• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Turbulence, aeration and bubble features of air-water flows in macro- and intermediate roughness conditions

    2011-11-02 13:34:52StefanoPAGLIARAThendiyathROSHNIIacopoCARNACINA
    Water Science and Engineering 2011年2期

    Stefano PAGLIARA*, Thendiyath ROSHNI, Iacopo CARNACINA

    Department of Civil Engineering, University of Pisa, Via Gabba 22, Pisa 56122, Italy

    1 Introduction

    Nearly all flows in environment and engineering are hydraulically rough (Stoesser and Nikora 2008). Rough bed elements like pebbles and boulders are the most prevalent microtopographic features of gravel-bed rivers, and these features enhance the river bed stability. Tremendous work has been carried out on the flow characteristics of the two-phase flow over smooth channel beds and a few over hydraulically rough beds (Nikora et al. 2001;Stoesser and Nikora 2008). Studies over rough beds are extensively done nowadays because of their high energy dissipation properties. Intensified roughness creates additional resistance and hence leads to higher kinetic energy dissipation. Flow over rough beds may skim at particular flow depths and slopes (Pagliara et al. 2010b). This condition enhances the presence of stable vortices between the rough bed elements and results in a more complicated three-dimensional flow. Some analogies exist between the skimming flows over stepped spillways (Chanson and Toombes 2001b; Ohtsu et al. 2004; Relvas and Pinheiro 2008)and over rough bed channels(Pagliara et al. 2009, 2010a; Rice et al. 1998). Due to the complexity and importance of turbulent flows, the flow properties and flow structures over stepped spillways have been extensively studied in the past (Chanson and Carosi 2007a; Chanson and Toombes 2001b,2003; Felder and Chanson 2009; Gonzalez and Chanson 2008). Relatively few investigations have been carried out on the turbulent behavior of two-phase flows over different bed arrangements (Aivazian 1996; Djenidi et al. 1999; Nikora et al. 2001, 2004,2007; Stoesser and Nikora 2008). Amongst the few studies under the macro-roughness condition, Pagliara et al. (2009, 2010a, 2010b)studied the aeration characteristics at different relative equivalent depths, but unfortunately the underlying mechanism for the phenomenon has not been well revealed.

    This study aimed to analyze the hydrodynamics of the two-phase flow over a naturally occurring rough bed of macro- and intermediate roughness, defined as in Bathurst (1978)and Pagliara and Chiavaccini (2006a), and to investigate the turbulence response to the changes in flow and roughness. A further objective was to identify the normal distribution of the void fraction, bubble frequency, and integral time scale of the two-phase flow over the roughened bed. In addition, this paper provides information on the flow structure in the uniform flow conditions and characterizes the general and individual properties of the two-phase flow.

    2 Experimental facility and measuring techniques

    To describe the air-water flow characteristics and present new evidence, an experimental setup, with a rough bed channel for high velocity open channel flows, was constructed in the PITLAB center of the University of Pisa. The facility consisted of a rough bed chute of 8 m long and 0.3 m wide, a recirculation pit, which ensured the water supply, and a magnetic flow meter (OPTIFLUX 2000)for the discharge measurement. The base macro-roughness (BMR)configuration was prepared by gluing one layer of rough elements over a stainless sheet with characteristic diameters of D16= 38.17 mm, D50= 43.41 mm, D65= 45.59 mm, and D84=47.17 mm, where Dxxrefers to the particle size for which xx% of the particles by weight are finer. The particles were randomly arranged at the bottom of the channel. A uniformity parameter of σp= (D84D16)12= 1.24 for rough elements was adopted (materials with σp< 1.4 are considered uniform (Dey and Raikar 2005)). The elements were placed in a manner that could minimize the gap between them. A diagram sketch of the rough bed chute with notations is illustrated in Fig. 1.

    Further details about the experimental setup and the measurement locations are described in Pagliara et al. (2009, 2010b).

    Fig. 1 Sketch of aerated flow in skimming flow regime on a rock chute and definition sketch of air and water chord lengths and air-bubble clusters

    Experiments were performed at the flow rate per unit width q ranging between 0.03 m2/s and 0.09 m2/s and the slope i ranging between 0.26 and 0.46. Detailed experimental investigations of the present study are shown in Table 1.

    Table 1 Experimental parameters

    Boulders are often used to reinforce the stability of rock chutes and increase the energy dissipation (Ahmad et al. 2009; Pagliara and Chiavaccini 2006b), owing to their influence on the near-bed turbulence. Hence, the roughness of the bed was further intensified by gluing on it hemispherical boulders with the diameter of Db=55mm, which were positioned over the BMRconfiguration either in row (BC-R)or in staggered (BC-S)arrangement (Pagliara et al. 2010a). The BC-Sand BC-Rarrangements over the BMRconfiguration are shown in Figs. 2(a)and (b).

    Fig. 2 Rough bed arrangements

    Clear water flow depths over the rough bed were measured with a point gauge and the air-water flow properties were recorded using a void fraction meter, produced by the Bureau of Reclamation of the U.S. Department of the Interior, with the help of an intrusive single tip conductivity probe (tip ?6 mm)(Jacobs 1997; Matos and Frizell 1997). The output voltage signals (0 V when the probe touched water and 5 V when bubbles were detected)received at each time step from PT were analyzed for the estimation of the air-water flow properties. The translation of the conductivity probe and point gauge along and across the channel was controlled by a fine adjustment mechanism. The calibration of the conductivity probe was done before each test and the output signal was scanned for 15 s at a sampling rate of 20 Hz and for 30-40 s at 2 kHz. Due to the three-dimensional pattern of the flow, measurements were performed for each 0.5 m longitudinally from the inlet sections at z=0 m,z =±0 .05 m , and z=± 0.1 m, where z is the transverse coordinate from the center of the channel, and for each 1 mm vertically from PT. For each section, the value of the water depth dewas, therefore,obtained by averaging the water depth toward the transverse direction (Pagliara et al. 2010a,2010b). In the present study, all the flow measurements were performed in the quasi-uniform flow region.

    3 Data processing methods

    Each sample, digitalized in the form of a square wave, was analyzed for the calculation of the void fraction C, the integral time scale Txx, the bubble frequency F, the air bubble chord length Laand water droplet chord length Lwdistributions, and clustering events, respectively.

    The void fraction C was evaluated as the percentage of time in which the signal was above the air-water threshold limit (generally fixed at 50% of the maximum output voltage(Pagliara et al. 2010a)). The bubble frequency F is the number of bubbles detected by the conductivity probe per second. The air and water chord time distributions are given based on the time that the probe tip stays on air bubbles or water droplets (Kucukali and Cokgor 2008),and the chord length can be obtained by multiplying V and the chord time (Fig. 1). The integral time scale Txxcan be computed with Eq. (1)as follows:

    which is equal to the integral area of the normalized autocorrelation functionRxxof the voltage signals at each step from t= 0 to t = T ( Rxx= 0), as shown in Fig. 3 (Chanson and Carosi 2007a):

    Fig. 3 Auto-correlation integral scale definition

    4 Experimental results

    4.1 Void fraction and frequency analysis

    where D0is a dimensionless diffusivity coefficient and K′ is the dimensionless integration coefficient.

    Fig. 4(b)shows that the bubble frequency distribution presents a rising limb, an intermediate region and a recession limb in the direction normal to the flow. It can be seen from Fig. 4 that there are not many discrepancies in the average profile measurements in the MR-SKflow regime over the rock chutes except for a small value of F Fmaxcorresponding to the first peak in the frequency distribution in the inner layers (Fig. 4(b)). This is mainly due to the significant interaction of the free surface flow and stable wakes with the intensely rough channel bed (Pagliara et al. 2010a). The second peak shows that the maximum bubble frequencyFmaxoccurs generally in the range of 0.3 <C < 0.6.

    The frequency distribution over the void fraction better explains the flow regions in the direction normal to the flow. Fig. 5 shows the dimensionless relation between the bubble count rate and void fraction for i= 0.26, 0.38, and 0.46 and q = 0.07 m2/s. All the present data sets for the three slopes consistently show a characteristic shape with the maximum bubble frequency occurring in the range of 0.3 <C < 0.6. The relationship between the bubble frequency and void fraction was approximated as a parabolic shape, shown in Chanson (1997)as

    and later Toombes (2002)later extended the parabolic law as follows:

    where α and β are correction factors and CFmaxis the void fraction corresponding to the maximum bubble frequency (Toombes 2002). The dimensionless distribution of the bubble count rate F Fmaxwith void fraction clearly illustrates three different flow regions in the direction normal to the flow. A bubbly flow regime appears at C<0.3, while the spray region occurs at a higher concentration of C>0.6. An intermediate region exists in the range of 0.3 <C < 0.6, in which the maximum bubble frequency occurs. Similar results were observed in flows over smooth chutes and stepped spillway flows (Chanson 1997; Gonzalez and Chanson 2008). All the present data, except for few data at i = 0.26 in the bubbly flow region were correlated reasonably well with the modified parabolic law from Toombes (2002). The higher bubble count rate in the inner regions of the flow over the rough bed is due to the high vortex recirculation between the bed elements, which is well discussed in Pagliara et al. (2009,2010a). In the outer layers, due to the spray formation, a higher dispersion of data was seen and hence resulted in a larger deviation from Eq. (3)and Eq. (4).

    Boulder presence, either in the BC-Ror the BC-Sarrangement, yields to large air entrainment in the flow condition similar to that of the BMRconfiguration, leading to different flow features. Fig. 6 and Fig. 7 show the void fraction distribution and frequency analysis at xbDb= 0 and xbDb= 0.9, respectively, in the BC-Rarrangement (Γ = 0.05)for five different transverse sections z=± 0.1 m , z=± 0.05 m, and z=0 m, where xbis the distance from a boulder row, y1is the depth measured from the plane joining the top of the boulder rows (Fig. 6(a)), and y1=at C=0.9.

    Fig. 5 Dimensionless relationship between C and F Fm ax for i = 0.46, 0.38, and 0.26, q = 0.07 m2/s, and Γ = 0 and comparison with Eq. (3)and Eq. (4)

    Fig. 6 Dimensionless distribution of void fraction C and frequency analysis for different transverse sections in BC-R arrangement (Γ = 0.05)for i=0.46 and q = 0.05 m2/s atxb Db= 0

    Fig. 7 Dimensionless distribution of void fraction C and frequency analysis for different transverse sections in BC-R arrangement (Γ = 0.05)for i=0.46 and q = 0.05 m2/s atxb Db= 0.9

    The void fraction profiles and the frequency analysis over the boulder top (Fig. 6)were homogeneous, similar to the profile of the MR-SKflow regime over the BMRarrangement (Fig. 4).Unlikely, atxbDb= 0.9, as shown in Fig. 7, a profound disturbance of the flow field immediately after the boulder row was clearly seen, which included strong separation zones below and above the boulder top. Fig. 8 shows the dimensionless distribution of the void fraction with bubble frequency and the Txxvariation normal to the flow direction for i= 0.46 and q = 0.05 m2/s at xbDb= 0.9 in the BC-Rarrangement of boulders (Γ = 0.05).Flow over the BC-Rarrangement is characterized by a wake and jet fall mechanism (Pagliara et al. 2010a).

    Fig. 8 Dimensionless distribution of void fraction with bubble frequency and integral time scale normal to flow direction fori=0.46and q = 0.05m2/s at xb Db = 0.9in BC-R arrangement (Γ = 0.05)at differentz B

    Fig. 9 shows the vortex shedding in the wake diffusion zone over the BC-Rarrangement for i = 0.46 and Γ = 0.05. Due to the vortex shedding in the wake diffusion zone, immediately after the boulder rows (xbDb= 0.9), a high recirculation zone appears (Fig. 9), where a small jet fall occurs after each boulder row, resulting in a higher F (Lacey and Roy 2008; Pagliara et al. 2010a), as shown in detail in Fig. 8. Air packets are broken up into a number of air bubbles because of the fall effect, resulting in a larger air content and a higher bubble count rate (Fig. 8(a)). The fall effect also causes the occurrence of the high recirculation zone, which further results in a higher Txxin the inner layers, i.e.,y1y9′0< 0.25(Fig. 8(b)).

    Fig. 9 Vortex shedding over BC-R arrangement for i = 0.46, q = 0.05 m2/s, and Γ = 0.05

    4.2 Integral time scale analysis

    The characteristics of the flow over stepped chutes depend on the step height h and the chute slope, while the characteristics of the flow over rock chutes depend on the diameter of materials and also the chute slope. In order to compare flow characteristics over the stepped chute and rock chute, the nominal diameter of the bed material was considered equal to the normal step height, i.e.,D84= h cosθ , where θ is the angle between the chute and horizontal plane in degrees. Fig. 10 shows the comparison of rock chute data from several transverse sections in the bubbly and intermediate flow regions with stepped chute data (Felder and Chanson 2008). It can be inferred from Fig. 10 that the flow over the rock chute presents a larger Txxcompared with those observed by Felder and Chanson (2008)in the inner layer in the presence of stepped chutes for similar i and deD84. For either the stepped chute or rock chute,the turbulence decreases with the increase of deD84. When deD84decreases, the interaction between the rough bed elements and the water surface increases, resulting in a higher Txx.Moreover, Txxshows the greater values in the intermediate flow region for all deD84. Chanson and Carosi (2007b)showed that the relation between Txxand C generally displays a parabolic shape in the inner layers (bubbly and intermediate flow regions), and that a large deviation occurs over stepped spillways in the spray region. Since the spray formation appears earlier(C>0.6)over rock chutes, the data systematically break away from the normal parabolic shape.Hence, the present study data only show data of the inner layers (Fig. 10).

    Fig. 10 Comparison of Felder and Chanson’s (2008)data for i = 0.4 with present study for i = 0.38 and Γ = 0 for similar d e D84

    In order to visualize the effects of turbulence on aeration, the maximum integral time scale Tx′xobtained in the intermediate flow region is plotted for i=0.26, 0.38, and 0.46 and 0.74 ≤deD84≤1.63 in Fig. 11(a). In addition, Tx′xis compared with Felder and Chanson’s (2008)data. A generally decreasing trend of turbulence with the increase of deD84was found at all the slopes in the test range. Moreover, Felder and Chanson (2008)data show a smaller turbulence scale compared with rock chute data. Fig. 11(b)plots the average concentration Cmas a function offor i = 0.26, 0.38, and 0.46, and Γ= 0, 0.05,and 0.15 in the BC-Sarrangement. Larger values of Tx′xcorrespond to larger Cmover the rough bed, as the shear stress strength overcomes both the buoyant force and the surface tension, leading to a higher volume of air to be entrained and carried by the flow. Indeed, as the slope increases, Cmalso increases, and at a constant slope, Cmincreases with both Tx′xandΓ.

    Fig. 11 Dimensionless distribution of Tx′xwithdeD84and CmwithTx′xfor i = 0.26, 0.38, and 0.40,0.74 ≤ de D84≤1.63, andΓ= 0, 0.05, and 0.15in BC-S arrangement

    4.3 Chord length distributions and clustering analysis

    Fig. 12 Probability distribution functions of air bubble and water droplet chord lengths over BMR (Γ=0)configuration for q = 0.07 m2/s and i=0.46at central transverse sectionz B =0

    The streamwise structure of the air-water flow can be further explained by the clustering analysis. Voltage signal outputs provide information on the clustering properties of bubbles in the bubbly flow region. A typical result of the clustering analysis normal to the flow direction in the bubbly flow region (i=0.46, q = 0.07 m2/s , and Γ=0 at z B=0)is presented in Fig. 13.

    Fig. 13 Clustering properties of bubbles in bubbly flow region and void fraction and frequency analysis in MR-SK flow regime of BMR configuration (Γ = 0)for i = 0.46 and q = 0.07 m2/s atz B=0

    Fig. 14 Probability distribution of air bubble chord length in BC-R arrangement (Γ = 0.05)for i = 0.46 and q = 0.05m2/s in central transverse section (z B=0)

    Fig. 15 illustrates clustering analysis in the BC-Rarrangement (Γ = 0.05)for i = 0.46 and q = 0.05 m2/s atxbDb= 0.9. Contrary to previous results in the MR-SKflow regime of the BMRconfiguration (Fig. 13), Fig. 15 shows that Pbcvaries from 25%-75% and Nbcvaries from an average of 2.2 in the outer layer to 4.2 in the vortex recirculation zone of the inner flow region (y1y9′0< 0).

    Fig. 15 Clustering properties of bubbles in bubbly flow region in BC-R arrangement (Γ = 0.05)for i = 0.46 and q = 0.05 m2/s atxb Db = 0.9for three transversal sections ( z B = - 0.33, 0, and 0.33)

    5 Conclusions

    The two-phase flow properties over the BMR, BC-S, and BC-Rconfigurations in the uniform flow region were investigated for the selected experimental ranges. The changes of the void fraction, frequency behaviors, and turbulence behaviors of flows over the rough bed arrangement were investigated, and accordingly, the flow structure analysis was performed. A comparison of the turbulence behaviors in the stepped spillway with the rock chute data was also conducted.

    The void fraction and frequency analysis over the BMRarrangement in the inner layers reveals that there is a strong interaction between the water surface and rough bed elements,resulting in stable drag vortices and stable shear vortices between the rough bed elements. The turbulence analysis, based on the integral time scale, reveals that the reduction of the relative depth intensifies the interactions between the free surface and bed materials and thus increases the turbulence intensity, resulting in a higher quantity of air entrained by the flow. Moreover,the flow over rough bed chutes shows a higher turbulence as compared with the stepped chute data for similar flow conditions, owing to the presence of complex flows and vortex structures downstream of the rock elements. Chord length and clustering analyses over the BMRand BC-Rarrangements show different behaviors in the inner flow region. The results show that the intensified roughness of the BC-Rarrangement enhances the void fraction by air bubbles of larger chord lengths and higher turbulence levels compared to BMR.

    Ahmad, Z., Petappa, N. M., and Westrich, B. 2009. Energy dissipation on block ramps with staggered boulders. Journal of Hydraulic Engineering, 135(6), 522-526. [doi:10.1061/(ASCE)HY.1943-7900.0 000039]

    Aivazian, O. M. 1996. New investigations and new method of hydraulic calculation of chutes with intensified roughness. Power Technology and Engineering, 30(6), 335-356. [doi:10.1007/BF02443117]

    Bathurst, J. C. 1978. Flow resistance of large-scale roughness. Journal of Hydraulic Division, 104(12),1587-1603. [doi:10.1139/L08-068]

    Bathurst, J. C. 1985. Flow resistance estimation in mountain rivers. Journal of Hydraulic Engineering,111(4), 625-643. [doi:10.1061/(ASCE)0733-9429]

    Castro-Orgaz, O., and Hager, W. H. 2010. Drawdown curve and turbulent boundary layer development for chute flow. Journal of Hydraulic Research, 48(5), 591-602. [doi:10.1080/00221686.2010.507337]

    Chanson, H. 1997. Measuring air-water interface area in supercritical open channel flow. Water Resources,31(6), 1414-1420. [doi:10.1016/S0043-1354(96)00339-9]

    Chanson, H., and Toombes, L. 2001a. Experimental Investigations of Air Entrainment in Transition and Skimming Flows Down a Stepped Chute: Application to Embankment Overflow Stepped Spillways, CE 158. Queensland: Department of Civil Engineering, The University of Queensland.

    Chanson, H., and Toombes, L. 2001b. Strong interactions between free-surface aeration and turbulence down a staircase channel. Dally, B. B. ed. Proceedings of the 14th Australasian Fluid Mechanics Conference, 1-4. Adelaide: Casual Productions.

    Chanson, H., and Toombes, L. 2003. Strong interactions between free-surface aeration and turbulence in an open channel flow. Experimental Thermal and Fluid Science, 27(5), 525-535. [doi:10.1016/S0894-1777(02)00266-2]

    Chanson, H., and Carosi, G. 2007a. Advanced post-processing and correlation analyses in high-velocity air-water flows. Environmental Fluid Mechanics, 7(6), 495-508. [doi:10.1007/s10652-007-9038-3]

    Chanson, H., and Carosi, G. 2007b. Turbulent time and length scale measurements in high-velocity open channel flows. Experiments in Fluids, 42(3), 385-401. [doi:10.1007/s00348-006-0246-2]

    Dey, S., and Raikar, V. 2005. Scour in long contractions. Journal of Hydraulic Engineering, 131(12),1036-1049. [doi:10.1061/(ASCE)0733-9429(2005)131:12(1036)]

    Dey, S., and Raikar, R. V. 2007. Characteristic of loose rough boundary streams at near threshold. Journal of Hydraulic Engineering, 133(3), 288-304. [doi:10.1061/(ASCE)0733-9429(2007)133:3(288)]

    Djenidi, L., Elavarasan, R., and Antonia, R. A. 1999. The turbulent boundary layer over transverse square cavities. Journal of Fluid Mechanics, 395, 271-294. [doi:10.1017/S0022112099005911]

    Felder, S., and Chanson, H. 2008. Turbulence and turbulent length and time scales in skimming flows on a stepped spillway: Dynamic similarity, physical modelling and scale effects. Canadian Journal of Civil Engineering, 35(9), 865-880. [doi:10.1139/L08-030]

    Felder, S., and Chanson, H. 2009. Turbulence, dynamic similarity and scale effects in high-velocity free-surface flows above a stepped chute. Experiments in Fluids, 47(1), 1-18. [doi:10.1007/s00348-009-0628-3]

    Gonzalez, C. A., and Chanson, H. 2008. Turbulence manipulation in air-water flows on a stepped chute: An experimental study. European Journal of Mechanics B/Fluids, 27(4), 388-408. [doi:10.1016/j.euromechflu.2007.09.003]

    Jacobs, M. L. 1997. Void Fraction Meter Electronics Package Manual. Denver: U.S. Department of the Interior Bureau of Reclamation.

    Kucukali, S., and Cokgor, S. 2008. Boulder-flow interaction associated with self-aeration process. Journal of Hydraulic Research, 46(3), 415-419. [doi:10.3826/jhr.2008.3105]

    Lacey, R. W. J., and Roy, A. G. 2008. The spatial characterization of turbulence around large roughness elements in a gravel-bed river. Geomorphology, 102(3), 542-553. [doi:10.1016/j.geomorph.2008.05.045]

    Matos, J., and Frizell, K. H. 1997. Void fraction measurements in highly turbulent aerated flow.Proceedings of the 27th IAHR Congress, Theme B, Vol. 1, 149-154. San Francisco: IAHR.

    Nikora, V., Goring, D., McEwan, I., and Griffiths, G. 2001. Spatially averaged open-channel flow over rough bed. Journal of Hydraulic Engineering, 127(2), 123-133. [doi:10.1061/(ASCE)0733-9429(2001)127:2(123)]

    Nikora, V., Koll, K., McEwan, I., McLean, S., and Dittrich, A. 2004. Velocity distribution in the roughness layer of rough-bed flows. Journal of Hydraulic Engineering, 130(10), 1036-1042. [doi:10.1061/(ASCE)0733-9429(2004)130:10(1036)]

    Nikora, V., McLean, S., Coleman, S., Pokrajac, D., McEwan, I., Campbell, L., Aberle, J., Clunie, D., and Koll, K. 2007. Double-averaging concept for rough-bed open-channel and overland flows:Applications. Journal of Hydraulic Engineering, 133(8), 884-895. [doi:10.1061/(ASCE)0733-9429(2007)133:8(884)]

    Ohtsu, I., Yasuda, Y., and Takahashi, M. 2004. Flow characteristics of skimming flows in stepped channels.Journal of Hydraulic Engineering, 130(9), 860-869. [doi:10.1061/(ASCE)0733-9429(2004)130:9(860)]

    Pagliara, S., and Chiavaccini, P. 2006a. Energy dissipation on block ramps. Journal of Hydraulic Engineering, 132(1), 41-48. [doi:10.1061/(ASCE)0733-9429(2006)132:1(41)]

    Pagliara, S., and Chiavaccini, P. 2006b. Energy dissipation on reinforced block ramps. Journal of Irrigation and Drainage Engineering, 132(3), 293-297. [doi:10.1061/(ASCE)0733-9437(2006)132:3 (293)]

    Pagliara, S., Das, R., and Carnacina, I. 2008. Flow resistance in large-scale roughness condition. Canadian Journal of Civil Engineering, 35(11), 1285-1293. [doi:10.1139/L08-068]

    Pagliara, S., Roshni, T., and Carnacina, I. 2009. Aeration and velocity profile over block ramp elements.The 33rd IAHR 2009 Congress: Water Engineering for a Sustainable Environment, 4925-4932.Vancouver: IAHR.

    Pagliara, S., Carnacina, I., and Roshni, T. 2010a. Air-water flows in presence of staggered and row boulders under macro-roughness conditions. Water Resources Research, 46, W08535. [doi:10.1029/2009W R008834]

    Pagliara, S., Carnacina, I., and Roshni, T. 2010b. Self-aeration and friction over rock chutes in uniform flow conditions. Journal of Hydraulic Engineering, 136(11), 959-964. [doi:10.1061/(ASCE)HY.194 3-7900.0000270]

    Pagliara, S., Carnacina, I., and Roshni, T. 2011. Inception point and air entrainment on flows under macro-roughness condition. Journal of Environmental Engineering, published online at http://ascelibrary.org/eeo/resource/3/joeexx/282?isAuthorized=no on February 1, 2011. [doi:10.1061/(ASCE)EE.1943-7870.0000369]

    Relvas, A. T., and Pinheiro, A. N. 2008. Inception point and void fraction in flows on stepped chutes lined with wedge-shaped concrete blocks. Journal of Hydraulic Engineering, 134(8), 1042-1051. [doi:10.1061/(ASCE)0733-9429(2008)134:8(1042)]

    Rice, C. E., Kadavy, K. C., and Robinson, K. M. 1998. Roughness of loose rock riprap on steep slopes.Journal of Hydraulic Engineering, 124(2), 179-185. [doi:10.1061/(ASCE)0733-9429(1998)124:2(179)]

    Stoesser, T., and Nikora, V. I. 2008. Flow structure over square bars at intermediate submergence: Large eddy simulation study of bar spacing effect. Acta Geophysica, 56(3), 876-893. [doi:10.2478/s11600-008-0030-1]

    Strom, K. B., and Papanicolaou, A. N. 2007. ADV measurements around a cluster microform in a shallow mountain stream. Journal of Hydraulic Engineering, 133(12), 1379-1389. [doi:10.1061/(ASCE)0733-9429(2007)133:12(1379)]

    Toombes, L. 2002. Experimental Study of Air-water Flow Properties on Low-gradient Stepped Cascades.Ph. D. Dissertation. Queensland: Department of Civil Engineering, The University of Queensland School.

    亚洲自拍偷在线| 亚洲精品影视一区二区三区av| .国产精品久久| 国内久久婷婷六月综合欲色啪| 男插女下体视频免费在线播放| 88av欧美| 国产美女午夜福利| 国产成人av教育| 久久6这里有精品| 一个人观看的视频www高清免费观看| 久久久久久久精品吃奶| 久久久久国内视频| 国产精品人妻久久久影院| 国产一区二区亚洲精品在线观看| 男女下面进入的视频免费午夜| 88av欧美| 亚洲狠狠婷婷综合久久图片| 欧美成人性av电影在线观看| 最后的刺客免费高清国语| 可以在线观看的亚洲视频| 如何舔出高潮| 少妇高潮的动态图| 精品人妻1区二区| 日韩欧美三级三区| 国产男人的电影天堂91| 亚洲专区中文字幕在线| 日韩一本色道免费dvd| 村上凉子中文字幕在线| av国产免费在线观看| 国产精品一及| 免费看a级黄色片| 久久精品夜夜夜夜夜久久蜜豆| 亚洲综合色惰| 亚洲av美国av| 久久久久久久午夜电影| 亚洲精品粉嫩美女一区| 国产精品av视频在线免费观看| 国产精品人妻久久久影院| 国产精品自产拍在线观看55亚洲| 18禁在线播放成人免费| 国内揄拍国产精品人妻在线| 热99在线观看视频| 成年女人永久免费观看视频| 亚洲最大成人手机在线| 久久热精品热| 亚洲精品成人久久久久久| 精品久久国产蜜桃| 亚洲黑人精品在线| 午夜精品在线福利| 亚洲人成伊人成综合网2020| 99热这里只有是精品50| 国产伦在线观看视频一区| 成人特级黄色片久久久久久久| 国产三级在线视频| 99久久中文字幕三级久久日本| 噜噜噜噜噜久久久久久91| 国产国拍精品亚洲av在线观看| 校园人妻丝袜中文字幕| 99久久精品国产国产毛片| 一区二区三区免费毛片| 国产欧美日韩一区二区精品| 91精品国产九色| 久久久久久久久久久丰满 | 特大巨黑吊av在线直播| 亚洲人成伊人成综合网2020| 最新在线观看一区二区三区| 午夜爱爱视频在线播放| 日韩欧美精品免费久久| 成人无遮挡网站| 最后的刺客免费高清国语| 最后的刺客免费高清国语| 亚洲五月天丁香| 久99久视频精品免费| 女的被弄到高潮叫床怎么办 | 成人国产麻豆网| 一级a爱片免费观看的视频| 欧美一区二区精品小视频在线| 国产乱人伦免费视频| 亚洲成人久久性| 免费av不卡在线播放| 两性午夜刺激爽爽歪歪视频在线观看| 日日摸夜夜添夜夜添av毛片 | 亚洲欧美日韩卡通动漫| 丝袜美腿在线中文| 日韩亚洲欧美综合| 嫁个100分男人电影在线观看| 午夜精品久久久久久毛片777| 国内久久婷婷六月综合欲色啪| 亚洲天堂国产精品一区在线| 精品久久久久久久久久久久久| 校园春色视频在线观看| 成熟少妇高潮喷水视频| 成人二区视频| 很黄的视频免费| 少妇人妻精品综合一区二区 | 中文字幕人妻熟人妻熟丝袜美| 最近中文字幕高清免费大全6 | 成年女人毛片免费观看观看9| 黄色丝袜av网址大全| 成人综合一区亚洲| 淫妇啪啪啪对白视频| 联通29元200g的流量卡| 美女被艹到高潮喷水动态| 欧美日本视频| 伦精品一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 亚洲精华国产精华液的使用体验 | 欧美日韩亚洲国产一区二区在线观看| 在线观看舔阴道视频| 日韩人妻高清精品专区| 免费不卡的大黄色大毛片视频在线观看 | 日韩欧美精品免费久久| 国产真实乱freesex| 麻豆精品久久久久久蜜桃| 97超级碰碰碰精品色视频在线观看| 性欧美人与动物交配| 99久久成人亚洲精品观看| 九色国产91popny在线| 内射极品少妇av片p| 精品福利观看| 国产精品亚洲一级av第二区| 男女啪啪激烈高潮av片| 此物有八面人人有两片| 3wmmmm亚洲av在线观看| 国产一区二区激情短视频| 变态另类丝袜制服| 99在线人妻在线中文字幕| 亚洲国产欧美人成| 国产欧美日韩一区二区精品| 久久精品91蜜桃| 又黄又爽又免费观看的视频| 国产黄片美女视频| 内射极品少妇av片p| 18+在线观看网站| 成人精品一区二区免费| 午夜免费男女啪啪视频观看 | av黄色大香蕉| 午夜久久久久精精品| 国产探花在线观看一区二区| 国产色爽女视频免费观看| 中文字幕久久专区| 国产探花在线观看一区二区| 成人综合一区亚洲| 日韩大尺度精品在线看网址| 国产大屁股一区二区在线视频| 天堂网av新在线| 成人美女网站在线观看视频| 国产高清三级在线| 99久久精品一区二区三区| 国产精品99久久久久久久久| 国产伦在线观看视频一区| 国产免费男女视频| 欧美激情国产日韩精品一区| 欧美激情久久久久久爽电影| av天堂中文字幕网| 又紧又爽又黄一区二区| 悠悠久久av| 搡老岳熟女国产| 色吧在线观看| 久久人人爽人人爽人人片va| 久久久久免费精品人妻一区二区| a级一级毛片免费在线观看| aaaaa片日本免费| 成年女人毛片免费观看观看9| 国产高清三级在线| 日韩一区二区视频免费看| 又爽又黄a免费视频| 啦啦啦观看免费观看视频高清| av在线老鸭窝| 啦啦啦观看免费观看视频高清| 在线播放无遮挡| 久久热精品热| 久久久精品欧美日韩精品| 99热这里只有是精品在线观看| 中文字幕高清在线视频| 老熟妇仑乱视频hdxx| 琪琪午夜伦伦电影理论片6080| 在线免费观看不下载黄p国产 | 成人毛片a级毛片在线播放| 国产精品无大码| 男女下面进入的视频免费午夜| 男人舔女人下体高潮全视频| 欧美精品国产亚洲| 搡老妇女老女人老熟妇| 午夜精品在线福利| 成年女人毛片免费观看观看9| 国产精品一区二区免费欧美| 亚洲午夜理论影院| 免费观看在线日韩| 少妇被粗大猛烈的视频| 免费观看人在逋| 少妇人妻精品综合一区二区 | 美女免费视频网站| 国产欧美日韩精品亚洲av| 最后的刺客免费高清国语| x7x7x7水蜜桃| 久久久久久久久中文| 日本成人三级电影网站| 亚洲精品在线观看二区| www.色视频.com| 嫩草影院入口| av黄色大香蕉| 女同久久另类99精品国产91| 国产蜜桃级精品一区二区三区| 69av精品久久久久久| 老司机福利观看| 一个人看视频在线观看www免费| 午夜影院日韩av| 91在线精品国自产拍蜜月| 国产精品久久久久久久久免| 人妻制服诱惑在线中文字幕| 成人三级黄色视频| 嫩草影院新地址| 亚洲久久久久久中文字幕| 麻豆成人av在线观看| 香蕉av资源在线| 一本久久中文字幕| 乱码一卡2卡4卡精品| 国语自产精品视频在线第100页| 精品久久久久久久久亚洲 | 久久人妻av系列| 天堂影院成人在线观看| 国产三级在线视频| 国产成人aa在线观看| 成年版毛片免费区| 免费观看人在逋| 精品一区二区三区av网在线观看| 人人妻,人人澡人人爽秒播| 国产精品日韩av在线免费观看| 欧美xxxx性猛交bbbb| 国产 一区 欧美 日韩| 欧美日本视频| 日本黄大片高清| 亚洲国产欧洲综合997久久,| 麻豆国产av国片精品| 日日摸夜夜添夜夜添小说| 神马国产精品三级电影在线观看| 黄色视频,在线免费观看| 亚洲人成网站在线播| 亚洲国产高清在线一区二区三| 欧美精品国产亚洲| 又爽又黄无遮挡网站| 国产老妇女一区| 99热只有精品国产| 日韩亚洲欧美综合| 日韩在线高清观看一区二区三区 | 综合色av麻豆| 国产单亲对白刺激| 日本熟妇午夜| 国产精品,欧美在线| 人妻少妇偷人精品九色| 亚洲av中文字字幕乱码综合| 国产精品一区二区性色av| 国产av不卡久久| 国产人妻一区二区三区在| 91在线观看av| 少妇人妻一区二区三区视频| 岛国在线免费视频观看| 99久久成人亚洲精品观看| 动漫黄色视频在线观看| 欧美zozozo另类| 人人妻人人看人人澡| 99久久中文字幕三级久久日本| 一级av片app| 欧美一区二区精品小视频在线| 免费人成视频x8x8入口观看| 国产综合懂色| 在线观看av片永久免费下载| 国产黄色小视频在线观看| 高清在线国产一区| 日韩精品有码人妻一区| 国产v大片淫在线免费观看| 亚洲一区二区三区色噜噜| 天天躁日日操中文字幕| 日韩,欧美,国产一区二区三区 | 天天一区二区日本电影三级| 国产精品女同一区二区软件 | 91在线精品国自产拍蜜月| 成人精品一区二区免费| 十八禁网站免费在线| 中文字幕免费在线视频6| 亚洲av中文av极速乱 | 国产精品福利在线免费观看| 国内精品久久久久久久电影| 97碰自拍视频| bbb黄色大片| av.在线天堂| 欧美zozozo另类| 亚洲无线观看免费| 久久精品综合一区二区三区| 99热精品在线国产| 深夜精品福利| 日本一本二区三区精品| 日韩欧美三级三区| 十八禁国产超污无遮挡网站| 18禁黄网站禁片午夜丰满| 国产毛片a区久久久久| 丰满的人妻完整版| 麻豆成人午夜福利视频| 亚洲精华国产精华液的使用体验 | 欧美国产日韩亚洲一区| 午夜福利在线观看免费完整高清在 | 好男人在线观看高清免费视频| 亚洲av中文字字幕乱码综合| 欧美日韩精品成人综合77777| 亚洲人成网站在线播| 国产免费一级a男人的天堂| 欧美日韩乱码在线| 夜夜夜夜夜久久久久| av在线亚洲专区| 成人国产麻豆网| 在线免费十八禁| 少妇熟女aⅴ在线视频| 免费av毛片视频| 久久久久国内视频| 午夜福利成人在线免费观看| 国产探花极品一区二区| 97人妻精品一区二区三区麻豆| 亚洲七黄色美女视频| 精品久久久久久久久久久久久| 91久久精品电影网| 国产伦人伦偷精品视频| 免费观看精品视频网站| 精华霜和精华液先用哪个| 午夜福利视频1000在线观看| 成人精品一区二区免费| 国产高清激情床上av| 国产淫片久久久久久久久| 中国美白少妇内射xxxbb| 国产精品免费一区二区三区在线| bbb黄色大片| 久久久久国产精品人妻aⅴ院| 欧美一区二区国产精品久久精品| 精品久久久久久成人av| 久久欧美精品欧美久久欧美| 国模一区二区三区四区视频| 韩国av一区二区三区四区| 免费不卡的大黄色大毛片视频在线观看 | 99视频精品全部免费 在线| 天堂√8在线中文| 精品午夜福利视频在线观看一区| 亚洲最大成人中文| 国产成年人精品一区二区| 又爽又黄无遮挡网站| 亚洲专区国产一区二区| 最近视频中文字幕2019在线8| 亚洲av不卡在线观看| 1000部很黄的大片| 日本爱情动作片www.在线观看 | 精品一区二区三区av网在线观看| 午夜福利18| 午夜免费激情av| 色综合婷婷激情| 国产高清激情床上av| 简卡轻食公司| 成年版毛片免费区| 久久久久久久午夜电影| 亚洲不卡免费看| 大型黄色视频在线免费观看| www.www免费av| 人人妻人人看人人澡| 亚洲一级一片aⅴ在线观看| 桃色一区二区三区在线观看| 午夜亚洲福利在线播放| 女人被狂操c到高潮| 999久久久精品免费观看国产| 日韩av在线大香蕉| 中文字幕高清在线视频| 国产精品av视频在线免费观看| av女优亚洲男人天堂| 免费看光身美女| 国产精品免费一区二区三区在线| 精品一区二区三区视频在线| 联通29元200g的流量卡| 免费看a级黄色片| 久久6这里有精品| 男女那种视频在线观看| 亚洲真实伦在线观看| 日本 欧美在线| 国产探花在线观看一区二区| 一a级毛片在线观看| 国产人妻一区二区三区在| 欧美激情久久久久久爽电影| 亚洲无线在线观看| 久久精品国产鲁丝片午夜精品 | 日本 欧美在线| 久久久久免费精品人妻一区二区| 国产av不卡久久| 精品久久久久久久久久久久久| 国产精品福利在线免费观看| 国产精华一区二区三区| 亚洲,欧美,日韩| 长腿黑丝高跟| 欧美日韩亚洲国产一区二区在线观看| 国产精品久久久久久久电影| 亚洲七黄色美女视频| 成人精品一区二区免费| 亚洲av.av天堂| 久久99热6这里只有精品| 一进一出抽搐gif免费好疼| 色播亚洲综合网| 赤兔流量卡办理| 在线免费观看的www视频| 夜夜夜夜夜久久久久| 12—13女人毛片做爰片一| 狠狠狠狠99中文字幕| 窝窝影院91人妻| 亚洲综合色惰| 国产精品久久久久久久久免| 一进一出抽搐gif免费好疼| 我要搜黄色片| 日韩一区二区视频免费看| 国产精品国产三级国产av玫瑰| 成年免费大片在线观看| 免费观看在线日韩| 日本a在线网址| 小蜜桃在线观看免费完整版高清| 他把我摸到了高潮在线观看| 中出人妻视频一区二区| 久久久久久九九精品二区国产| 成人无遮挡网站| 黄色一级大片看看| 综合色av麻豆| 精品久久久久久久久久免费视频| 国产一区二区三区视频了| 国产一区二区亚洲精品在线观看| 人妻久久中文字幕网| 日本-黄色视频高清免费观看| 我要看日韩黄色一级片| 露出奶头的视频| 亚洲男人的天堂狠狠| 大型黄色视频在线免费观看| 免费人成视频x8x8入口观看| 国产在线男女| 国产伦精品一区二区三区视频9| 精品无人区乱码1区二区| 小说图片视频综合网站| 观看美女的网站| 日韩欧美在线乱码| 哪里可以看免费的av片| 亚洲美女搞黄在线观看 | 亚洲中文字幕一区二区三区有码在线看| 两个人视频免费观看高清| 国产伦精品一区二区三区四那| 国产精品久久久久久精品电影| 给我免费播放毛片高清在线观看| 麻豆av噜噜一区二区三区| 欧美区成人在线视频| 久久久久久久精品吃奶| 国产精品不卡视频一区二区| 欧美性猛交黑人性爽| 观看免费一级毛片| 国产伦精品一区二区三区视频9| 亚洲欧美精品综合久久99| 亚洲精品在线观看二区| av女优亚洲男人天堂| 久久精品91蜜桃| 一边摸一边抽搐一进一小说| 婷婷亚洲欧美| 超碰av人人做人人爽久久| 在线国产一区二区在线| 亚洲内射少妇av| 乱码一卡2卡4卡精品| 精品人妻视频免费看| 韩国av在线不卡| 亚洲专区中文字幕在线| 国产真实乱freesex| 午夜福利在线观看免费完整高清在 | 国产v大片淫在线免费观看| 久久精品人妻少妇| 人妻少妇偷人精品九色| 日本黄大片高清| 亚洲四区av| 久久精品91蜜桃| a在线观看视频网站| 女同久久另类99精品国产91| 亚洲精华国产精华精| 免费av不卡在线播放| 丝袜美腿在线中文| 伦精品一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 国产 一区 欧美 日韩| 精品久久久久久久久亚洲 | 欧美3d第一页| 我的老师免费观看完整版| 午夜福利视频1000在线观看| 熟女电影av网| 亚洲四区av| 夜夜看夜夜爽夜夜摸| 美女cb高潮喷水在线观看| 熟女电影av网| 久久久久九九精品影院| 中文亚洲av片在线观看爽| 亚洲精品影视一区二区三区av| 亚洲av五月六月丁香网| 亚洲欧美日韩卡通动漫| 国内精品一区二区在线观看| 最近中文字幕高清免费大全6 | 国产高清激情床上av| 九九爱精品视频在线观看| 午夜a级毛片| 欧美极品一区二区三区四区| 搡老岳熟女国产| 女的被弄到高潮叫床怎么办 | 亚洲不卡免费看| 国产主播在线观看一区二区| 免费看av在线观看网站| 亚洲自拍偷在线| 很黄的视频免费| 国产精品无大码| 麻豆av噜噜一区二区三区| 亚洲国产精品sss在线观看| 久久99热6这里只有精品| 国产三级中文精品| 亚洲一区高清亚洲精品| 一区福利在线观看| 天堂影院成人在线观看| 免费电影在线观看免费观看| 欧美另类亚洲清纯唯美| 日本与韩国留学比较| 成人性生交大片免费视频hd| 麻豆成人av在线观看| а√天堂www在线а√下载| 日韩欧美在线乱码| 哪里可以看免费的av片| 少妇的逼水好多| 麻豆国产97在线/欧美| 真人做人爱边吃奶动态| 亚洲av成人av| 亚洲在线自拍视频| 十八禁网站免费在线| 99久久精品一区二区三区| a级毛片免费高清观看在线播放| 色综合婷婷激情| 听说在线观看完整版免费高清| 色5月婷婷丁香| 国产一区二区三区在线臀色熟女| 精品久久久久久久人妻蜜臀av| 99久久中文字幕三级久久日本| 欧美极品一区二区三区四区| 国产男靠女视频免费网站| 可以在线观看的亚洲视频| 亚洲第一区二区三区不卡| 一区二区三区免费毛片| 看十八女毛片水多多多| 一本久久中文字幕| 身体一侧抽搐| 在线观看午夜福利视频| 亚洲国产日韩欧美精品在线观看| 高清日韩中文字幕在线| 桃色一区二区三区在线观看| 在线天堂最新版资源| 我要搜黄色片| 淫妇啪啪啪对白视频| 深夜a级毛片| 别揉我奶头~嗯~啊~动态视频| 黄色配什么色好看| 男女边吃奶边做爰视频| 久久精品国产亚洲av天美| 国产精品久久久久久亚洲av鲁大| 毛片一级片免费看久久久久 | 亚洲国产精品合色在线| 亚洲熟妇熟女久久| 别揉我奶头 嗯啊视频| 午夜免费成人在线视频| 男插女下体视频免费在线播放| 国产午夜精品论理片| 国产精品一区二区三区四区久久| 中出人妻视频一区二区| 精品人妻偷拍中文字幕| 最近最新免费中文字幕在线| 亚洲午夜理论影院| 亚洲18禁久久av| 亚洲精品乱码久久久v下载方式| 神马国产精品三级电影在线观看| 一本久久中文字幕| 日韩,欧美,国产一区二区三区 | 午夜福利在线观看免费完整高清在 | 久久久久久大精品| 国产综合懂色| 午夜福利欧美成人| aaaaa片日本免费| 我的老师免费观看完整版| 欧美成人a在线观看| 亚洲,欧美,日韩| 久久精品综合一区二区三区| 老女人水多毛片| 日韩精品有码人妻一区| 麻豆精品久久久久久蜜桃| 日本黄大片高清| 国模一区二区三区四区视频| 国产免费男女视频| 亚洲av日韩精品久久久久久密| 真实男女啪啪啪动态图| 一区福利在线观看| 啦啦啦啦在线视频资源| 成人国产一区最新在线观看| 午夜精品在线福利| 国产老妇女一区| 欧美xxxx黑人xx丫x性爽| 色5月婷婷丁香| 欧美日韩中文字幕国产精品一区二区三区| 国内久久婷婷六月综合欲色啪| 亚洲成人中文字幕在线播放| 日本撒尿小便嘘嘘汇集6| 欧美一区二区精品小视频在线| 一本久久中文字幕| .国产精品久久| 久久6这里有精品| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲av日韩精品久久久久久密| 国内精品久久久久精免费| 美女黄网站色视频| 精品久久久久久久久久久久久| 一a级毛片在线观看|