• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Turbulence, aeration and bubble features of air-water flows in macro- and intermediate roughness conditions

    2011-11-02 13:34:52StefanoPAGLIARAThendiyathROSHNIIacopoCARNACINA
    Water Science and Engineering 2011年2期

    Stefano PAGLIARA*, Thendiyath ROSHNI, Iacopo CARNACINA

    Department of Civil Engineering, University of Pisa, Via Gabba 22, Pisa 56122, Italy

    1 Introduction

    Nearly all flows in environment and engineering are hydraulically rough (Stoesser and Nikora 2008). Rough bed elements like pebbles and boulders are the most prevalent microtopographic features of gravel-bed rivers, and these features enhance the river bed stability. Tremendous work has been carried out on the flow characteristics of the two-phase flow over smooth channel beds and a few over hydraulically rough beds (Nikora et al. 2001;Stoesser and Nikora 2008). Studies over rough beds are extensively done nowadays because of their high energy dissipation properties. Intensified roughness creates additional resistance and hence leads to higher kinetic energy dissipation. Flow over rough beds may skim at particular flow depths and slopes (Pagliara et al. 2010b). This condition enhances the presence of stable vortices between the rough bed elements and results in a more complicated three-dimensional flow. Some analogies exist between the skimming flows over stepped spillways (Chanson and Toombes 2001b; Ohtsu et al. 2004; Relvas and Pinheiro 2008)and over rough bed channels(Pagliara et al. 2009, 2010a; Rice et al. 1998). Due to the complexity and importance of turbulent flows, the flow properties and flow structures over stepped spillways have been extensively studied in the past (Chanson and Carosi 2007a; Chanson and Toombes 2001b,2003; Felder and Chanson 2009; Gonzalez and Chanson 2008). Relatively few investigations have been carried out on the turbulent behavior of two-phase flows over different bed arrangements (Aivazian 1996; Djenidi et al. 1999; Nikora et al. 2001, 2004,2007; Stoesser and Nikora 2008). Amongst the few studies under the macro-roughness condition, Pagliara et al. (2009, 2010a, 2010b)studied the aeration characteristics at different relative equivalent depths, but unfortunately the underlying mechanism for the phenomenon has not been well revealed.

    This study aimed to analyze the hydrodynamics of the two-phase flow over a naturally occurring rough bed of macro- and intermediate roughness, defined as in Bathurst (1978)and Pagliara and Chiavaccini (2006a), and to investigate the turbulence response to the changes in flow and roughness. A further objective was to identify the normal distribution of the void fraction, bubble frequency, and integral time scale of the two-phase flow over the roughened bed. In addition, this paper provides information on the flow structure in the uniform flow conditions and characterizes the general and individual properties of the two-phase flow.

    2 Experimental facility and measuring techniques

    To describe the air-water flow characteristics and present new evidence, an experimental setup, with a rough bed channel for high velocity open channel flows, was constructed in the PITLAB center of the University of Pisa. The facility consisted of a rough bed chute of 8 m long and 0.3 m wide, a recirculation pit, which ensured the water supply, and a magnetic flow meter (OPTIFLUX 2000)for the discharge measurement. The base macro-roughness (BMR)configuration was prepared by gluing one layer of rough elements over a stainless sheet with characteristic diameters of D16= 38.17 mm, D50= 43.41 mm, D65= 45.59 mm, and D84=47.17 mm, where Dxxrefers to the particle size for which xx% of the particles by weight are finer. The particles were randomly arranged at the bottom of the channel. A uniformity parameter of σp= (D84D16)12= 1.24 for rough elements was adopted (materials with σp< 1.4 are considered uniform (Dey and Raikar 2005)). The elements were placed in a manner that could minimize the gap between them. A diagram sketch of the rough bed chute with notations is illustrated in Fig. 1.

    Further details about the experimental setup and the measurement locations are described in Pagliara et al. (2009, 2010b).

    Fig. 1 Sketch of aerated flow in skimming flow regime on a rock chute and definition sketch of air and water chord lengths and air-bubble clusters

    Experiments were performed at the flow rate per unit width q ranging between 0.03 m2/s and 0.09 m2/s and the slope i ranging between 0.26 and 0.46. Detailed experimental investigations of the present study are shown in Table 1.

    Table 1 Experimental parameters

    Boulders are often used to reinforce the stability of rock chutes and increase the energy dissipation (Ahmad et al. 2009; Pagliara and Chiavaccini 2006b), owing to their influence on the near-bed turbulence. Hence, the roughness of the bed was further intensified by gluing on it hemispherical boulders with the diameter of Db=55mm, which were positioned over the BMRconfiguration either in row (BC-R)or in staggered (BC-S)arrangement (Pagliara et al. 2010a). The BC-Sand BC-Rarrangements over the BMRconfiguration are shown in Figs. 2(a)and (b).

    Fig. 2 Rough bed arrangements

    Clear water flow depths over the rough bed were measured with a point gauge and the air-water flow properties were recorded using a void fraction meter, produced by the Bureau of Reclamation of the U.S. Department of the Interior, with the help of an intrusive single tip conductivity probe (tip ?6 mm)(Jacobs 1997; Matos and Frizell 1997). The output voltage signals (0 V when the probe touched water and 5 V when bubbles were detected)received at each time step from PT were analyzed for the estimation of the air-water flow properties. The translation of the conductivity probe and point gauge along and across the channel was controlled by a fine adjustment mechanism. The calibration of the conductivity probe was done before each test and the output signal was scanned for 15 s at a sampling rate of 20 Hz and for 30-40 s at 2 kHz. Due to the three-dimensional pattern of the flow, measurements were performed for each 0.5 m longitudinally from the inlet sections at z=0 m,z =±0 .05 m , and z=± 0.1 m, where z is the transverse coordinate from the center of the channel, and for each 1 mm vertically from PT. For each section, the value of the water depth dewas, therefore,obtained by averaging the water depth toward the transverse direction (Pagliara et al. 2010a,2010b). In the present study, all the flow measurements were performed in the quasi-uniform flow region.

    3 Data processing methods

    Each sample, digitalized in the form of a square wave, was analyzed for the calculation of the void fraction C, the integral time scale Txx, the bubble frequency F, the air bubble chord length Laand water droplet chord length Lwdistributions, and clustering events, respectively.

    The void fraction C was evaluated as the percentage of time in which the signal was above the air-water threshold limit (generally fixed at 50% of the maximum output voltage(Pagliara et al. 2010a)). The bubble frequency F is the number of bubbles detected by the conductivity probe per second. The air and water chord time distributions are given based on the time that the probe tip stays on air bubbles or water droplets (Kucukali and Cokgor 2008),and the chord length can be obtained by multiplying V and the chord time (Fig. 1). The integral time scale Txxcan be computed with Eq. (1)as follows:

    which is equal to the integral area of the normalized autocorrelation functionRxxof the voltage signals at each step from t= 0 to t = T ( Rxx= 0), as shown in Fig. 3 (Chanson and Carosi 2007a):

    Fig. 3 Auto-correlation integral scale definition

    4 Experimental results

    4.1 Void fraction and frequency analysis

    where D0is a dimensionless diffusivity coefficient and K′ is the dimensionless integration coefficient.

    Fig. 4(b)shows that the bubble frequency distribution presents a rising limb, an intermediate region and a recession limb in the direction normal to the flow. It can be seen from Fig. 4 that there are not many discrepancies in the average profile measurements in the MR-SKflow regime over the rock chutes except for a small value of F Fmaxcorresponding to the first peak in the frequency distribution in the inner layers (Fig. 4(b)). This is mainly due to the significant interaction of the free surface flow and stable wakes with the intensely rough channel bed (Pagliara et al. 2010a). The second peak shows that the maximum bubble frequencyFmaxoccurs generally in the range of 0.3 <C < 0.6.

    The frequency distribution over the void fraction better explains the flow regions in the direction normal to the flow. Fig. 5 shows the dimensionless relation between the bubble count rate and void fraction for i= 0.26, 0.38, and 0.46 and q = 0.07 m2/s. All the present data sets for the three slopes consistently show a characteristic shape with the maximum bubble frequency occurring in the range of 0.3 <C < 0.6. The relationship between the bubble frequency and void fraction was approximated as a parabolic shape, shown in Chanson (1997)as

    and later Toombes (2002)later extended the parabolic law as follows:

    where α and β are correction factors and CFmaxis the void fraction corresponding to the maximum bubble frequency (Toombes 2002). The dimensionless distribution of the bubble count rate F Fmaxwith void fraction clearly illustrates three different flow regions in the direction normal to the flow. A bubbly flow regime appears at C<0.3, while the spray region occurs at a higher concentration of C>0.6. An intermediate region exists in the range of 0.3 <C < 0.6, in which the maximum bubble frequency occurs. Similar results were observed in flows over smooth chutes and stepped spillway flows (Chanson 1997; Gonzalez and Chanson 2008). All the present data, except for few data at i = 0.26 in the bubbly flow region were correlated reasonably well with the modified parabolic law from Toombes (2002). The higher bubble count rate in the inner regions of the flow over the rough bed is due to the high vortex recirculation between the bed elements, which is well discussed in Pagliara et al. (2009,2010a). In the outer layers, due to the spray formation, a higher dispersion of data was seen and hence resulted in a larger deviation from Eq. (3)and Eq. (4).

    Boulder presence, either in the BC-Ror the BC-Sarrangement, yields to large air entrainment in the flow condition similar to that of the BMRconfiguration, leading to different flow features. Fig. 6 and Fig. 7 show the void fraction distribution and frequency analysis at xbDb= 0 and xbDb= 0.9, respectively, in the BC-Rarrangement (Γ = 0.05)for five different transverse sections z=± 0.1 m , z=± 0.05 m, and z=0 m, where xbis the distance from a boulder row, y1is the depth measured from the plane joining the top of the boulder rows (Fig. 6(a)), and y1=at C=0.9.

    Fig. 5 Dimensionless relationship between C and F Fm ax for i = 0.46, 0.38, and 0.26, q = 0.07 m2/s, and Γ = 0 and comparison with Eq. (3)and Eq. (4)

    Fig. 6 Dimensionless distribution of void fraction C and frequency analysis for different transverse sections in BC-R arrangement (Γ = 0.05)for i=0.46 and q = 0.05 m2/s atxb Db= 0

    Fig. 7 Dimensionless distribution of void fraction C and frequency analysis for different transverse sections in BC-R arrangement (Γ = 0.05)for i=0.46 and q = 0.05 m2/s atxb Db= 0.9

    The void fraction profiles and the frequency analysis over the boulder top (Fig. 6)were homogeneous, similar to the profile of the MR-SKflow regime over the BMRarrangement (Fig. 4).Unlikely, atxbDb= 0.9, as shown in Fig. 7, a profound disturbance of the flow field immediately after the boulder row was clearly seen, which included strong separation zones below and above the boulder top. Fig. 8 shows the dimensionless distribution of the void fraction with bubble frequency and the Txxvariation normal to the flow direction for i= 0.46 and q = 0.05 m2/s at xbDb= 0.9 in the BC-Rarrangement of boulders (Γ = 0.05).Flow over the BC-Rarrangement is characterized by a wake and jet fall mechanism (Pagliara et al. 2010a).

    Fig. 8 Dimensionless distribution of void fraction with bubble frequency and integral time scale normal to flow direction fori=0.46and q = 0.05m2/s at xb Db = 0.9in BC-R arrangement (Γ = 0.05)at differentz B

    Fig. 9 shows the vortex shedding in the wake diffusion zone over the BC-Rarrangement for i = 0.46 and Γ = 0.05. Due to the vortex shedding in the wake diffusion zone, immediately after the boulder rows (xbDb= 0.9), a high recirculation zone appears (Fig. 9), where a small jet fall occurs after each boulder row, resulting in a higher F (Lacey and Roy 2008; Pagliara et al. 2010a), as shown in detail in Fig. 8. Air packets are broken up into a number of air bubbles because of the fall effect, resulting in a larger air content and a higher bubble count rate (Fig. 8(a)). The fall effect also causes the occurrence of the high recirculation zone, which further results in a higher Txxin the inner layers, i.e.,y1y9′0< 0.25(Fig. 8(b)).

    Fig. 9 Vortex shedding over BC-R arrangement for i = 0.46, q = 0.05 m2/s, and Γ = 0.05

    4.2 Integral time scale analysis

    The characteristics of the flow over stepped chutes depend on the step height h and the chute slope, while the characteristics of the flow over rock chutes depend on the diameter of materials and also the chute slope. In order to compare flow characteristics over the stepped chute and rock chute, the nominal diameter of the bed material was considered equal to the normal step height, i.e.,D84= h cosθ , where θ is the angle between the chute and horizontal plane in degrees. Fig. 10 shows the comparison of rock chute data from several transverse sections in the bubbly and intermediate flow regions with stepped chute data (Felder and Chanson 2008). It can be inferred from Fig. 10 that the flow over the rock chute presents a larger Txxcompared with those observed by Felder and Chanson (2008)in the inner layer in the presence of stepped chutes for similar i and deD84. For either the stepped chute or rock chute,the turbulence decreases with the increase of deD84. When deD84decreases, the interaction between the rough bed elements and the water surface increases, resulting in a higher Txx.Moreover, Txxshows the greater values in the intermediate flow region for all deD84. Chanson and Carosi (2007b)showed that the relation between Txxand C generally displays a parabolic shape in the inner layers (bubbly and intermediate flow regions), and that a large deviation occurs over stepped spillways in the spray region. Since the spray formation appears earlier(C>0.6)over rock chutes, the data systematically break away from the normal parabolic shape.Hence, the present study data only show data of the inner layers (Fig. 10).

    Fig. 10 Comparison of Felder and Chanson’s (2008)data for i = 0.4 with present study for i = 0.38 and Γ = 0 for similar d e D84

    In order to visualize the effects of turbulence on aeration, the maximum integral time scale Tx′xobtained in the intermediate flow region is plotted for i=0.26, 0.38, and 0.46 and 0.74 ≤deD84≤1.63 in Fig. 11(a). In addition, Tx′xis compared with Felder and Chanson’s (2008)data. A generally decreasing trend of turbulence with the increase of deD84was found at all the slopes in the test range. Moreover, Felder and Chanson (2008)data show a smaller turbulence scale compared with rock chute data. Fig. 11(b)plots the average concentration Cmas a function offor i = 0.26, 0.38, and 0.46, and Γ= 0, 0.05,and 0.15 in the BC-Sarrangement. Larger values of Tx′xcorrespond to larger Cmover the rough bed, as the shear stress strength overcomes both the buoyant force and the surface tension, leading to a higher volume of air to be entrained and carried by the flow. Indeed, as the slope increases, Cmalso increases, and at a constant slope, Cmincreases with both Tx′xandΓ.

    Fig. 11 Dimensionless distribution of Tx′xwithdeD84and CmwithTx′xfor i = 0.26, 0.38, and 0.40,0.74 ≤ de D84≤1.63, andΓ= 0, 0.05, and 0.15in BC-S arrangement

    4.3 Chord length distributions and clustering analysis

    Fig. 12 Probability distribution functions of air bubble and water droplet chord lengths over BMR (Γ=0)configuration for q = 0.07 m2/s and i=0.46at central transverse sectionz B =0

    The streamwise structure of the air-water flow can be further explained by the clustering analysis. Voltage signal outputs provide information on the clustering properties of bubbles in the bubbly flow region. A typical result of the clustering analysis normal to the flow direction in the bubbly flow region (i=0.46, q = 0.07 m2/s , and Γ=0 at z B=0)is presented in Fig. 13.

    Fig. 13 Clustering properties of bubbles in bubbly flow region and void fraction and frequency analysis in MR-SK flow regime of BMR configuration (Γ = 0)for i = 0.46 and q = 0.07 m2/s atz B=0

    Fig. 14 Probability distribution of air bubble chord length in BC-R arrangement (Γ = 0.05)for i = 0.46 and q = 0.05m2/s in central transverse section (z B=0)

    Fig. 15 illustrates clustering analysis in the BC-Rarrangement (Γ = 0.05)for i = 0.46 and q = 0.05 m2/s atxbDb= 0.9. Contrary to previous results in the MR-SKflow regime of the BMRconfiguration (Fig. 13), Fig. 15 shows that Pbcvaries from 25%-75% and Nbcvaries from an average of 2.2 in the outer layer to 4.2 in the vortex recirculation zone of the inner flow region (y1y9′0< 0).

    Fig. 15 Clustering properties of bubbles in bubbly flow region in BC-R arrangement (Γ = 0.05)for i = 0.46 and q = 0.05 m2/s atxb Db = 0.9for three transversal sections ( z B = - 0.33, 0, and 0.33)

    5 Conclusions

    The two-phase flow properties over the BMR, BC-S, and BC-Rconfigurations in the uniform flow region were investigated for the selected experimental ranges. The changes of the void fraction, frequency behaviors, and turbulence behaviors of flows over the rough bed arrangement were investigated, and accordingly, the flow structure analysis was performed. A comparison of the turbulence behaviors in the stepped spillway with the rock chute data was also conducted.

    The void fraction and frequency analysis over the BMRarrangement in the inner layers reveals that there is a strong interaction between the water surface and rough bed elements,resulting in stable drag vortices and stable shear vortices between the rough bed elements. The turbulence analysis, based on the integral time scale, reveals that the reduction of the relative depth intensifies the interactions between the free surface and bed materials and thus increases the turbulence intensity, resulting in a higher quantity of air entrained by the flow. Moreover,the flow over rough bed chutes shows a higher turbulence as compared with the stepped chute data for similar flow conditions, owing to the presence of complex flows and vortex structures downstream of the rock elements. Chord length and clustering analyses over the BMRand BC-Rarrangements show different behaviors in the inner flow region. The results show that the intensified roughness of the BC-Rarrangement enhances the void fraction by air bubbles of larger chord lengths and higher turbulence levels compared to BMR.

    Ahmad, Z., Petappa, N. M., and Westrich, B. 2009. Energy dissipation on block ramps with staggered boulders. Journal of Hydraulic Engineering, 135(6), 522-526. [doi:10.1061/(ASCE)HY.1943-7900.0 000039]

    Aivazian, O. M. 1996. New investigations and new method of hydraulic calculation of chutes with intensified roughness. Power Technology and Engineering, 30(6), 335-356. [doi:10.1007/BF02443117]

    Bathurst, J. C. 1978. Flow resistance of large-scale roughness. Journal of Hydraulic Division, 104(12),1587-1603. [doi:10.1139/L08-068]

    Bathurst, J. C. 1985. Flow resistance estimation in mountain rivers. Journal of Hydraulic Engineering,111(4), 625-643. [doi:10.1061/(ASCE)0733-9429]

    Castro-Orgaz, O., and Hager, W. H. 2010. Drawdown curve and turbulent boundary layer development for chute flow. Journal of Hydraulic Research, 48(5), 591-602. [doi:10.1080/00221686.2010.507337]

    Chanson, H. 1997. Measuring air-water interface area in supercritical open channel flow. Water Resources,31(6), 1414-1420. [doi:10.1016/S0043-1354(96)00339-9]

    Chanson, H., and Toombes, L. 2001a. Experimental Investigations of Air Entrainment in Transition and Skimming Flows Down a Stepped Chute: Application to Embankment Overflow Stepped Spillways, CE 158. Queensland: Department of Civil Engineering, The University of Queensland.

    Chanson, H., and Toombes, L. 2001b. Strong interactions between free-surface aeration and turbulence down a staircase channel. Dally, B. B. ed. Proceedings of the 14th Australasian Fluid Mechanics Conference, 1-4. Adelaide: Casual Productions.

    Chanson, H., and Toombes, L. 2003. Strong interactions between free-surface aeration and turbulence in an open channel flow. Experimental Thermal and Fluid Science, 27(5), 525-535. [doi:10.1016/S0894-1777(02)00266-2]

    Chanson, H., and Carosi, G. 2007a. Advanced post-processing and correlation analyses in high-velocity air-water flows. Environmental Fluid Mechanics, 7(6), 495-508. [doi:10.1007/s10652-007-9038-3]

    Chanson, H., and Carosi, G. 2007b. Turbulent time and length scale measurements in high-velocity open channel flows. Experiments in Fluids, 42(3), 385-401. [doi:10.1007/s00348-006-0246-2]

    Dey, S., and Raikar, V. 2005. Scour in long contractions. Journal of Hydraulic Engineering, 131(12),1036-1049. [doi:10.1061/(ASCE)0733-9429(2005)131:12(1036)]

    Dey, S., and Raikar, R. V. 2007. Characteristic of loose rough boundary streams at near threshold. Journal of Hydraulic Engineering, 133(3), 288-304. [doi:10.1061/(ASCE)0733-9429(2007)133:3(288)]

    Djenidi, L., Elavarasan, R., and Antonia, R. A. 1999. The turbulent boundary layer over transverse square cavities. Journal of Fluid Mechanics, 395, 271-294. [doi:10.1017/S0022112099005911]

    Felder, S., and Chanson, H. 2008. Turbulence and turbulent length and time scales in skimming flows on a stepped spillway: Dynamic similarity, physical modelling and scale effects. Canadian Journal of Civil Engineering, 35(9), 865-880. [doi:10.1139/L08-030]

    Felder, S., and Chanson, H. 2009. Turbulence, dynamic similarity and scale effects in high-velocity free-surface flows above a stepped chute. Experiments in Fluids, 47(1), 1-18. [doi:10.1007/s00348-009-0628-3]

    Gonzalez, C. A., and Chanson, H. 2008. Turbulence manipulation in air-water flows on a stepped chute: An experimental study. European Journal of Mechanics B/Fluids, 27(4), 388-408. [doi:10.1016/j.euromechflu.2007.09.003]

    Jacobs, M. L. 1997. Void Fraction Meter Electronics Package Manual. Denver: U.S. Department of the Interior Bureau of Reclamation.

    Kucukali, S., and Cokgor, S. 2008. Boulder-flow interaction associated with self-aeration process. Journal of Hydraulic Research, 46(3), 415-419. [doi:10.3826/jhr.2008.3105]

    Lacey, R. W. J., and Roy, A. G. 2008. The spatial characterization of turbulence around large roughness elements in a gravel-bed river. Geomorphology, 102(3), 542-553. [doi:10.1016/j.geomorph.2008.05.045]

    Matos, J., and Frizell, K. H. 1997. Void fraction measurements in highly turbulent aerated flow.Proceedings of the 27th IAHR Congress, Theme B, Vol. 1, 149-154. San Francisco: IAHR.

    Nikora, V., Goring, D., McEwan, I., and Griffiths, G. 2001. Spatially averaged open-channel flow over rough bed. Journal of Hydraulic Engineering, 127(2), 123-133. [doi:10.1061/(ASCE)0733-9429(2001)127:2(123)]

    Nikora, V., Koll, K., McEwan, I., McLean, S., and Dittrich, A. 2004. Velocity distribution in the roughness layer of rough-bed flows. Journal of Hydraulic Engineering, 130(10), 1036-1042. [doi:10.1061/(ASCE)0733-9429(2004)130:10(1036)]

    Nikora, V., McLean, S., Coleman, S., Pokrajac, D., McEwan, I., Campbell, L., Aberle, J., Clunie, D., and Koll, K. 2007. Double-averaging concept for rough-bed open-channel and overland flows:Applications. Journal of Hydraulic Engineering, 133(8), 884-895. [doi:10.1061/(ASCE)0733-9429(2007)133:8(884)]

    Ohtsu, I., Yasuda, Y., and Takahashi, M. 2004. Flow characteristics of skimming flows in stepped channels.Journal of Hydraulic Engineering, 130(9), 860-869. [doi:10.1061/(ASCE)0733-9429(2004)130:9(860)]

    Pagliara, S., and Chiavaccini, P. 2006a. Energy dissipation on block ramps. Journal of Hydraulic Engineering, 132(1), 41-48. [doi:10.1061/(ASCE)0733-9429(2006)132:1(41)]

    Pagliara, S., and Chiavaccini, P. 2006b. Energy dissipation on reinforced block ramps. Journal of Irrigation and Drainage Engineering, 132(3), 293-297. [doi:10.1061/(ASCE)0733-9437(2006)132:3 (293)]

    Pagliara, S., Das, R., and Carnacina, I. 2008. Flow resistance in large-scale roughness condition. Canadian Journal of Civil Engineering, 35(11), 1285-1293. [doi:10.1139/L08-068]

    Pagliara, S., Roshni, T., and Carnacina, I. 2009. Aeration and velocity profile over block ramp elements.The 33rd IAHR 2009 Congress: Water Engineering for a Sustainable Environment, 4925-4932.Vancouver: IAHR.

    Pagliara, S., Carnacina, I., and Roshni, T. 2010a. Air-water flows in presence of staggered and row boulders under macro-roughness conditions. Water Resources Research, 46, W08535. [doi:10.1029/2009W R008834]

    Pagliara, S., Carnacina, I., and Roshni, T. 2010b. Self-aeration and friction over rock chutes in uniform flow conditions. Journal of Hydraulic Engineering, 136(11), 959-964. [doi:10.1061/(ASCE)HY.194 3-7900.0000270]

    Pagliara, S., Carnacina, I., and Roshni, T. 2011. Inception point and air entrainment on flows under macro-roughness condition. Journal of Environmental Engineering, published online at http://ascelibrary.org/eeo/resource/3/joeexx/282?isAuthorized=no on February 1, 2011. [doi:10.1061/(ASCE)EE.1943-7870.0000369]

    Relvas, A. T., and Pinheiro, A. N. 2008. Inception point and void fraction in flows on stepped chutes lined with wedge-shaped concrete blocks. Journal of Hydraulic Engineering, 134(8), 1042-1051. [doi:10.1061/(ASCE)0733-9429(2008)134:8(1042)]

    Rice, C. E., Kadavy, K. C., and Robinson, K. M. 1998. Roughness of loose rock riprap on steep slopes.Journal of Hydraulic Engineering, 124(2), 179-185. [doi:10.1061/(ASCE)0733-9429(1998)124:2(179)]

    Stoesser, T., and Nikora, V. I. 2008. Flow structure over square bars at intermediate submergence: Large eddy simulation study of bar spacing effect. Acta Geophysica, 56(3), 876-893. [doi:10.2478/s11600-008-0030-1]

    Strom, K. B., and Papanicolaou, A. N. 2007. ADV measurements around a cluster microform in a shallow mountain stream. Journal of Hydraulic Engineering, 133(12), 1379-1389. [doi:10.1061/(ASCE)0733-9429(2007)133:12(1379)]

    Toombes, L. 2002. Experimental Study of Air-water Flow Properties on Low-gradient Stepped Cascades.Ph. D. Dissertation. Queensland: Department of Civil Engineering, The University of Queensland School.

    美女主播在线视频| 老女人水多毛片| 黄片小视频在线播放| 狠狠婷婷综合久久久久久88av| 哪个播放器可以免费观看大片| 91久久精品国产一区二区三区| 婷婷色综合www| 国产一级毛片在线| 在线天堂中文资源库| 1024视频免费在线观看| 成人影院久久| 在线观看www视频免费| 80岁老熟妇乱子伦牲交| 国产女主播在线喷水免费视频网站| 最黄视频免费看| 观看美女的网站| 久久久久久久精品精品| 青春草国产在线视频| 一区二区日韩欧美中文字幕| 亚洲欧美精品自产自拍| 日韩中文字幕视频在线看片| 一本久久精品| av在线老鸭窝| 永久免费av网站大全| 成人国产av品久久久| 精品卡一卡二卡四卡免费| 国产亚洲一区二区精品| 久久精品国产亚洲av涩爱| 国产精品 国内视频| 精品久久蜜臀av无| 中文乱码字字幕精品一区二区三区| 精品亚洲成国产av| 叶爱在线成人免费视频播放| 精品久久蜜臀av无| 狂野欧美激情性bbbbbb| 亚洲欧美成人精品一区二区| 欧美精品一区二区免费开放| 久久精品久久精品一区二区三区| 久久久久久久国产电影| 色网站视频免费| 日韩不卡一区二区三区视频在线| 亚洲国产最新在线播放| 巨乳人妻的诱惑在线观看| 99国产综合亚洲精品| 少妇人妻 视频| 亚洲精品av麻豆狂野| 国产精品久久久久久精品古装| 18禁国产床啪视频网站| 午夜av观看不卡| 久久综合国产亚洲精品| 欧美 日韩 精品 国产| 亚洲,欧美,日韩| 超色免费av| 国产激情久久老熟女| 色婷婷久久久亚洲欧美| 午夜免费观看性视频| 精品福利永久在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 高清欧美精品videossex| 精品亚洲乱码少妇综合久久| 永久网站在线| 欧美国产精品一级二级三级| 另类精品久久| 波野结衣二区三区在线| 观看av在线不卡| 欧美亚洲 丝袜 人妻 在线| 国产无遮挡羞羞视频在线观看| 在现免费观看毛片| 不卡av一区二区三区| 久久久久精品性色| 免费看av在线观看网站| 老女人水多毛片| 蜜桃在线观看..| 精品少妇黑人巨大在线播放| 国产在线免费精品| 寂寞人妻少妇视频99o| 欧美日韩成人在线一区二区| 免费播放大片免费观看视频在线观看| 十分钟在线观看高清视频www| 亚洲情色 制服丝袜| 国产精品免费视频内射| 99re6热这里在线精品视频| freevideosex欧美| 啦啦啦在线免费观看视频4| 久久久久久久大尺度免费视频| 久久鲁丝午夜福利片| 26uuu在线亚洲综合色| 91精品国产国语对白视频| 18禁观看日本| 天堂中文最新版在线下载| 大片电影免费在线观看免费| 国产精品一二三区在线看| 午夜福利,免费看| 亚洲色图 男人天堂 中文字幕| 一区二区三区四区激情视频| 久热久热在线精品观看| 女性生殖器流出的白浆| 日韩三级伦理在线观看| 久久久精品区二区三区| 90打野战视频偷拍视频| 777米奇影视久久| 男人爽女人下面视频在线观看| 一区福利在线观看| 国产精品无大码| 免费观看性生交大片5| 久久久久久久大尺度免费视频| 亚洲成色77777| 99久久中文字幕三级久久日本| 免费在线观看视频国产中文字幕亚洲 | 午夜福利,免费看| 中文字幕人妻熟女乱码| 久久国内精品自在自线图片| 免费在线观看完整版高清| 午夜av观看不卡| 午夜福利视频精品| 亚洲av在线观看美女高潮| 如何舔出高潮| 久久久久久伊人网av| 有码 亚洲区| 久久ye,这里只有精品| 午夜91福利影院| 亚洲精品第二区| tube8黄色片| 女性生殖器流出的白浆| 一区二区三区精品91| 国产一区亚洲一区在线观看| 久久99热这里只频精品6学生| 下体分泌物呈黄色| 国产亚洲精品第一综合不卡| 国产在线视频一区二区| 男女啪啪激烈高潮av片| 中文精品一卡2卡3卡4更新| 午夜91福利影院| 蜜桃国产av成人99| 国产成人一区二区在线| 日日撸夜夜添| 三级国产精品片| 亚洲国产日韩一区二区| 一级片'在线观看视频| 美女国产视频在线观看| 亚洲欧美清纯卡通| 久热这里只有精品99| 国产一区二区三区av在线| 国精品久久久久久国模美| 97在线人人人人妻| av在线观看视频网站免费| av国产精品久久久久影院| 亚洲伊人色综图| 国产免费福利视频在线观看| 成人18禁高潮啪啪吃奶动态图| 欧美日韩亚洲高清精品| 成人毛片60女人毛片免费| 亚洲欧洲精品一区二区精品久久久 | 亚洲国产精品一区三区| 建设人人有责人人尽责人人享有的| 亚洲精品美女久久av网站| 国产成人91sexporn| 在现免费观看毛片| 国产在线免费精品| 免费av中文字幕在线| 亚洲国产欧美日韩在线播放| 香蕉丝袜av| 男女边吃奶边做爰视频| 亚洲美女搞黄在线观看| 亚洲av中文av极速乱| av在线播放精品| 国产精品久久久av美女十八| 哪个播放器可以免费观看大片| 一区二区三区乱码不卡18| 久久精品熟女亚洲av麻豆精品| 制服诱惑二区| 国语对白做爰xxxⅹ性视频网站| 国产精品香港三级国产av潘金莲 | 国产成人精品久久久久久| 国产亚洲最大av| 在线亚洲精品国产二区图片欧美| 亚洲欧美一区二区三区黑人 | 国产精品.久久久| 又粗又硬又长又爽又黄的视频| 在线观看www视频免费| 欧美日韩综合久久久久久| 亚洲精品国产一区二区精华液| 建设人人有责人人尽责人人享有的| 久久女婷五月综合色啪小说| 久久人人爽av亚洲精品天堂| 在线观看一区二区三区激情| av福利片在线| 国产精品嫩草影院av在线观看| 伦精品一区二区三区| av免费在线看不卡| 亚洲成人一二三区av| 国产熟女欧美一区二区| 国产av国产精品国产| 亚洲欧美色中文字幕在线| 成人亚洲欧美一区二区av| av.在线天堂| 婷婷成人精品国产| 免费黄色在线免费观看| 丝袜喷水一区| 国产成人精品在线电影| 最新中文字幕久久久久| 日韩成人av中文字幕在线观看| 少妇人妻精品综合一区二区| 亚洲图色成人| 亚洲男人天堂网一区| 欧美亚洲 丝袜 人妻 在线| 精品一区在线观看国产| a 毛片基地| 热99久久久久精品小说推荐| 成人国产av品久久久| 国产一级毛片在线| 1024视频免费在线观看| 在现免费观看毛片| 黑丝袜美女国产一区| 久久午夜综合久久蜜桃| 亚洲国产精品国产精品| 国产精品一国产av| 亚洲四区av| 捣出白浆h1v1| 2018国产大陆天天弄谢| 十八禁高潮呻吟视频| 欧美亚洲 丝袜 人妻 在线| 人妻人人澡人人爽人人| 深夜精品福利| 国产精品 欧美亚洲| 熟妇人妻不卡中文字幕| 免费人妻精品一区二区三区视频| 国产老妇伦熟女老妇高清| 国产伦理片在线播放av一区| √禁漫天堂资源中文www| 成年av动漫网址| 电影成人av| 好男人视频免费观看在线| 亚洲精品一二三| 日本vs欧美在线观看视频| 黄网站色视频无遮挡免费观看| 欧美日韩一区二区视频在线观看视频在线| 看免费av毛片| 蜜桃在线观看..| 亚洲一级一片aⅴ在线观看| 国产精品久久久久久精品古装| 国产成人精品久久二区二区91 | 久久久久网色| 一级毛片黄色毛片免费观看视频| 日日摸夜夜添夜夜爱| 考比视频在线观看| 久久久国产一区二区| 久久久久久久国产电影| 欧美日韩视频精品一区| 建设人人有责人人尽责人人享有的| 日本-黄色视频高清免费观看| 看免费av毛片| 人人妻人人爽人人添夜夜欢视频| 久久久久国产一级毛片高清牌| 国产 精品1| 91在线精品国自产拍蜜月| 2022亚洲国产成人精品| 国产极品天堂在线| 女人精品久久久久毛片| 国产成人免费无遮挡视频| 伊人久久大香线蕉亚洲五| 亚洲经典国产精华液单| 一本色道久久久久久精品综合| 老司机影院成人| 久久精品熟女亚洲av麻豆精品| 久久久久久久久久久久大奶| 熟女少妇亚洲综合色aaa.| 国产亚洲最大av| 久久 成人 亚洲| 久久久久精品性色| 18禁观看日本| 1024香蕉在线观看| 久久99蜜桃精品久久| 色视频在线一区二区三区| 在线亚洲精品国产二区图片欧美| 午夜福利在线免费观看网站| 成人国产av品久久久| 国精品久久久久久国模美| 亚洲图色成人| 欧美日韩一区二区视频在线观看视频在线| 搡老乐熟女国产| 欧美av亚洲av综合av国产av | 亚洲,欧美,日韩| 在线观看www视频免费| 丁香六月天网| 性高湖久久久久久久久免费观看| 哪个播放器可以免费观看大片| 欧美日韩视频高清一区二区三区二| 欧美成人精品欧美一级黄| 捣出白浆h1v1| 少妇人妻久久综合中文| 不卡av一区二区三区| 国产av一区二区精品久久| 亚洲精品,欧美精品| 免费观看无遮挡的男女| 国产一区二区激情短视频 | 街头女战士在线观看网站| 中文字幕最新亚洲高清| 国产亚洲av片在线观看秒播厂| 亚洲熟女精品中文字幕| 久久精品久久久久久久性| 老鸭窝网址在线观看| 午夜老司机福利剧场| 黄色一级大片看看| 黄色怎么调成土黄色| 午夜免费观看性视频| 各种免费的搞黄视频| 欧美成人午夜免费资源| 免费在线观看黄色视频的| 丰满饥渴人妻一区二区三| 精品人妻偷拍中文字幕| a级毛片黄视频| 大陆偷拍与自拍| 看免费av毛片| 亚洲国产日韩一区二区| 国产成人av激情在线播放| 人妻 亚洲 视频| 一本色道久久久久久精品综合| 老熟女久久久| 久久精品久久久久久噜噜老黄| 性色av一级| 日韩一本色道免费dvd| 亚洲精品日本国产第一区| 国产高清不卡午夜福利| 国产免费视频播放在线视频| 亚洲国产日韩一区二区| 黄色毛片三级朝国网站| 国产欧美亚洲国产| 久久青草综合色| 人人妻人人爽人人添夜夜欢视频| 夫妻午夜视频| 久热这里只有精品99| 国产免费又黄又爽又色| 亚洲av.av天堂| 晚上一个人看的免费电影| 亚洲精品久久久久久婷婷小说| 97人妻天天添夜夜摸| 久久女婷五月综合色啪小说| 最近中文字幕高清免费大全6| 18禁国产床啪视频网站| 久久久久久久久免费视频了| 欧美黄色片欧美黄色片| 美女xxoo啪啪120秒动态图| 国产午夜精品一二区理论片| 亚洲精品国产色婷婷电影| 成人二区视频| 男女下面插进去视频免费观看| 亚洲av福利一区| 丰满少妇做爰视频| 国产在线一区二区三区精| 亚洲成人av在线免费| 最新中文字幕久久久久| 亚洲精品久久午夜乱码| 国产一级毛片在线| 欧美人与善性xxx| 欧美bdsm另类| 色视频在线一区二区三区| 亚洲图色成人| 美女脱内裤让男人舔精品视频| 亚洲国产av新网站| 国产在视频线精品| 亚洲美女搞黄在线观看| 欧美激情高清一区二区三区 | 久久影院123| 国产乱来视频区| 国产成人一区二区在线| 亚洲精品,欧美精品| 高清不卡的av网站| 久久久久久人妻| 日本-黄色视频高清免费观看| 夫妻午夜视频| 老熟女久久久| 午夜日本视频在线| 久久午夜福利片| 考比视频在线观看| 精品一区二区免费观看| 精品少妇一区二区三区视频日本电影 | 精品少妇久久久久久888优播| 男人添女人高潮全过程视频| 欧美人与性动交α欧美精品济南到 | 国产精品嫩草影院av在线观看| 在线天堂中文资源库| 色哟哟·www| 人妻系列 视频| 成年人免费黄色播放视频| 如日韩欧美国产精品一区二区三区| 国产精品久久久久久av不卡| 久久精品熟女亚洲av麻豆精品| 久久99蜜桃精品久久| 久久国内精品自在自线图片| 99国产精品免费福利视频| 国产精品亚洲av一区麻豆 | 三上悠亚av全集在线观看| 天天操日日干夜夜撸| av天堂久久9| 欧美成人精品欧美一级黄| 中文字幕另类日韩欧美亚洲嫩草| 在线观看美女被高潮喷水网站| 亚洲图色成人| 日韩人妻精品一区2区三区| 中文字幕av电影在线播放| 亚洲精品久久成人aⅴ小说| 欧美bdsm另类| 欧美日韩精品网址| 亚洲成色77777| 亚洲精品国产色婷婷电影| 国产深夜福利视频在线观看| 亚洲第一区二区三区不卡| 一区二区av电影网| 在线观看免费高清a一片| 丝袜喷水一区| 欧美精品人与动牲交sv欧美| 国产日韩一区二区三区精品不卡| 国产亚洲一区二区精品| 午夜福利,免费看| 国产一区亚洲一区在线观看| 国产日韩欧美视频二区| 亚洲经典国产精华液单| 大码成人一级视频| 侵犯人妻中文字幕一二三四区| 久久毛片免费看一区二区三区| 日本vs欧美在线观看视频| 午夜激情av网站| 少妇被粗大的猛进出69影院| 街头女战士在线观看网站| 91精品伊人久久大香线蕉| 免费少妇av软件| 视频区图区小说| 美国免费a级毛片| 亚洲欧美色中文字幕在线| 在线观看免费日韩欧美大片| 2021少妇久久久久久久久久久| 日韩在线高清观看一区二区三区| 日韩不卡一区二区三区视频在线| 五月天丁香电影| 亚洲中文av在线| 久久ye,这里只有精品| 少妇精品久久久久久久| 亚洲av欧美aⅴ国产| 欧美日韩视频高清一区二区三区二| 久久久久久久国产电影| 制服丝袜香蕉在线| 91精品国产国语对白视频| 久久久久精品人妻al黑| 搡老乐熟女国产| 成人午夜精彩视频在线观看| 亚洲av成人精品一二三区| 美女国产高潮福利片在线看| 亚洲av电影在线进入| 日韩精品有码人妻一区| 在现免费观看毛片| 亚洲欧美成人精品一区二区| 精品一区二区三区四区五区乱码 | 日韩 亚洲 欧美在线| 波野结衣二区三区在线| 在线观看美女被高潮喷水网站| 精品亚洲成a人片在线观看| 一级,二级,三级黄色视频| 日韩欧美精品免费久久| 午夜福利一区二区在线看| 26uuu在线亚洲综合色| 久久99一区二区三区| 久久久精品94久久精品| 国产色婷婷99| 精品一区在线观看国产| 国产亚洲欧美精品永久| 精品视频人人做人人爽| 校园人妻丝袜中文字幕| 精品国产露脸久久av麻豆| 国产免费视频播放在线视频| 捣出白浆h1v1| 免费久久久久久久精品成人欧美视频| 如何舔出高潮| 国产女主播在线喷水免费视频网站| 卡戴珊不雅视频在线播放| 老汉色av国产亚洲站长工具| 中文字幕最新亚洲高清| 国产午夜精品一二区理论片| 多毛熟女@视频| 80岁老熟妇乱子伦牲交| 亚洲内射少妇av| 国产精品香港三级国产av潘金莲 | 久久这里有精品视频免费| 少妇人妻 视频| 在线免费观看不下载黄p国产| 精品酒店卫生间| 国产人伦9x9x在线观看 | 黄片无遮挡物在线观看| 国产老妇伦熟女老妇高清| 90打野战视频偷拍视频| 十分钟在线观看高清视频www| 免费黄网站久久成人精品| 国产精品成人在线| 又黄又粗又硬又大视频| 久久久国产精品麻豆| 国产成人av激情在线播放| a级片在线免费高清观看视频| 各种免费的搞黄视频| 香蕉精品网在线| 2022亚洲国产成人精品| 亚洲国产精品成人久久小说| 亚洲成人av在线免费| 国产精品女同一区二区软件| 午夜福利乱码中文字幕| 搡女人真爽免费视频火全软件| 欧美日韩精品网址| 中文天堂在线官网| 国产在视频线精品| 日韩熟女老妇一区二区性免费视频| 午夜免费鲁丝| 99re6热这里在线精品视频| 久久人人爽av亚洲精品天堂| 宅男免费午夜| 中文字幕色久视频| 国产日韩欧美亚洲二区| 午夜av观看不卡| 国产精品国产三级国产专区5o| 国产成人精品久久久久久| av国产久精品久网站免费入址| 高清视频免费观看一区二区| 久久午夜综合久久蜜桃| 成人午夜精彩视频在线观看| 国产亚洲欧美精品永久| 巨乳人妻的诱惑在线观看| 成年女人毛片免费观看观看9 | 狂野欧美激情性bbbbbb| 香蕉丝袜av| 国语对白做爰xxxⅹ性视频网站| 亚洲,欧美精品.| 亚洲av电影在线观看一区二区三区| 一区二区日韩欧美中文字幕| 黑人猛操日本美女一级片| 考比视频在线观看| 精品午夜福利在线看| 新久久久久国产一级毛片| 久久久久精品久久久久真实原创| 性色av一级| 国产精品国产三级专区第一集| 精品国产国语对白av| 黄色配什么色好看| 亚洲 欧美一区二区三区| a级片在线免费高清观看视频| 国产精品人妻久久久影院| 中文字幕亚洲精品专区| 99热国产这里只有精品6| 久久精品国产亚洲av天美| 日本av免费视频播放| 亚洲国产精品成人久久小说| 精品国产露脸久久av麻豆| 久久人人爽av亚洲精品天堂| 国产不卡av网站在线观看| 大片电影免费在线观看免费| 日韩一区二区视频免费看| 国产精品欧美亚洲77777| 欧美av亚洲av综合av国产av | 日韩中文字幕视频在线看片| 国产午夜精品一二区理论片| 好男人视频免费观看在线| 亚洲精品久久久久久婷婷小说| 新久久久久国产一级毛片| 9色porny在线观看| 久久精品国产亚洲av高清一级| 欧美日韩亚洲高清精品| 2018国产大陆天天弄谢| 1024香蕉在线观看| xxxhd国产人妻xxx| 国产一区二区三区综合在线观看| av一本久久久久| 一区二区日韩欧美中文字幕| 女人精品久久久久毛片| 久久国产精品男人的天堂亚洲| 国产成人免费观看mmmm| 国产深夜福利视频在线观看| 成人国产麻豆网| 国产乱人偷精品视频| 中国三级夫妇交换| 中文字幕人妻丝袜一区二区 | 精品视频人人做人人爽| 嫩草影院入口| 国产黄频视频在线观看| 亚洲欧美色中文字幕在线| 亚洲色图综合在线观看| 日韩av不卡免费在线播放| 黑人巨大精品欧美一区二区蜜桃| 男女国产视频网站| 欧美激情高清一区二区三区 | 黄色一级大片看看| 久久精品夜色国产| 国产精品亚洲av一区麻豆 | 久久久久精品久久久久真实原创| 久久毛片免费看一区二区三区| av电影中文网址| 69精品国产乱码久久久| 赤兔流量卡办理| 天天躁日日躁夜夜躁夜夜| 成人手机av| 久久精品熟女亚洲av麻豆精品| 亚洲婷婷狠狠爱综合网| 两性夫妻黄色片| 国产色婷婷99| 亚洲婷婷狠狠爱综合网| 国产精品无大码| 日韩一区二区视频免费看| 国语对白做爰xxxⅹ性视频网站| 成人黄色视频免费在线看| 精品视频人人做人人爽| 亚洲欧美一区二区三区久久| 成人黄色视频免费在线看| 人妻 亚洲 视频| 一本大道久久a久久精品| 欧美人与性动交α欧美精品济南到 | 国产免费福利视频在线观看| www.自偷自拍.com| 亚洲精品国产色婷婷电影| 久久久国产精品麻豆|