲 中文字幕| 中文精品一卡2卡3卡4更新| 午夜影院在线不卡| 欧美中文综合在线视频| 少妇被粗大的猛进出69影院| 9色porny在线观看| 黄色视频不卡| 大片免费播放器 马上看| 国产精品一区二区在线观看99| 日日摸夜夜添夜夜添小说| 19禁男女啪啪无遮挡网站| 黑人欧美特级aaaaaa片| 亚洲久久久国产精品| 黄片播放在线免费| 啦啦啦 在线观看视频| 日日爽夜夜爽网站| 黑丝袜美女国产一区| 91九色精品人成在线观看| 免费高清在线观看日韩| 我要看黄色一级片免费的| 性色av乱码一区二区三区2| 中文字幕精品免费在线观看视频| cao死你这个sao货| 久久国产精品影院| 国产一区二区三区av在线| 不卡一级毛片| 人人妻人人澡人人看| 国产在线一区二区三区精| 性少妇av在线| 国产亚洲精品第一综合不卡| 大片电影免费在线观看免费| 久久毛片免费看一区二区三区| av天堂久久9| 深夜精品福利| 美女福利国产在线| 肉色欧美久久久久久久蜜桃| 欧美日韩精品网址| 在线观看免费日韩欧美大片| 国产欧美日韩一区二区三区在线| 两人在一起打扑克的视频| 丝袜喷水一区| 2018国产大陆天天弄谢| 亚洲成人国产一区在线观看| 天堂8中文在线网| 黄色视频不卡| 美国免费a级毛片| 久久人妻熟女aⅴ| a级毛片黄视频| 亚洲国产精品一区二区三区在线| 丝袜脚勾引网站| 中亚洲国语对白在线视频| 亚洲熟女毛片儿| 国产一区二区三区av在线| 老司机靠b影院| 女警被强在线播放| 成人av一区二区三区在线看 | 久久久久久免费高清国产稀缺| 亚洲精品自拍成人| 妹子高潮喷水视频| 国产成人一区二区三区免费视频网站| 欧美av亚洲av综合av国产av| 黑人猛操日本美女一级片| 久久毛片免费看一区二区三区| 欧美久久黑人一区二区| 视频区欧美日本亚洲| 天天躁日日躁夜夜躁夜夜| 日本a在线网址| 丝袜脚勾引网站| 免费高清在线观看视频在线观看| 久久久久久人人人人人| 日韩大片免费观看网站| 午夜福利一区二区在线看| 制服人妻中文乱码| 日韩,欧美,国产一区二区三区| 99久久综合免费| 久久人妻熟女aⅴ| 日韩 亚洲 欧美在线| 成人手机av| 亚洲 国产 在线| 十分钟在线观看高清视频www| 搡老岳熟女国产| √禁漫天堂资源中文www| 黄片小视频在线播放| 亚洲精品av麻豆狂野| 亚洲性夜色夜夜综合| 亚洲自偷自拍图片 自拍| 啪啪无遮挡十八禁网站| 蜜桃国产av成人99| 夜夜夜夜夜久久久久| 精品视频人人做人人爽| 国产成人av激情在线播放| 久久精品人人爽人人爽视色| 久久久久网色| 成年人黄色毛片网站| 18禁观看日本| 老司机福利观看| 国产av一区二区精品久久| 高潮久久久久久久久久久不卡| 女性生殖器流出的白浆| 99国产精品一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 国产日韩欧美亚洲二区| 亚洲欧洲日产国产| 捣出白浆h1v1| 午夜福利影视在线免费观看| 久久天躁狠狠躁夜夜2o2o| 国产一级毛片在线| 成人国语在线视频| kizo精华| 亚洲av片天天在线观看| av网站免费在线观看视频| 精品国产超薄肉色丝袜足j| 久久久精品国产亚洲av高清涩受| 国产在线观看jvid| 中国国产av一级| 国产精品.久久久| 亚洲欧美清纯卡通| 亚洲精品久久久久久婷婷小说| 国产欧美日韩一区二区三区在线| 大码成人一级视频| 亚洲av美国av| 国产亚洲精品一区二区www | 久久中文字幕一级| 男人爽女人下面视频在线观看| 成人手机av| av天堂在线播放| 国产男女内射视频| 久久久久精品人妻al黑| 亚洲专区字幕在线| 亚洲精品久久久久久婷婷小说| 婷婷色av中文字幕| 亚洲成国产人片在线观看| 亚洲视频免费观看视频| 大片免费播放器 马上看| 纵有疾风起免费观看全集完整版| 美女视频免费永久观看网站| 菩萨蛮人人尽说江南好唐韦庄| 在线观看免费视频网站a站| 精品一区二区三区av网在线观看 | 中亚洲国语对白在线视频| 午夜视频精品福利| av网站在线播放免费| 中文字幕人妻丝袜一区二区| 无限看片的www在线观看| a在线观看视频网站| 日韩欧美国产一区二区入口| 老司机福利观看| 91精品三级在线观看| 亚洲欧美清纯卡通| 国产精品偷伦视频观看了| 亚洲伊人色综图| √禁漫天堂资源中文www| www.av在线官网国产| 五月天丁香电影| 日本av免费视频播放| 丁香六月天网| 久久综合国产亚洲精品| 俄罗斯特黄特色一大片| 建设人人有责人人尽责人人享有的| 精品一区二区三区四区五区乱码| av视频免费观看在线观看| 美女福利国产在线| 最近最新免费中文字幕在线| 韩国精品一区二区三区| 男女高潮啪啪啪动态图| 免费高清在线观看日韩| 99热全是精品| 国产97色在线日韩免费| 亚洲男人天堂网一区| 无限看片的www在线观看| 大香蕉久久成人网| 久久精品国产a三级三级三级| 欧美另类一区| 成在线人永久免费视频| 国产精品国产三级国产专区5o| 两人在一起打扑克的视频| 国产一卡二卡三卡精品| 亚洲精品国产av成人精品| 国产精品偷伦视频观看了| 丝袜喷水一区| 精品国产乱子伦一区二区三区 | 在线观看www视频免费| 一本—道久久a久久精品蜜桃钙片| 午夜福利,免费看| 亚洲自偷自拍图片 自拍| 香蕉国产在线看| 搡老岳熟女国产| 免费在线观看日本一区| 男女下面插进去视频免费观看| 久久久久久久大尺度免费视频| 国产精品亚洲av一区麻豆| 99精品欧美一区二区三区四区| 中文字幕精品免费在线观看视频| 男人操女人黄网站| 韩国精品一区二区三区| 伦理电影免费视频| 久久人妻福利社区极品人妻图片| 不卡一级毛片| 熟女少妇亚洲综合色aaa.| 欧美日韩中文字幕国产精品一区二区三区 | 一级,二级,三级黄色视频| 国产深夜福利视频在线观看| 搡老乐熟女国产| 久久人妻福利社区极品人妻图片| 国产精品久久久久久精品古装| 老司机福利观看| 性高湖久久久久久久久免费观看| 亚洲精品第二区| 成人国产av品久久久| 成年美女黄网站色视频大全免费| 不卡一级毛片| 亚洲精品国产一区二区精华液| videosex国产| 99热全是精品| 成年女人毛片免费观看观看9 | 国产在线一区二区三区精| 久久午夜综合久久蜜桃| 男女之事视频高清在线观看| 黄色 视频免费看| 欧美中文综合在线视频| 黑丝袜美女国产一区| 精品国产超薄肉色丝袜足j| 中文精品一卡2卡3卡4更新| 在线精品无人区一区二区三| 久久久久网色| 国产一区二区在线观看av| 亚洲男人天堂网一区| a级毛片黄视频| 国产一区二区在线观看av| 欧美黄色片欧美黄色片| 国产成+人综合+亚洲专区| 久久香蕉激情| 久久毛片免费看一区二区三区| 亚洲欧美清纯卡通| 亚洲人成电影免费在线| 久久天堂一区二区三区四区| 我要看黄色一级片免费的| 精品国产乱码久久久久久小说| 欧美午夜高清在线| 99国产精品一区二区三区| 一进一出抽搐动态| 久久中文看片网| 国产精品熟女久久久久浪| 国产成人一区二区三区免费视频网站| 黄片小视频在线播放| a级毛片黄视频| 99久久精品国产亚洲精品| 在线精品无人区一区二区三| 精品福利观看| 桃花免费在线播放| 国产欧美亚洲国产| 麻豆乱淫一区二区| 一级片'在线观看视频| 黑丝袜美女国产一区| 悠悠久久av| 正在播放国产对白刺激| 51午夜福利影视在线观看|