• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    226Ra and228Ra tracer study on nutrient transport in east coastal waters of Hainan Island, China

    2011-08-16 09:01:07NiSUJinzhouDUTaoJIJingZHANG
    Water Science and Engineering 2011年2期

    Ni SU, Jin-zhou DU*, Tao JI, Jing ZHANG

    State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, P. R. China

    226Ra and228Ra tracer study on nutrient transport in east coastal waters of Hainan Island, China

    Ni SU, Jin-zhou DU*, Tao JI, Jing ZHANG

    State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, P. R. China

    Material fluxes (e.g., nutrients) from coastal waters to offshore areas play an important role in controlling the water quality of the adjacent sea areas not only by increasing nutrient concentration but also by changing nutrient structures. In this study, naturally occurring isotopes,226Ra and228Ra, were measured with the alpha spectrometry in the Wenjiao-Wenchang and Wanquan estuaries and adjacent sea areas along the east coast of Hainan Island. The excess226Ra and228Ra activities were observed by comparison with the values derived from the conservative mixing of freshwater and seawater end-members in both estuaries. Using a one-dimensional diffusion model, the horizontal eddy diffusion coefficient of 3.16 × 105cm2/s, for nutrients diffusing from their sources, was derived from228Ra activities. Consequently, the corresponding nutrient fluxes flowing into the coastal waters were assessed. The results can provide useful information for the study of the mixing and exchange processes of coastal waters as well as dissoluble pollutant transport in this sea area.

    Ra isotope;226Ra and228Ra tracers; horizontal eddy diffusion coefficient; nutrient flux; east coastal waters of Hainan Island

    1 Introduction

    Radium (Ra) is an alkaline earth element that is strongly absorbed onto particles and sediments in rivers. With the increase of the ionic strength and the decrease of the particle concentration in estuary regions, most Ra exists as dissolved Ra2+in saline, low turbidity seawater due to desorption from suspended particles and diffusion from sediments (Key et al. 1985; Yang et al. 2002; Lee et al. 2005; Gonneea et al. 2008). Submarine groundwater discharge with high Ra concentration also seeps into the estuarine and nearshore waters (Burnett et al. 1990; Krest et al. 1999; Moore 1997, 1999; Yang et al. 2002; Peterson et al. 2008; Nakada et al. 2011).

    The coastal ocean exchanges large amounts of nutrient and energy with the open oceanbecause virtually all terrigenous materials, including water, sediments, dissolved particulate nutrients, and trace elements, enter the coastal ocean with surface or sub-surface runoff. However, the transport of these chemicals from the coast to the open ocean is difficult to quantify because of the complex temporal and spatial variability within these systems (Moore 2000). Ra is a useful tool for tracing the water movement rate in the ocean and, consequently, for investigating the characteristics of material (e.g., nutrient and pollutant) transport to adjacent sea areas (Moore 2000; Charette et al. 2007; Colbert and Hammond 2007).

    Okubo (1971) investigated the relationship between two parameters of diffusion, the time and length scales, using the examined data from instantaneous dye release experiments in the upper mixed layer of the North Sea. The study provided a practical means for predicting the horizontal diffusion coefficient of substances from an instantaneous source. Alternatively, Ra isotopes are considered good tracers to study biogeochemical processes on different time scales in the coastal and adjacent sea areas (Kaufman et al. 1973; Yamada and Nozaki 1986; Schmidt and Reyss 1996; Moore 2000; Charette et al. 2007; Colbert and Hammond 2007; van Beek et al. 2008). Mixing parameters like the horizontal eddy diffusion coefficient in coastal regions were derived from the228Ra activity measured in surface layers (Somayajulu et al. 1996; Huh and Ku 1997; Rengarajan et al. 2002; Men et al. 2006). In recent years, there have been few studies on the horizontal eddy diffusion coefficient in the South China Sea and the corresponding nutrient transport from the coast to adjacent sea areas. Huang et al. (1997) studied the distribution of228Ra in the surface water of the northeastern South China Sea, and estimated the horizontal eddy diffusion coefficient based on the exponential relationship between the228Ra activity and the distance offshore.

    There are diverse ecosystems in the east coastal waters of Hainan Island. According to the surveys in recent years, the coral reef ecosystem in some regions is being degraded and the living space is shrinking due to the transport of terrigenous pollutants to the local waters. This work aimed to study the distribution characteristics of226Ra and228Ra in estuaries and adjacent sea areas along the east coast of Hainan Island, China. The behavior of the two Ra isotopes was investigated during estuarine mixing. A one-dimensional diffusion model was applied to fit the228Ra data for estimating the horizontal eddy diffusion coefficient in the coastal area.

    2 Sampling and methods

    2.1 Study site

    Hainan Island is located in the southern part of China, across the Qiongzhou Strait from the Leizhou Peninsula of Guangdong Province. On its eastern side, it borders the South China Sea (Fig. 1). Our study area was focused on the east coastal area of Hainan Island, including two estuaries, the Wenjiao-Wenchang and Wanquan estuaries. The Wenjiao and Wenchang rivers, with total lengths of 56 km and 37 km, respectively, directly connect withthe Bamen Bay, which has a surface area of 40 km2and an average water depth of 1 to 2 m. The two rivers have a total runoff of 8 × 108m3/year and a mean suspended sediment load of 1.0× 105t/year (Wang et al. 2006). The Wanquan River is the third largest river in Hainan Province, with a total length of about 160 km and a drainage area of about 3.6 × 103km2. The runoff of the Wanquan River shows a significant seasonal variation, with an annual average runoff of 5.2 × 109m3/year and a mean suspended sediment load of 3.9 × 106t/year (Wang 2002; Wang et al. 2006). In our study area, a significant feature is the notable diversity of habitats, such as rocky shores, sandy beaches, mangroves, sea grass beds, and especially, coral reefs. Frequent tropical cyclones strike the island in August and September every year (Mao et al. 2006).

    Fig. 1 Sampling sites in study area along east coast of Hainan Island

    2.2 Methods

    Most of the coastal and estuarine water samples in this study were collected in August 2007. We also collected samples at the sampling sitesW21-W29in the Wenjiao-Wenchang Estuary in July 2008 after a typhoon event.

    Samples were collected and enriched as follows: (1) About 20 L of water was collected using a submerged pump installed at a water depth of 0.5 m and filtered immediately through cellulose filters (pore size: 0.45 μm). It was then stored in pre-cleaned polyethylene containers. (2) 4.00 dpm of229Th-225Ra solution (Eckert and Ziegler Isotope Products, 7229) was added as an internal tracer while the sample solution was stirred and acidified to reach a pH value of 2, and then allowed to stand for about 6 h to equilibrate with seawater. (3) NH4OH, KMnO4and MnCl2solutions were added to form an amorphous dark brown suspension of MnO2at a pH value of 9. (4) The suspension was stirred for 0.5 to 1 h, and allowed to settle for more than 12 h. (5) The precipitate was separated from the supernatant and dissolved in HNO3and H2O2solutions (Dimova et al. 2007).

    The following separation and purification procedures were described by Hancock and Martin (1991). Briefly, the Pb(NO3)2solution, dilute H2SO4, and solid K2SO4were added to the acidic solution mentioned above to form the Pb(Ra)SO4co-precipitate. The co-precipitate was centrifuged and redissolved in the ethylene diamine tetraacetic acid (EDTA) solution. Then, this solution was transferred through an anion exchange column (DOWEX 1X8-200, 100-200 meshes, chloride form, 50 mm in height, and 7 mm in diameter) for desulfidation, and this column was washed in 13-mL EDTA solution with a concentration of 0.01 mol/L and a pH value of 10. After that, thorium (Th) and actinium (Ac) were retained on the column (Th separation). Later, the solution was transferred from the anion column onto a cation exchange column (DOWEX 50WX8-200, 200-400 meshes, 80 mm in height, and 7 mm in diameter) to elute plumbum (Pb) and residual Th and Ac. Finally, Ra isotopes were electrodeposited onto a stainless-steel disc and determined by the alpha spectrometry (Canberra 7200-08).226Ra is an alpha-emitting isotope, while228Ra is a beta-emitting isotope. Hence, the226Ra activity was calculated immediately after the counting, but the228Ra activity could only be obtained indirectly through the activity of its daughters228Th and224Ra after the disc was stored for more than six months.

    3 Results and discussion

    We present the226Ra and228Ra data andRaactivity ratio (henceforth denoted as [228/226]) in two estuaries (sampling sitesW1-W16in the Wenjiao-Wenchang Estuary andB1-B23in the Wanquan Estuary) and offshore sea waters (sampling sitesT1,T3, andT5on transectT, andT1′,T3′, andT5′on transectT′) in August 2007 and in the Wenjiao-Wenchang Estuary (sampling sitesW21-W29) in July 2008 after a typhoon event. The sampling siteB23is on upper reach of the Wanquan River and not shown in Fig. 1. The detailed sampling information and the Ra isotope activities are shown in Table 1.

    Table 1 Sampling sites, water depth, salinity, and analytical results of Ra isotopes in estuaries and adjacent sea areas along east coast of Hainan Island, China

    3.1 Distribution of226Ra and228Ra in Wenjiao-Wenchang Estuary

    Sampling sites in the Wenjiao-Wenchang Estuary are shown in Fig. 1. In August 2007, the226Ra and228Ra activities were 13.0-34.3 dpm/100L and 34.7-140 dpm/100L, respectively. In July 2008, as influenced by the typhoon event, the226Ra and228Ra activities decreased to 12.2-23.8 dpm/100L and 24.6-71.1 dpm/100L, respectively. The low Ra concentrations may be due to the strong turbulent mixing and seawater dilution caused by the typhoon. As expected, the maximum desorption event in July 2008 occurred in the region with a lower salinity range than that of the region in August 2007 (Figs. 2(a) and 2(c)).226Ra and228Ra concentrations were well above the conservative mixing line between the river and seawater end-members, especially in August 2007. This distinct convex curvature indicated the excess addition of Ra into the dissolved phase. Ra sources include the desorption from riverine suspended particles, the diffusion from bottom sediments, and most importantly, the submarine groundwater discharge (Hussain et al. 1999; Krest et al. 1999; Moore 1999; Yang et al. 2002; Peterson et al. 2008; Nakada et al. 2011).

    [228/226] followed the same pattern as the228Ra activity in the Wenjiao-Wenchang Estuary and varied greatly with the salinity, as shown in Figs. 2(a) through (d). In August 2007, [228/226] in freshwater was lower than 2, and it increased sharply to the maximum value of 5.8 at moderate salinity, and then decreased through the high-salinity region in the mixing zone. In July 2008, [228/226] increased from the value lower than 2 in freshwater as well to the maximum value of 4.1 and then decreased with the increasing salinity. Although the two isotopes have similar chemical properties, the difference in their half-lives will affect the production rates because of their respective parents. Short half-lives result in higher production rates (Beck et al. 2007). Thus, we know that the growth rate of228Ra is higher than that of226Ra, accounting for [228/226] of more than 1 in most cases. Meanwhile, if we assumed that the desorption of226Ra and228Ra from suspended particles was similar and the contribution from submarine groundwater discharge was negligible, the diffusion of these two isotopes from bottom sediments have been much different to account for the large difference in [228/226]. However, this may not have been the case, as the diffusion from sediments cannot cause such a large difference in [228/226]. It was reported that in estuaries with salinity ranging from 2 to 20, where Ra isotopes were excessively released into the seawater, the maximum values of [228/226] were within the range of 3 to 5 (Elsinger and Moore 1983; Rengarajan et al. 2002). In this study, the maximum [228/226] observed was close to 6 in 2007 and greater than 4 in 2008 in the Wenjiao-Wenchang Estuary. Such results most likely suggested discharge of submarine groundwater with unusually high [228/226] (Swarzenski 2007; Charette 2007), which should be further investigated.

    Fig. 2226Ra and228Ra activities and [228/226] vs. salinity for Wenjiao-Wenchang Estuary

    3.2 Distribution of226Ra and228Ra in Wanquan Estuary

    Unlike the natural topography in the Wenjiao-Wenchang Estuary, the topography is quite complex in the Wanquan Estuary. There are small sandbars close to the mouth, separating the river flow into southern and northern branches. Sampling sites in the Wanquan Estuary were located in the southern branch (Fig. 1). The226Ra and228Ra activities and [228/226] there were 7.04-18.9 dpm/100L, 8.37-32.6 dpm/100L, and 1.0-2.4, respectively, which were significantly lower than those in the Wenjiao-Wenchang Estuary. The relationship between the226Ra or228Ra activity and salinity also demonstrated non-conservative mixing, except for one sampling point where salinity was 33.9 (Figs. 3(a) and (b)). This implies that the impact of groundwater discharge in the Wanquan Estuary on the Ra concentration might not be as significant as that in the Wenjiao-Wenchang Estuary. At the sampling point with the salinity of 33.9, we observed an increase of the228Ra activity but a decrease of the226Ra activity, probably indicating the extra input of228Ra to the mixing zone. A similar phenomenon was found in the Yangtze Estuary by Elsinger and Moore (1984). We suspect that the diffusion from bottom sediments other than groundwater discharge provided228Ra to the water body, while addition of226Ra from these sources was masked by water dilution.

    Fig. 3226Ra and228Ra activities and [228/226] vs. salinity for Wanquan Estuary

    3.3 Estimation of horizontal eddy diffusion coefficient

    228Ra in ocean surface waters is continuously supplied from the continental shelf sediments by the decay of its parent232Th. Horizontal mixing of the water body promotes the transport of228Ra from the surface mixing layer offshore into the open ocean. It is possible to use228Ra as a tracer to estimate the exchange rate of coastal waters. If net advection can be neglected, and the system is in a steady state, the distribution pattern of the228Ra activity versus distance offshore can be expressed with a simple one-dimensional diffusion model as follows (Moore 2000):

    whereAis the228Ra activity (dpm/100L);xis the distance offshore (km);λis the decay constant of228Ra, andλ= 0.12/year; andKhis the horizontal eddy diffusion coefficient (cm2/s). Under boundary conditionsA=A0atx= 0 andA→0 atx→∞, the solution of Eq. (1) is then expressed as

    Eq. (2) describes the decrease of228Ra with increasingxas an exponential function. ThusKhcan be calculated from the slopeSof a plot of lnAversus the distance offshoreFig. 1 shows two transectsTandT′ in the adjacent sea areas. Profiles of the226Ra and228Ra activities as a function of the distance offshore for these two transects are illustrated in Fig. 4.

    Moore (2000) showed a significant decrease of Ra isotopes with the distance offshore within 50 km from the coast. However, in this study, we saw a slightly decrease of the226Ra and228Ra activities at transectT(Fig. 4(a)). It has been reported that228Ra is known to build up to high concentrations in extended continental shelf areas (van der Loeff et al. 1995; Kim et al. 2005), which would constitute an alternative source of228Ra from neighboring regions. Fig. 4(b) shows an increase of the228Ra activity further offshore at transectT′ that causes a poor linear regression result (R2=0.036 7). This suggests an additional228Ra source that contributed to theoffshore areas. In this case, the mixing model assumptions cannot be met, and thus, transectT′was not included for the diffusion coefficient calculation. However, the estimate at transectTseemed more robust, and any subsequent226Ra or nutrient flux calculations would only be based on this transect.

    Fig. 4226Ra and228Ra activities as a function of distance offshore for transectsTandT′

    Fig. 5 shows lnAas a function of the distance offshore for transectsTandT′. The slope of the regression line was –0.011 dpm/(100L·km) at transectT, and theKhvalue of 3.16 × 105cm2/s was obtained from Eq. (2) based on the mixing model assumptions.

    Fig. 5 lnAas a function of distance offshore for transectsTandT′

    Table 2 summarizes the horizontal eddy diffusion coefficients calculated using the228Ra activity in some regions. Huang et al. (1997) estimated the horizontal eddy diffusion coefficient of 2.3 × 106cm2/s in the northeastern South China Sea. Clearly, the estimatedKhvalue in this study was an order of magnitude less than that reported by Huang et al. (1997).

    For a conservative tracer, its flux can be estimated fromKhand the offshore concentration gradient (Moore 2000). The gradient of226Ra was 0.096 dpm/(100L·km) in the study area. Thus, the corresponding offshore226Ra flux for unit cross-sectional area was 2.62 × 109dpm/(km2·d). In the study area, there was a better pycnocline at the water depth of about 10 m, which inhibited Ra transport from the bottom to overlying water. Therefore, we assumed that Ra was transported offshore in this 10-m deep surface layer; thus, the offshore flux of226Ra for unit length was 2.62 × 107dpm/(km·d). This value can be used to balance the226Ra flux to the ocean. Moore (2000) estimated the226Ra flux from the coastline to the ocean and concluded that a substantial volume of groundwater discharge was required to balance the Ra budget. Moreover, application of the228Ra-derivedKhcan also help assess the nutrient fluxes to the open South China Sea.

    Table 2 Horizontal eddy diffusion coefficients in some regions, calculated with228Ra activity

    3.4 Horizontal diffusion flux of nutrients from coast to offshore area

    One important pathway for terrigenous nutrient transport from land to the open ocean is via the diffusion process. In this study, we used the nutrient concentrations at transectT′as an example. Based on the offshore nutrient gradients (, and) and theKhvalue estimated in section 3.3, the nutrient fluxesQfrom the coast to the open South China Sea can be calculated as follows:

    whereιis the horizontal nutrient gradient, which was 0.46 μmol/(m3·m) for, 0.03 μmol/(m3·m) for, and 1.03 μmol/(m3·m) forin this study. The horizontal eddy diffusion coefficientKhwas 3.16 × 105cm2/s. Using Eq. (3), the nutrient fluxes in our study area were 1.3 mol/(m2·d) for, 0.082 mol/(m2·d) for, and 2.8 mol/(m2·d) for. The N:P ratio of 16 was the same as the Redfield ratio. The changes of the nutrient concentration could result in the shift in theN:Pratio during the diffusion process. Chen et al. (2001) reported that in the wet season of six months, the Kuroshio current imported (288 ± 26) × 109mol of N, (20.6 ± 1.9) × 109mol of P, and (412 ±37) × 109mol of Si into the South China Sea through the Bashi Channel. In this study, if the nutrients were transported offshore in the 10-m deep surface layer, the total amounts of nutrients for the study area with a 100-km coastline within six months were 2.3 × 108mol of N, 1.5 × 107mol of P, and 5.1 × 108mol of Si. Based on a comparison with the estimates made by Chen et al. (2001), the horizontal transport in this work supplied a small portion of the nutrients into the South China Sea. However, its potential impact on the east coast of Hainan Island cannot be ignored, and the variation of the N:Pratio should be further investigated. Moreover, other nutrient fluxes from the coastal to offshore areas can also be estimated by the diffusion coefficient obtained by this study, which could be helpful to understanding the way aquatic environmental pollution along the coast affects offshore areas.

    4 Conclusions

    The activity of Ra isotopes (226Ra and228Ra) showed non-conservative behavior in the mixing zone of the Wenjiao-Wenchang and Wanquan estuaries, suggesting an extra input of Ra into the Estuary, and especially the possible contribution from submarine groundwater discharge. It should be mentioned that the potential lateral source of Ra contributing to the offshore area at transectT′ meant that the model assumptions could not be met there. Consequently, we could estimate the eddy diffusion coefficient only from the data at transectT. From the distribution of the228Ra activity with the distance offshore at transectT, the horizontal eddy diffusion coefficient was obtained, which was 3.16 × 105cm2/s, and the associated nutrient fluxes were 1.3 mol/(m2·d) for, 0.082 mol/(m2·d) for, and 2.8 mol/(m2·d) for. Although these estimates only considered a small part of nutrient inputs into the South China Sea, they can still provide a firm basis for the future research when we are committed to reducing their influences on the water quality by controlling the nutrient structures in the coastal ecosystem of east coast of Hainan Island.

    Beck, A. J., Rapaglia, J. P., Cochran, J. K., and Bokuniewicz, H. J. 2007. Radium mass-balance in Jamaica Bay, NY: Evidence for a substantial flux of submarine groundwater.Marine Chemistry, 106(3-4), 419-441. [doi:10.1016/j.marchem.2007.03.008]

    Burnett, W. C., Cowart, J. B., and Deetae, S. 1990. Radium in the Suwannee River and Estuary: Spring and river input to the Gulf of Mexico.Biogeochemistry, 10(3), 237-255. [doi:10.1007/BF00003146]

    Charette, M. A. 2007. Hydrologic forcing of submarine groundwater discharge: Insight from a seasonal study of radium isotopes in a groundwater-dominated salt marsh estuary.Limnology and Oceanogaphy, 52(1), 230-239. [doi:10.4319/lo.2007.52.1.0230]

    Charette, M. A., Gonneea, M. E., Morris, P. J., Statham, P., Fones, G., Planquette, H., Salter, I., and Garabato, A. N. 2007. Radium isotopes as tracers of iron sources fueling a southern ocean phytoplankton bloom.Deep-Sea Research II, 54(18-20), 1989-1998. [doi:10.1016/j.dsr2.2007.06.003]

    Chen, C. T. A., Wang, S. L., Wang, B. J., and Pai, S. C. 2001. Nutrient budgets for the South China Sea basin.Marine Chemistry, 75(4), 281-300. [doi:10.1016/S0304-4203(01)00041-X]

    Cochran, J. K. 1992. The oceanic chemistry of uranium and thorium series nuclides.Uranium-series Disequilibrium: Applications to Earth, Marine and Environmental Science, 334-395. Oxford: Clarendon Press.

    Colbert, S. L., and Hammond, D. E. 2007. Temporal and spatial variability of radium in the coastal ocean and its impact on computation of nearshore cross-shelf mixing rates.Continental Shelf Research, 27(10-11), 1477-1500. [doi:10.1016/j.csr.2007.01.003]

    Dimova, N., Dulaiova, H., Kim, G., and Burnett, W. C. 2007. Uncertainties in the preparation of224Ra Mn fiber standards.Marine Chemistry, 109(3-4), 220-225. [doi:10.1016/j.marchem.2007.06.016]

    Elsinger, R. J., and Moore, W. S. 1983.224Ra,228Ra and226Ra in Winyah Bay and Delaware Bay.Earth and Planetary Science Letter, 64(3), 430-436. [doi:10.1016/0012-821X(83)90103-6]

    Elsinger, R. J., and Moore, W. S. 1984.226Ra and228Ra in the mixing zones of the Pee Dee River-Winyah Bay, Yangtze River and Delaware Bay estuaries.Estuarine, Coastal and Shelf Science, 18(6), 601-613. [doi:10.1016/0272-7714(84)90033-7]

    Gonneea, M. E., Morris, P. J., Dulaiova, H., and Charette, M. A. 2008. New perspectives on radium behavior within a subterranean estuary.Marine Chemistry, 109(3-4), 250-267. [doi:10.1016/j. marchem.2007.12.002]

    Hancock, G. J., and Martin, P. 1991. Determination of Ra in environmental samples by alpha-particle spectrometry.Applied Radiation and Isotopes, 42, 63-69. [doi:10.1016/0883-2889(91)90125-K]

    Huang, Y. P., Xie, Y. Z., Chen, M., Chen, F. Z., and Qiu, Y. S. 1996. Distribution feature of228Ra in surface seawater of the Nansha Sea area.Isotope Marine Chemistry of Nansha Islands Waters, 70-78. Beijing: China Ocean Press. (in Chinese)

    Huang, Y. P., Jiang, D. S., Xu, M. Q., Chen, M., and Qiu, Y. S. 1997. A study on horizontal eddy diffusion in the surface water of the northeastern South China Sea based on228Ra tracer.Tropic Oceanology, 16(2), 67-74. (in Chinese)

    Huh, C. A., and Ku, T. L. 1997. A 2-D section of228Ra and226Ra in the Northeast Pacific.Oceanologica Acta, 21(4), 533-542. [doi:10.1016/S0399-1784(98)80036-4]

    Hussain, N., Church, T. M., and Kim, G. 1999. Use of222Rn and226Ra to trace groundwater discharge into the Chesapeake Bay.Marine Chemistry, 65(1-2), 127-134. [doi:10.1016/S0304-4203(99)00015-8]

    Kasemsupaya, V., Tsubota, H., and Nozaki, Y. 1993.228Ra and its implications in the Seto InIand Sea.Estuarine, Coastal and Shelf Science, 36(1), 31-45. [doi:10.1006/ecss.1993.1003]

    Kaufman, A., Trier, R. M., Broecker, W. S., and Feely, H. W. 1973. Distribution of228Ra in the world ocean.Journal of Geophysical Research, 78(36), 8827-8848. [doi:10.1029/JC078i036p08827]

    Key, R. M., Sarmiento, J. L., Stallard, R. F., and Moore, W. S. 1985. Distribution and flux of226Ra and228Ra in the Amazon River Estuary.Journal of Geophysical Research, 90(C10), 6995-7004. [doi: 10.1029/JC090iC04p06995]

    Kim, G., Ryu, J. W., Yang, H. S., and Yun, S. T. 2005. Submarine groundwater discharge (SGD) into the Yellow Sea revealed by228Ra and226Ra isotopes: Implications for global silicate fluxes.Earth and Planetary Science Letters, 237(1-2), 156-166. [doi:10.1016/j.epsl.2005.06.011]

    Knauss, K. G., Ku, T. L., and Moore, W. S. 1978. Radium and thorium isotopes in the surface water of the East Pacific and coastal Southern California.Earth and Planetary Science Letters, 39(2), 235-249. [doi:10.1016/0012-821X(78)90199-1]

    Krest, J. M., Moore, W. S., and Gardner, L. R. 1999.226Ra and228Ra in the mixing zones of the Mississippi and Atchafalaya rivers: Indicators of groundwater input.Marine Chemistry, 64(3), 129-152. [doi:10.1016/ S0304-4203(98)00070-X]

    Lee, J. S., Kim, K. H., and Moon, D. S. 2005. Radium isotopes in the Ulsan Bay.Journal of Environmental Radioactivity, 82(2), 129-141. [doi:10.1016/j.jenvrad.2004.11.005]

    Mao, L. M., Zhang, Y. L., and Bi, H. 2006. Modern pollen deposits in coastal mangrove swamps from northern Hainan Island, China.Journal of Coastal Research, 22(6), 1423-1436. [doi:10.2112/05-0516.1]

    Men, W., Wei, H., and Liu, G. S. 2006.226Ra and228Ra in the seawater of the western Yellow Sea.Journal of Ocean University of China, 5(3), 228-234.

    Moore, W. S., Feely, H. W., and Li, Y. H. 1980. Radium isotopes in sub-Arctic waters.Earth and Planetary Science Letter, 49(2), 329-340. [doi:10.1016/0012-821X(80)90076-X]

    Moore, W. S. 1997. High fluxes of radium and barium from the mouth of the Ganges-Brahmaputra River during low river discharge suggest a large groundwater source.Earth and Planetary Science Letter, 150(1-2), 141-150. [doi:10.1016/S0012-821X(97)00083-6]

    Moore, W. S. 1999. The subterranean estuary: a reaction zone of ground water and sea water.Marine Chemistry, 65(1-2), 111-125. [doi:10.1016/S0304-4203(99)00014-6]

    Moore, W. S. 2000. Determining coastal mixing rates using radium isotopes.Continental Shelf Research, 20(15), 1993-2007. [doi:10.1016/S0278-4343(00)00054-6]

    Nakada, S., Yasumoto, J., Taniguchi, M., and Ishitobi, T. 2011. Submarine groundwater discharge and seawater circulation in a subterranean estuary beneath a tidal flat.Hydrological Processes, published online at http://onlinelibrary.wiley.com/doi/10.1002/hyp.8016/abstract on March 24, 2011. [doi:10. 1002/hyp.8016]

    Okubo, A. 1971. Oceanic diffusion diagrams.Deep-Sea Research and Oceanographic Abstracts, 18(8), 789-802. [doi:10.1016/0011-7471(71)90046-5]

    Peterson, R. N., Burnett, W. C., Taniguchi, M., Chen, J. Y., Santos, I. R., and Ishitobi, T. 2008. Radon and radium isotope assessment of submarine groundwater discharge in the Yellow River Delta, China.Journal of Geophysical Research, 113(C9), C09021. [doi:10.1029/2008JC004776]

    Rengarajan, R., Sarin, M. M., Somayajulu, B. L. K., and Suhasini, R. 2002. Mixing in the surface waters of the western Bay of Bengal using228Ra and226Ra.Journal of Marine Research, 60(2), 255-279.

    Schmidt, S., and Reyss, J. L. 1996. Radium as an internal tracer of Mediterranean outflow water.Journal of Geophysical Research, 101(C2), 3589-3596. [doi:10.1029/95JC03308]

    Somayajulu, B. L. K., Sarin, M. M., and Ramesh, R. 1996. Denitrification in the eastern Arabian Sea: Evaluation of the role of continental margins using Ra isotopes.Deep-Sea Research II, 43(1), 111-117. [doi:10.1016/0967-0645(95)00079-8]

    Swarzenski, P. W. 2007. U/Th series radionuclides as coastal groundwater tracers.Chemical Reviews, 38(21), 663-674. [doi:10.1002/chin.200721270]

    van Beek, P., Bourquin, M., Reyss, J. L., Souhaut, M., Charette, M. A., and Jeandel, C. 2008. Radium isotopes to investigate the water mass pathways on the Kerguelen Plateau (Southern Ocean).Deep-Sea Research II, 55(5-7), 622-637. [doi:10.1016/j.dsr2.2007.12.025]

    van der Loeff, M. M. R., Key, R. M., Scholten, J., Bauch, D., and Michel, A. 1995.228Ra as a tracer for shelf water in the Arctic Ocean.Deep-Sea Research II, 42 (6), 1533-1553. [doi:10.1016/0967-0645(95) 00053-4]

    Wang, B. C., Chen, S. L., Gong, W. P., Ling, W. Q., and Xu, Y. 2006.Development and Evolution of Estuarine coast in Hainan Island. Beijing: China Ocean Press. (in Chinese)

    Wang, Y. 2002. Features of Hainan Island coastal environment.Marine Geology Letters, 18(3), 1-9. (in Chinese)

    Xie, Y. Z., Huang, Y. P., Shi, W. Y., Fu, Z. L., Qiu, Y. S., Xiao, Y., Chen, M., and Chen, F. Z. 1995.228Ra in the NE South China Sea.Proceedings of Symposium of Marine Sciences in Taiwan Strait and Its Adjacent Waters, 232-239. Beijing: China Ocean Press. (in Chinese)

    Yamada, M., and Nozaki, Y. 1986. Radium isotopes in coastal and open ocean surface waters of the western North Pacific.Marine Chemistry, 19(4), 379-389. [doi:10.1016/0304-4203(86)90057-5]

    Yang, H. S., Hwang, D. W., and Kim, G. 2002. Factors controlling excess radium in the Nakdong River Estuary, Korea: Submarine groundwater discharge versus desorption from riverine particles.Marine Chemistry, 78(1), 1-8. [doi:10.1016/S0304-4203(02)00004-X]

    This work was supported by the Natural Science Foundation of China (Grant No. 41021064), the Sino-German Cooperation Project of Ministry of Science and Technology of China (Grant No. 2007DFB20380), and the Ph. D. Program Scholarship Fund of East China Normal University (Grant No. 2010047).

    *Corresponding author (e-mail:jzdu@sklec.ecnu.edu.cn)

    Received Aug. 14, 2010; accepted May 23, 2011

    日韩中文字幕视频在线看片| 一区二区三区乱码不卡18| 日日撸夜夜添| 成人国产麻豆网| 精品国产乱码久久久久久小说| 日产精品乱码卡一卡2卡三| 国产熟女欧美一区二区| 亚洲欧美成人精品一区二区| av黄色大香蕉| 久久国产精品男人的天堂亚洲 | 黑人欧美特级aaaaaa片| 亚洲国产欧美在线一区| 最新中文字幕久久久久| 亚洲色图 男人天堂 中文字幕 | 少妇被粗大的猛进出69影院 | 精品卡一卡二卡四卡免费| 少妇猛男粗大的猛烈进出视频| 国产精品三级大全| 精品一区在线观看国产| 久久久国产一区二区| 午夜久久久在线观看| 18禁裸乳无遮挡动漫免费视频| 一本—道久久a久久精品蜜桃钙片| 大香蕉久久成人网| 纵有疾风起免费观看全集完整版| 欧美日韩一区二区视频在线观看视频在线| 九草在线视频观看| 成人午夜精彩视频在线观看| 99久久人妻综合| 妹子高潮喷水视频| 亚洲精品中文字幕在线视频| 性色av一级| 成年人午夜在线观看视频| 我要看黄色一级片免费的| 亚洲精品456在线播放app| 欧美另类一区| 精品久久久久久久久av| 菩萨蛮人人尽说江南好唐韦庄| www.色视频.com| 免费播放大片免费观看视频在线观看| 国产熟女午夜一区二区三区 | 国产亚洲精品久久久com| 成人无遮挡网站| 久久 成人 亚洲| 最近中文字幕高清免费大全6| 成人18禁高潮啪啪吃奶动态图 | 日本爱情动作片www.在线观看| 十分钟在线观看高清视频www| 少妇人妻 视频| 美女主播在线视频| 久久久久久久久久久久大奶| 欧美精品人与动牲交sv欧美| 成年美女黄网站色视频大全免费 | 免费观看无遮挡的男女| 最近中文字幕高清免费大全6| 久久青草综合色| 亚洲成人手机| 成人漫画全彩无遮挡| 大码成人一级视频| 只有这里有精品99| 精品人妻偷拍中文字幕| 免费观看在线日韩| 你懂的网址亚洲精品在线观看| 欧美三级亚洲精品| 日本黄大片高清| 高清黄色对白视频在线免费看| 一级,二级,三级黄色视频| 日本av免费视频播放| 最黄视频免费看| 欧美bdsm另类| 看非洲黑人一级黄片| 26uuu在线亚洲综合色| 菩萨蛮人人尽说江南好唐韦庄| 日韩精品有码人妻一区| 美女主播在线视频| 日韩不卡一区二区三区视频在线| 国产一区二区三区av在线| 国产精品无大码| 91aial.com中文字幕在线观看| 最黄视频免费看| 久久久久精品久久久久真实原创| 国产成人91sexporn| av免费在线看不卡| 97超视频在线观看视频| 成人国语在线视频| 在线观看三级黄色| 男女国产视频网站| 国产片内射在线| 91久久精品国产一区二区三区| 男女高潮啪啪啪动态图| 男女边吃奶边做爰视频| 国产高清国产精品国产三级| av卡一久久| 性色avwww在线观看| 高清欧美精品videossex| 欧美日韩av久久| 亚洲精品第二区| 欧美亚洲日本最大视频资源| 欧美成人精品欧美一级黄| 久久精品国产a三级三级三级| 又黄又爽又刺激的免费视频.| 国产精品国产av在线观看| 国产在线视频一区二区| 国产在线视频一区二区| 夫妻性生交免费视频一级片| 美女脱内裤让男人舔精品视频| 波野结衣二区三区在线| videosex国产| 人成视频在线观看免费观看| 永久免费av网站大全| 午夜福利在线观看免费完整高清在| 免费观看在线日韩| 成人毛片60女人毛片免费| 成人毛片60女人毛片免费| 亚洲av欧美aⅴ国产| 国产午夜精品久久久久久一区二区三区| 七月丁香在线播放| 日韩不卡一区二区三区视频在线| 国产精品人妻久久久影院| 一级二级三级毛片免费看| 男男h啪啪无遮挡| 国产精品久久久久久精品电影小说| 免费看av在线观看网站| 国产精品久久久久久久久免| 午夜福利视频在线观看免费| 一个人免费看片子| 国产色婷婷99| 国产精品人妻久久久久久| 午夜福利,免费看| 成人免费观看视频高清| 最近中文字幕2019免费版| 国产永久视频网站| 久久精品久久久久久噜噜老黄| 欧美日韩视频精品一区| 免费观看av网站的网址| 亚洲成色77777| 波野结衣二区三区在线| 亚洲av日韩在线播放| 日本与韩国留学比较| 亚洲怡红院男人天堂| 精品午夜福利在线看| 欧美国产精品一级二级三级| 久久久国产一区二区| √禁漫天堂资源中文www| 成人影院久久| 搡老乐熟女国产| av卡一久久| 欧美xxxx性猛交bbbb| 欧美成人精品欧美一级黄| 免费少妇av软件| 中国美白少妇内射xxxbb| 亚洲国产日韩一区二区| 人人妻人人澡人人爽人人夜夜| 全区人妻精品视频| 男女边摸边吃奶| 日韩制服骚丝袜av| 中文精品一卡2卡3卡4更新| 一本色道久久久久久精品综合| 一级a做视频免费观看| 欧美日韩视频高清一区二区三区二| 国产片特级美女逼逼视频| 欧美另类一区| 2018国产大陆天天弄谢| 亚洲精品色激情综合| 成人影院久久| 少妇猛男粗大的猛烈进出视频| 国产精品99久久99久久久不卡 | 天堂俺去俺来也www色官网| 新久久久久国产一级毛片| 国产一区有黄有色的免费视频| 午夜免费男女啪啪视频观看| 国产一区二区三区综合在线观看 | 亚洲久久久国产精品| 制服丝袜香蕉在线| 三级国产精品欧美在线观看| 日本午夜av视频| 国产成人91sexporn| 男女国产视频网站| 丰满少妇做爰视频| 最近2019中文字幕mv第一页| 久久精品国产亚洲av天美| 日韩一区二区视频免费看| 欧美激情 高清一区二区三区| 国产成人精品福利久久| 视频在线观看一区二区三区| 亚洲精品,欧美精品| 亚洲欧美成人综合另类久久久| 国产男人的电影天堂91| 黑人欧美特级aaaaaa片| 99久久精品国产国产毛片| 亚洲人成网站在线播| 午夜免费观看性视频| 女人久久www免费人成看片| 成人毛片a级毛片在线播放| 欧美精品人与动牲交sv欧美| 精品久久久久久电影网| 亚洲av电影在线观看一区二区三区| 91在线精品国自产拍蜜月| 曰老女人黄片| 国产爽快片一区二区三区| 国产精品国产av在线观看| 成人亚洲欧美一区二区av| 91aial.com中文字幕在线观看| 各种免费的搞黄视频| 久久久久人妻精品一区果冻| 亚洲精品国产av成人精品| 青春草国产在线视频| 国产日韩欧美亚洲二区| 亚洲,欧美,日韩| 人体艺术视频欧美日本| 日本午夜av视频| 亚洲欧洲精品一区二区精品久久久 | 黄色毛片三级朝国网站| 亚洲国产色片| 日日啪夜夜爽| 免费看光身美女| 91久久精品电影网| 国产一区二区在线观看av| 国产亚洲最大av| 最近手机中文字幕大全| 国产精品蜜桃在线观看| av专区在线播放| 国产有黄有色有爽视频| 亚洲天堂av无毛| 亚洲美女视频黄频| 高清黄色对白视频在线免费看| 曰老女人黄片| av播播在线观看一区| 国产综合精华液| 一二三四中文在线观看免费高清| 久久久久国产精品人妻一区二区| 欧美精品高潮呻吟av久久| 国产成人精品福利久久| 毛片一级片免费看久久久久| videossex国产| 建设人人有责人人尽责人人享有的| 精品一品国产午夜福利视频| 你懂的网址亚洲精品在线观看| 69精品国产乱码久久久| 一级a做视频免费观看| 免费观看的影片在线观看| 中文字幕免费在线视频6| 久久久久久久久久成人| 18在线观看网站| 免费久久久久久久精品成人欧美视频 | 国产欧美日韩一区二区三区在线 | 美女国产视频在线观看| 校园人妻丝袜中文字幕| 精品人妻熟女av久视频| 国产亚洲av片在线观看秒播厂| 99久久人妻综合| 美女中出高潮动态图| 欧美日韩一区二区视频在线观看视频在线| 哪个播放器可以免费观看大片| 亚洲欧洲日产国产| 色婷婷久久久亚洲欧美| 国产精品麻豆人妻色哟哟久久| 熟女电影av网| www.色视频.com| 亚洲婷婷狠狠爱综合网| 嘟嘟电影网在线观看| 欧美激情 高清一区二区三区| 黄色一级大片看看| a级毛片在线看网站| 日韩中文字幕视频在线看片| 18禁在线无遮挡免费观看视频| 国产无遮挡羞羞视频在线观看| 精品一品国产午夜福利视频| 亚洲精品aⅴ在线观看| 欧美精品国产亚洲| 日韩免费高清中文字幕av| 亚洲精品中文字幕在线视频| 少妇被粗大的猛进出69影院 | 夜夜爽夜夜爽视频| 免费观看在线日韩| www.色视频.com| av天堂久久9| 亚洲精品日本国产第一区| 亚洲不卡免费看| 亚洲中文av在线| av福利片在线| 综合色丁香网| 亚洲国产精品成人久久小说| 亚洲国产毛片av蜜桃av| 人妻一区二区av| a级毛片在线看网站| 国产一区亚洲一区在线观看| 毛片一级片免费看久久久久| 欧美日韩av久久| 男人添女人高潮全过程视频| 夫妻性生交免费视频一级片| 久久久久精品久久久久真实原创| 日韩成人av中文字幕在线观看| 麻豆精品久久久久久蜜桃| 亚洲第一av免费看| 亚洲国产精品一区二区三区在线| 日韩不卡一区二区三区视频在线| 99九九线精品视频在线观看视频| 夜夜骑夜夜射夜夜干| 欧美日韩亚洲高清精品| 蜜桃在线观看..| 国产永久视频网站| 亚洲国产av新网站| 亚洲婷婷狠狠爱综合网| 三上悠亚av全集在线观看| 国产成人一区二区在线| 纵有疾风起免费观看全集完整版| 久久久久视频综合| 毛片一级片免费看久久久久| 国产精品久久久久久久久免| 国产精品不卡视频一区二区| 男女边摸边吃奶| 欧美另类一区| 国产精品国产三级国产专区5o| 欧美老熟妇乱子伦牲交| 人妻夜夜爽99麻豆av| av又黄又爽大尺度在线免费看| 嫩草影院入口| 婷婷色av中文字幕| 国产精品不卡视频一区二区| 交换朋友夫妻互换小说| 2018国产大陆天天弄谢| av女优亚洲男人天堂| 国产不卡av网站在线观看| 三级国产精品欧美在线观看| 成人国产av品久久久| 亚洲国产欧美日韩在线播放| 国产精品99久久久久久久久| 精品国产乱码久久久久久小说| 91精品国产国语对白视频| 国产亚洲一区二区精品| 久久精品国产a三级三级三级| 久久久久久久久久人人人人人人| 看非洲黑人一级黄片| 国产高清有码在线观看视频| 亚洲精品国产av蜜桃| 成人午夜精彩视频在线观看| 国产av精品麻豆| 亚洲天堂av无毛| 一区二区三区四区激情视频| 亚洲人与动物交配视频| 久久精品熟女亚洲av麻豆精品| 人人妻人人澡人人爽人人夜夜| 欧美亚洲 丝袜 人妻 在线| 日韩成人av中文字幕在线观看| 黑人巨大精品欧美一区二区蜜桃 | av在线老鸭窝| 亚洲国产精品专区欧美| 亚洲精品国产色婷婷电影| 国产老妇伦熟女老妇高清| 国产色婷婷99| 国产成人精品无人区| 亚洲精品国产色婷婷电影| 色婷婷久久久亚洲欧美| 在线观看一区二区三区激情| www.av在线官网国产| 国产精品偷伦视频观看了| 在线观看国产h片| 超碰97精品在线观看| 亚洲国产日韩一区二区| 看非洲黑人一级黄片| videossex国产| 午夜影院在线不卡| a级毛片在线看网站| 亚洲情色 制服丝袜| 欧美 日韩 精品 国产| 欧美最新免费一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 国产精品国产三级国产专区5o| 不卡视频在线观看欧美| 日本av免费视频播放| 亚洲婷婷狠狠爱综合网| tube8黄色片| freevideosex欧美| 成人漫画全彩无遮挡| 内地一区二区视频在线| 亚洲成人av在线免费| 九九久久精品国产亚洲av麻豆| 美女福利国产在线| 高清毛片免费看| 国产成人精品在线电影| 国产一区二区在线观看av| 精品少妇内射三级| 亚洲美女搞黄在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 亚洲美女视频黄频| 一级毛片我不卡| 午夜影院在线不卡| 亚洲一区二区三区欧美精品| 天堂8中文在线网| 99久久人妻综合| 午夜福利在线观看免费完整高清在| 欧美少妇被猛烈插入视频| 另类精品久久| 亚洲精品美女久久av网站| 日韩大片免费观看网站| 久久人人爽人人片av| 久久久欧美国产精品| 只有这里有精品99| 毛片一级片免费看久久久久| 国产日韩欧美亚洲二区| 99视频精品全部免费 在线| 日韩大片免费观看网站| 春色校园在线视频观看| kizo精华| 亚洲美女视频黄频| 色婷婷久久久亚洲欧美| av视频免费观看在线观看| 街头女战士在线观看网站| 啦啦啦中文免费视频观看日本| 婷婷成人精品国产| 大又大粗又爽又黄少妇毛片口| 这个男人来自地球电影免费观看 | 久久久久人妻精品一区果冻| 欧美日韩亚洲高清精品| 99视频精品全部免费 在线| 777米奇影视久久| 亚洲欧美日韩另类电影网站| 色5月婷婷丁香| 中国三级夫妇交换| 午夜91福利影院| 久久国产精品男人的天堂亚洲 | 熟女电影av网| 国国产精品蜜臀av免费| 内地一区二区视频在线| 永久免费av网站大全| 2018国产大陆天天弄谢| 99热全是精品| 免费看不卡的av| 亚洲av成人精品一二三区| 国产片特级美女逼逼视频| 欧美激情极品国产一区二区三区 | 久久精品久久久久久噜噜老黄| 一本久久精品| 久久毛片免费看一区二区三区| 亚洲欧美成人综合另类久久久| 曰老女人黄片| 国产在线视频一区二区| 亚洲伊人久久精品综合| 成年人午夜在线观看视频| 人妻一区二区av| 亚洲av成人精品一二三区| 日韩 亚洲 欧美在线| 国产成人一区二区在线| 精品久久蜜臀av无| 成人二区视频| 国产有黄有色有爽视频| 亚洲经典国产精华液单| 精品国产国语对白av| 欧美97在线视频| 久久久久精品久久久久真实原创| 简卡轻食公司| 精品酒店卫生间| 久久ye,这里只有精品| 高清在线视频一区二区三区| 国产精品 国内视频| 插阴视频在线观看视频| 日日啪夜夜爽| 亚洲av中文av极速乱| 王馨瑶露胸无遮挡在线观看| 人妻一区二区av| 日韩中文字幕视频在线看片| 建设人人有责人人尽责人人享有的| 午夜福利在线观看免费完整高清在| 久久精品久久精品一区二区三区| 精品视频人人做人人爽| 国产一区二区在线观看av| 婷婷色av中文字幕| 国产永久视频网站| 99久久精品国产国产毛片| 黄色一级大片看看| 国产日韩一区二区三区精品不卡 | 久久久久久久久久成人| 国产精品三级大全| 久久久国产欧美日韩av| 69精品国产乱码久久久| 一级黄片播放器| 亚洲欧美精品自产自拍| 啦啦啦视频在线资源免费观看| 久久毛片免费看一区二区三区| 一本—道久久a久久精品蜜桃钙片| 三上悠亚av全集在线观看| 婷婷色麻豆天堂久久| 99久久精品国产国产毛片| 成年人免费黄色播放视频| 国产男女内射视频| 精品亚洲成a人片在线观看| 国产成人精品在线电影| 日韩欧美一区视频在线观看| 国产成人91sexporn| 精品一区二区三区视频在线| 国产一区二区三区综合在线观看 | 免费久久久久久久精品成人欧美视频 | 久久久久久伊人网av| 国产高清不卡午夜福利| 亚洲四区av| 亚洲精品日韩在线中文字幕| 亚洲精品第二区| 只有这里有精品99| 老司机亚洲免费影院| 永久免费av网站大全| 97精品久久久久久久久久精品| 日本色播在线视频| 精品亚洲成国产av| 色哟哟·www| 亚洲,欧美,日韩| 久久午夜福利片| 成人毛片60女人毛片免费| 久久精品国产亚洲网站| 人人妻人人澡人人看| 亚洲成人一二三区av| 午夜福利,免费看| 精品熟女少妇av免费看| 欧美老熟妇乱子伦牲交| 91午夜精品亚洲一区二区三区| 最近最新中文字幕免费大全7| 嫩草影院入口| 超碰97精品在线观看| 人体艺术视频欧美日本| 97在线视频观看| 国产精品久久久久久久久免| 国产精品一区二区在线观看99| 一级毛片电影观看| 免费看光身美女| 我要看黄色一级片免费的| 亚洲av中文av极速乱| 熟妇人妻不卡中文字幕| 日韩av免费高清视频| 91精品三级在线观看| 亚洲综合精品二区| 欧美日韩成人在线一区二区| 高清毛片免费看| 精品久久国产蜜桃| 成年人免费黄色播放视频| 大香蕉97超碰在线| 色网站视频免费| 精品久久久精品久久久| 天天操日日干夜夜撸| 建设人人有责人人尽责人人享有的| 最新中文字幕久久久久| 精品视频人人做人人爽| 日本av手机在线免费观看| 肉色欧美久久久久久久蜜桃| 三级国产精品片| 色婷婷av一区二区三区视频| 亚洲精华国产精华液的使用体验| 久久国产亚洲av麻豆专区| 亚洲欧美精品自产自拍| 超碰97精品在线观看| 国产精品人妻久久久影院| 午夜福利,免费看| 人妻人人澡人人爽人人| 婷婷色麻豆天堂久久| 国产在线一区二区三区精| 欧美另类一区| 国产成人精品在线电影| 少妇熟女欧美另类| 日本vs欧美在线观看视频| 一区二区日韩欧美中文字幕 | 天堂8中文在线网| 国产熟女欧美一区二区| 99热6这里只有精品| 日本wwww免费看| 久久久欧美国产精品| 好男人视频免费观看在线| 亚洲精品久久久久久婷婷小说| 久久久久久久久久久丰满| 丰满乱子伦码专区| 人人妻人人澡人人爽人人夜夜| 国产精品99久久99久久久不卡 | 少妇猛男粗大的猛烈进出视频| 狂野欧美白嫩少妇大欣赏| 女性被躁到高潮视频| 在线观看免费视频网站a站| 69精品国产乱码久久久| 国语对白做爰xxxⅹ性视频网站| 蜜桃在线观看..| 啦啦啦在线观看免费高清www| 亚洲精品国产av蜜桃| 亚洲三级黄色毛片| av播播在线观看一区| 国产精品熟女久久久久浪| 亚洲国产日韩一区二区| 亚洲精品乱久久久久久| 男人爽女人下面视频在线观看| 精品少妇黑人巨大在线播放| 亚洲av男天堂| 999精品在线视频| 成人毛片60女人毛片免费| 久久国内精品自在自线图片| 国产男女超爽视频在线观看| xxxhd国产人妻xxx| 亚洲国产毛片av蜜桃av| 日韩强制内射视频| 国产熟女欧美一区二区| 亚洲精品456在线播放app| 国产男人的电影天堂91| 成人免费观看视频高清| 韩国av在线不卡| 18禁裸乳无遮挡动漫免费视频| 国产成人freesex在线| 欧美日韩av久久| 亚洲综合色惰| 精品人妻熟女毛片av久久网站| 热99国产精品久久久久久7| 五月伊人婷婷丁香| 两个人免费观看高清视频| 王馨瑶露胸无遮挡在线观看| 免费高清在线观看视频在线观看| 亚洲第一av免费看| 国精品久久久久久国模美| 日韩av不卡免费在线播放| 精品亚洲成a人片在线观看| 人人妻人人添人人爽欧美一区卜| 天天操日日干夜夜撸|