• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Complexity analysis of precipitation in changing environment in Chien River Basin, China

    2011-08-16 09:01:07QinghuaLUANHaoWANGDazhongXIA
    Water Science and Engineering 2011年2期

    Qing-hua LUAN*, Hao WANG, Da-zhong XIA

    1. College of Water Conservancy and Hydropower, Hebei University of Engineering, Handan 056021, P. R. China

    2. Department of Water Resources, China Institute of Water Resources and Hydropower Research, Beijing 100038, P. R. China

    3. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, P. R. China

    Complexity analysis of precipitation in changing environment in Chien River Basin, China

    Qing-hua LUAN*1,2, Hao WANG2, Da-zhong XIA3

    1. College of Water Conservancy and Hydropower, Hebei University of Engineering, Handan 056021, P. R. China

    2. Department of Water Resources, China Institute of Water Resources and Hydropower Research, Beijing 100038, P. R. China

    3. College of Hydrology and Water Resources, Hohai University, Nanjing 210098, P. R. China

    The hydrological processes influenced by the multiple factors of climate, geography, vegetation, and human activities are becoming more and more complex, which is an important characteristic of hydrological systems. The different complexity distributions of precipitation processes of the Chien River Basin (a sub-basin of the Minjiang Basin) in two periods (from 1952 to 1980, and from 1981 to 2009) are illustrated using the fractal based on the continuous wavelet transform (CWT). The results show that (1) at the basin scale the precipitation process in the latter period is more complex than in the former period; (2) the maximum value of the complexity distribution moved from the east to the middle; and (3) through analysis of the time-information and space-information concealed in this complexity change, the precipitation characteristics in the changing environment in the basin can be illuminated. This study could provide a reference for research on disaster pre-warning in changing environments and for integrated water resources management in the local basin.

    characteristic analysis; precipitation complexity; continuous wavelet transform; fractal; Chien River Basin

    1 Introduction

    Research on complexity has attracted increasing attention since the 1970s, as some properties of systems cannot be interpreted by traditional methods and indices (Lempel and Ziv 1976). Mandelbrot (1983) put forward the concept of the fractal and showed that the phenomenon of complexity in nature has self-similarity that can be interpreted by fractal. In recent decades, the study of hydrologic complexity has become a hot issue in hydrological science. Li et al. (1999) calculated the wavelet estimation values of annual flow peak series using the Hust index based on the continuous wavelet transform (CWT) and compared this method with other methods. Li and Wang (2002) calculated the information fractals of thedrought and waterlogging series of the Huaihe River and Yangtze River in Anhui Province, China, using Shannon entropy, and analyzed the complexity characteristics of these drought and waterlogging series based on the results. Wang et al. (2004) diagnosed features such as break and jump (also features of complexity) of hydrological time series applying the box fractal based on CWT. Wang et al. (2005) analyzed the complexity characteristics of the runoff at typical stations of the Yellow River using the fractal and made comparison with the R/S method. Luan et al. (2010b) analyzed the complexity distributions of precipitation processes in a semi-arid region using a fractal based on CWT in different periods and discussed the reasons for the analysis results. But the study on complexity distributions in humid regions is limited. In this study, the law of complexity distributions in a typical humid region in changing environment was studied using the fractal and the explanation for the related results is also given.

    2 Method

    2.1 Continuous wavelet transform (CWT)

    Wavelet transform (WT) evolved from the Fourier transform (FT) and short-time Fourier transform (SFT) in the 1980s (Morlet et al. 1982). In contrast to other transform methods, wavelet analysis has the multi-resolution analysis function and auto-adjustable time-frequency window, which can obtain more information from series (Morlet et al. 1982). When the wavelet functionψ(t) is consistent and steady, the principle of CWT is as follows (Sidney et al. 1997; Luan et al. 2010c):

    whereWX(a,b) is the coefficient of WT,ais the scale parameter (expansion parameter),is the standardization factor,bis the time position parameter (translation parameter),tis time,ψ?(t) is the complex conjugate ofψ(t), andX(t) is a hydrological series here.

    The WT coefficientWX(aj,b) of the hydrological series in multi-scaleaj(j=1,2,…,M) (Mis the number of scale) can be obtained by Eq. (1), whereb=1,2,…,N(Nis the length of the hydrological series).

    2.2 Exponent of energy spectrum

    The precipitation series is a typical self-similarity series and its WT coefficients in different scales,WX(aj,b), can be characterized by their self-similarity (Barenblatt 1996). According to the fractal theory (Wornell 1995), the exponent of energy spectrum (α?) is a feasible index reflecting the self-similarity of the series; the analytic relations between the energy spectrumΓX(ω),α?, and the frequencyωcan be shown as follows:

    where ?1<α?<3. For, the analytic relations between the energy spectrumΓX(a),α?, andacan be shown as follows:

    The energy spectrum in multi-scaleaj(Wornell 1995; Li et al. 1999),ΓX(aj), can be computed as follows:

    When each side of the function in Eq. (3) is computed in logarithm (the base is 2), the regression equation can be obtained through a combination with Eq. (4):

    wherec0is a constant, andα?is equal to the slope of the fitted curve (Wang et al. 2004; Wang et al. 2005).

    2.3 Significance test of exponent of energy spectrum

    Since the exponent of the energy spectrum is obtained through curve fitting, it is essential to use the significance test to verify its stability.is the critical value of the correlation coefficient betweenand log2ajat a given significance levelα, and can be expressed as

    whereFα(1,n?2) is the value ofFdistribution at the significance levelα, andnis the total number of spots in the fitting curve (Freedman et al. 2007) and is equal to the scale number ofaj, which meansn=M.R2is the correlation coefficient betweenand log2aj. If, the regression equation and the exponent of the energy spectrum are both acceptable at a given confidence level (1?α).

    2.4 Fractal dimension based on CWT

    Ifα?is acceptable, the fractal dimension (D) can be computed as follows (Falconer 2003):That is to say, the fractal of the series based on CWT can be calculated according to Eqs. (1) through (7).

    A hydrological series is an observed sequence, which has a variety of changes and uncertain characteristics. WT has the function of multi-resolution analysis, so the characteristics at multiple scales of hydrological series can be determined by WT and the complexity of the hydrological series can be interpreted more precisely using the fractal based on CWT. Wang et al. (2005) proved that it was feasible to use the fractal based on CWT as the index for analyzing the complexity of hydrological series.

    3 Application

    3.1 Study region and data selection

    The Chien River Basin, with an area of 16.4 × 103km2, was chosen in this study. The Chien River is a large tributary of the Minjiang River and is located in the northwest of Fujian Province in China. It lies in the subtropical and ocean monsoon climate zone, so the runoff is abundant. The mean annual discharge is 16.7 × 109m3and the mean annual area precipitation is 1 675 mm, of which more than 80% is concentrated in the flood season (from May to September). Two groups of annual precipitation series of nine gauging stations located on the main branches of the Chien River Basin were applied in this study. One group consists of the series from 1952 to 1980 and the other consists of the series from 1981 to 2009. A length of the hydrological series of 29 and a scale number of 16 were chosen for this study. The locations and the mean annual precipitation of the selected stations in this basin are listed in Table 1.

    Table 1 Locations and mean annual precipitation of gauging stations

    3.2 Wavelet function selection

    Wavelet functions have various forms. The way of selecting a fit function is critical to the application of the wavelet function. The Daubechies wavelet is a compactly supported function with biorthogonal characteristics; its wavelet coefficient can show more features of the hydrological series (Daubechies 1988). Daubechies 7 (abbreviated for Db7) was selectedfor this study.

    3.3 Application and significance test

    With the method used in this study, the regression equations (shown in Fig. 1),R2of each regression equation, and the corresponding exponent of the energy spectrum can be obtained (Table 2). It is shown in Table 2 thatR2in each regression equation is larger than 0.90, while the critical value ofat a 1% significance level is equal to 0.387 6. Thus, all the regression equations pass the significance test and these results are acceptable to be used for computing the fractal based on CWT according to the theory of statistics (Freedman et al. 2007); the complexity analysis of these precipitation series using the indices above is feasible.

    Fig. 1 Regression equations of energy spectrum of two precipitation series at nine gauging stations

    Table 2 Fractal dimensions, exponents of energy spectrum, and correlation coefficients of regression equations during two periods in Chien River Basin

    4 Results and analysis

    The fractals based on CWT of precipitation series at different gauging stations of the Chien River Basin in two different periods can be calculated according to Eq. (7). These fractals indicate the precipitation complexity of each station, which are listed in Table 2.

    Thus, the different complexity distributions of precipitation in these two periods in the Chien River Basin can be sketched out based on the fractals and the locations of each station (Table 1 and Table 2), which are displayed in Fig. 2(a) and Fig. 2(b), respectively.

    The complexity of the precipitation series is the reflection of a variety of precipitation characteristics and factors. According to the actual factors of the study basin, the differences of precipitation complexity in different periods can be analyzed and explained.

    It can be seen from Table 2 that the mean annual precipitation fractal was 1.789 in the former period and 1.827 in the latter period, which means that the mean annual precipitation complexity in the latter period was larger than in the former period. In contrast, the mean annual precipitation at the nine stations all decreased in the latter period, as shown in Table 1. The increase of precipitation complexity shows that in the study basin the mean annual distribution of rainfall was more disorderly in the latter period. That is to say, the frequency of random precipitation increased in the latter period, meaning that at the scale of the whole basin, the mean frequency of heavy rainfall or light rainfall increased, but that of the regular seasonal rainfall decreased. This is the reason for the increase of complexity and the decrease of the total rainfall. This result shows that the complexity change of precipitation is not correlative with the total rainfall but with the frequency of rainfall. Furthermore, precipitation is one of the most sensitive climate factors and its annual frequency variance is the reflection of the climate change. The analysis of the precipitation complexity change shows that extreme meteorological events (especially flooding and water logging) increased in the study basin, which is consistent with the authoritative research (EBNARCC 2007). Therefore, it can beconcluded that, in the study basin, climate change is an important factor of the precipitation complexity change.

    Fig. 2 Complexity distributions of precipitation using fractal in Chien River Basin during two periods

    Table 2 and Fig. 2 show that in the Chien River Basin there was little precipitation complexity change in the northwestern region (Wuyishan); the precipitation complexity decreased in the eastern regions (Dongyou and Zhenghe) and increased in the middle and southwestern regions (Qilijie, Shuiji, Jianyang, and Masha). Thus, the maximum value of the precipitation complexity contours moved from the southeast to the middle of the basin, which demonstrates that the mal-distribution of the annual precipitation series increased in the central region and decreased in the southeastern region. According to the fractal theory and the analysis of the relationship between the fractal of the precipitation series and the climate change, this difference means that the frequency of the meteorological phenomena increased in the central region of the study basin but decreased in the southeastern region. The topographic element, another factor, should be taken into account for illustration. The vapor for some stations (such as Dongyou and Zhenghe) located on the leeward slope of mountains is absent and the probability of short-term random precipitation is little. Therefore, the corresponding precipitation complexity decreased. It is also shown that both the landforms and the climate (the main factor) influence the frequency and other characteristics of rainfall, and, thus, the precipitation complexity is also influenced.

    It can be seen from Fig. 2, from the trough value of the complexity contours before 1980 to the peak value after 1980, that the precipitation complexity at the stations (Jianyang and Shuiji) in Jianyang City increased remarkably after 1980. Human activities, another factor, can be taken into account to explain this phenomenon. Jianyang City is the industrial base for the north of Fujian Province, and its gross domestic product (GDP) has ranked among the top ten cities in Fujian Province in recent decades. Urbanization, industrialization, and other human activities generate much suspended particles and heat energy, which changes the formation conditions of precipitation and the precipitation properties both in the time-frequency domain and in the space domain, and thus causes the precipitation complexity change in the course of time. Therefore, the increase of precipitation complexity at Jianyang and Shuiji stations results from both climate change and various human activities.

    5 Conclusions

    The Chinese environment has changed sharply in recent decades due to climate change and various human activities, which causes changes in precipitation characteristics in both the time domain and frequency domain, and thus causes the precipitation complexity to increase. This means that the complexity change of precipitation processes in different regions is a reflection of the changing environment.

    In this study, several types of rainfall properties in the changing environment were examined through analysis of the complexity change of precipitation processes at different stations during different periods using a fractal based on CWT in the Chien River Basin. From the study results and similar research results from typical semi-arid regions (Luan et al. 2010a,2010b), the following conclusions can be drawn:

    (1) The complexity of the annual precipitation process is not correlative with the total rainfall but with the frequency of rainfall. In different typical climate zones, the change of rainfall frequency is different and the precipitation characteristics and the corresponding changes of precipitation complexity with climate change are also different: in the Chien River Basin (a typical humid region), the random rainfall frequency and the precipitation complexity increased but the total rainfall amount decreased after 1980, but in the typical semi-arid region (Luan et al. 2010a, 2010b), the complexity (frequency) and the total rainfall both decreased.

    (2) The complexity changes of precipitation processes at different stations during the two periods are different and these changes show different characteristics of the influences of the topographic factors and climate factors. After 1980, the frequency of random rainfall and the precipitation complexity deceased only in the leeward of the eastern region in the Chien River Basin, but increased throughout the whole mountain area in the typical semi-arid region (Luan et al. 2010a, 2010b).

    (3) Various human activities such as urbanization, industrialization, and population growth increase the precipitation complexity. These activities are remarkable both in the typical humid region and in the typical semi-arid region. Correcting gauging errors caused by human activities is a problem in hydrology, which needs to be solved in the future research.

    (4) The study results conform with theNational Assessment Report of Climate Change(EBNARCC 2007) and other authoritative research, proving that the method used in the present study is feasible and can be adopted to study precipitation properties in the changing environment. Further research on other typical climate zones will be done in the future.

    Barenblatt, G. I. 1996.Scaling, Self-similarity, and Intermediate Asymptotics: Dimensional Analysis and Intermediate Asymptotic. New York: Cambridge University Press.

    Daubechies, I. 1988. Orthonormal bases of compactly supported wavelets.Communications on Pure and Applied Mathematics, 41(7), 909-996. [doi:10.1002/cpa.3160410705]

    Editoral Board of National Assessment Report of Climate Change (EBNARCC). 2007.National Assessment Report of Climate Change. Beijing: Science Press. (in Chinese)

    Falconer, K. 2003.Fractal Geometry: Mathematical Foundations and Applications. 2nd ed. West Sussex: John Wiley & Sons.

    Freedman, D., Pisani, R., and Purves, R. 2007.Statistics. 4th ed. New York: W. W. Norton & Co.

    Lempel, A., and Ziv, J. 1976. On the complexity of finite sequences.IEEE Trans on Information Theory, 22(1), 75-81.

    Li, D., and Wang, F. 2002. A study on information quantity and fractal of disaster sequences of regional drought and waterlogging.Journal of Catastrophology, 17(2), 11-16. (in Chinese)

    Li, X. B., Ding. J., and Li, H. Q. 1999. The wavelet estimation of Hurst coefficient in hydrological time series.Journal of Hydraulic Engineering, 30(8), 21-25. (in Chinese)

    Luan, Q. H., Chen, L. X., and Cheng, Y. 2010a. Analysis and comparing of the distribution of precipitation complexity in two typical regions in changing environment, China.Proceedings of 2010 International Workshop on Chaos-Fractal Theories and Application, 391-394. Washington: IEEE Computer Society. [doi:10.11098 /IWCFTA.2010.40]

    Luan, Q. H., Qin, D. Y., Yuan, F., He, J., and Wu, T. B. 2010b. Analysis of the distribution of precipitation complexity under climate change in Handan, China.Proceedings of the 9th International Conference on Hydroinformatics, 702-709. Beijing: Chemical Industry Press.

    Luan, Q. H., Yuan, J., Ma, Z. Z., Hao, X. B., and Wu, T. B. 2010c. Periodicity and trend analysis of precipitation in multi-time scale in plain regions of Handan, China.Applied Mechanics and Materials, 29-32, 2739-2744. [doi:10.4028/www.scientific.net/AMM.29-32.2739]

    Mandelbrot, B. B. 1983.The Fractal Geometry of Nature. 3rd ed. New York: W. H. Freeman and Company.

    Morlet, J., Arens, G., Fourgeau, E., and Giard, D. 1982. Wave propagation and sampling theory and complex waves.Geophysics, 47(2), 222-236. [doi:10.1190/1.1441329]

    Sidney, B. C., Gopinath, R. A., and Guo, H. T. 1997.Introduction to Wavelets and Wavelet Transforms: A Primer. Bergen County: Prentice Hall.

    Wang, W. S., Zhao. T. X., and Ding, J. 2004. Study on change characteristics of hydrological time series with continuous wavelet transform.Journal of Sichuan University (Engineering Science Edition), 36(4), 6-9. (in Chinese)

    Wang, W. S., Xiang, H. J., Huang W., J., and Ding, J. 2005. Study on fractal dimension of runoff sequence based on successive wavelet transform.Journal of Hydraulic Engineering, 36(5), 598-601. (in Chinese)

    Wornell, G. 1995.Signal Processing with Fractal: A Wavelet Based Approach. Bergen County: Prentice Hall.

    This work was supported by the National Basic Research Program of China (the 973 Program, Grant No. 2010CB951102) and the National Natural Science Foundation of China (Grant No. 51021006).

    *Corresponding author (e-mail:carol97011202@163.com)

    Received Apr. 11, 2011; accepted May 22, 2011

    丁香六月天网| 最新的欧美精品一区二区| 热99国产精品久久久久久7| 国产日韩欧美视频二区| 精品国产一区二区三区四区第35| 日韩视频一区二区在线观看| 女人精品久久久久毛片| 亚洲av成人一区二区三| 男人舔女人的私密视频| 国产精品.久久久| 日本av免费视频播放| 中国国产av一级| 色婷婷久久久亚洲欧美| 午夜福利乱码中文字幕| 国产精品久久久久久人妻精品电影 | 欧美日韩亚洲高清精品| 国产伦理片在线播放av一区| 中文欧美无线码| 国产精品 欧美亚洲| 夜夜骑夜夜射夜夜干| 亚洲av成人不卡在线观看播放网 | 99九九在线精品视频| 久久久久久人人人人人| 日韩,欧美,国产一区二区三区| 亚洲人成电影观看| svipshipincom国产片| 在线十欧美十亚洲十日本专区| 亚洲成人免费av在线播放| 天天添夜夜摸| 啦啦啦免费观看视频1| 一个人免费在线观看的高清视频 | 久久国产精品影院| 99re6热这里在线精品视频| 又大又爽又粗| 久久人人爽av亚洲精品天堂| 少妇粗大呻吟视频| 亚洲中文av在线| 欧美日韩视频精品一区| 99国产精品99久久久久| 女人高潮潮喷娇喘18禁视频| 啦啦啦 在线观看视频| 两性夫妻黄色片| 精品第一国产精品| 少妇粗大呻吟视频| 日韩视频一区二区在线观看| 777米奇影视久久| 国产成+人综合+亚洲专区| www.自偷自拍.com| 香蕉丝袜av| 99热网站在线观看| 色婷婷久久久亚洲欧美| 国产精品久久久人人做人人爽| 国产精品久久久久久人妻精品电影 | 国产亚洲午夜精品一区二区久久| 亚洲五月色婷婷综合| 欧美黑人精品巨大| 男女下面插进去视频免费观看| 可以免费在线观看a视频的电影网站| 99久久综合免费| 丝瓜视频免费看黄片| 男女床上黄色一级片免费看| 两性夫妻黄色片| 国产成人av激情在线播放| 啦啦啦啦在线视频资源| 国产精品.久久久| 一区二区av电影网| 亚洲自偷自拍图片 自拍| 国产亚洲精品第一综合不卡| 香蕉丝袜av| 可以免费在线观看a视频的电影网站| 国产精品久久久久成人av| videos熟女内射| 99国产综合亚洲精品| 首页视频小说图片口味搜索| 两性午夜刺激爽爽歪歪视频在线观看 | 免费看十八禁软件| 精品一区在线观看国产| av免费在线观看网站| 精品人妻在线不人妻| 亚洲av欧美aⅴ国产| 国产亚洲欧美精品永久| 我要看黄色一级片免费的| 波多野结衣av一区二区av| 黄色视频,在线免费观看| 国产精品亚洲av一区麻豆| 99九九在线精品视频| 少妇精品久久久久久久| 在线看a的网站| 可以免费在线观看a视频的电影网站| 欧美精品啪啪一区二区三区 | 色婷婷av一区二区三区视频| 亚洲午夜精品一区,二区,三区| 精品视频人人做人人爽| 亚洲av欧美aⅴ国产| 高清在线国产一区| 久久久久久久大尺度免费视频| 欧美激情极品国产一区二区三区| 一本色道久久久久久精品综合| 亚洲专区字幕在线| 另类亚洲欧美激情| 中文字幕人妻熟女乱码| 免费在线观看视频国产中文字幕亚洲 | 两性夫妻黄色片| xxxhd国产人妻xxx| 少妇精品久久久久久久| 在线观看免费日韩欧美大片| 久久 成人 亚洲| 黑人巨大精品欧美一区二区蜜桃| 久久中文字幕一级| 国产精品 欧美亚洲| 一区二区三区激情视频| 国产精品av久久久久免费| 各种免费的搞黄视频| 超碰成人久久| 高清视频免费观看一区二区| 国产精品秋霞免费鲁丝片| 咕卡用的链子| 久久精品国产亚洲av香蕉五月 | 欧美日韩亚洲综合一区二区三区_| 一区二区av电影网| 手机成人av网站| 国产91精品成人一区二区三区 | 一级毛片女人18水好多| 国产野战对白在线观看| 中亚洲国语对白在线视频| 久久午夜综合久久蜜桃| 极品少妇高潮喷水抽搐| 精品福利永久在线观看| 久久热在线av| 黑人巨大精品欧美一区二区蜜桃| 亚洲av欧美aⅴ国产| 久久热在线av| 精品亚洲成a人片在线观看| 亚洲欧美精品自产自拍| 91大片在线观看| 另类精品久久| 精品久久久久久久毛片微露脸 | 午夜视频精品福利| 永久免费av网站大全| 国产片内射在线| 另类精品久久| 亚洲精品中文字幕一二三四区 | 亚洲欧美日韩另类电影网站| 美女高潮到喷水免费观看| 亚洲av男天堂| a 毛片基地| 亚洲第一青青草原| 两人在一起打扑克的视频| 亚洲一区中文字幕在线| 国产欧美日韩精品亚洲av| 精品国产一区二区久久| 国产精品一区二区精品视频观看| 国产一区二区激情短视频 | av欧美777| 十八禁人妻一区二区| 脱女人内裤的视频| 丝袜喷水一区| 欧美精品人与动牲交sv欧美| 啦啦啦中文免费视频观看日本| 免费在线观看完整版高清| 成年人黄色毛片网站| 热re99久久国产66热| 亚洲国产看品久久| 国产精品成人在线| 在线 av 中文字幕| 国产在线免费精品| 法律面前人人平等表现在哪些方面 | 国产亚洲精品久久久久5区| 国产精品免费大片| 婷婷成人精品国产| 亚洲一码二码三码区别大吗| 淫妇啪啪啪对白视频 | 午夜福利在线免费观看网站| 高清av免费在线| 亚洲熟女毛片儿| 国产欧美亚洲国产| 亚洲avbb在线观看| 12—13女人毛片做爰片一| 一个人免费在线观看的高清视频 | 少妇粗大呻吟视频| 欧美精品一区二区大全| 国产成人免费无遮挡视频| 啦啦啦免费观看视频1| 国产成人影院久久av| 国产成人免费无遮挡视频| 日韩视频在线欧美| 久久精品久久久久久噜噜老黄| 亚洲自偷自拍图片 自拍| 蜜桃在线观看..| 国产精品秋霞免费鲁丝片| 午夜激情av网站| 日韩,欧美,国产一区二区三区| 可以免费在线观看a视频的电影网站| 国产精品国产三级国产专区5o| 大香蕉久久网| 正在播放国产对白刺激| 人人妻,人人澡人人爽秒播| 亚洲黑人精品在线| 精品久久久精品久久久| 亚洲精品美女久久av网站| 成人国语在线视频| 每晚都被弄得嗷嗷叫到高潮| 久久人妻熟女aⅴ| 青春草亚洲视频在线观看| 99国产极品粉嫩在线观看| 国产福利在线免费观看视频| 男男h啪啪无遮挡| 日韩欧美一区视频在线观看| 成人国语在线视频| 在线亚洲精品国产二区图片欧美| 亚洲精品久久久久久婷婷小说| 黑人操中国人逼视频| 国产av一区二区精品久久| 免费在线观看黄色视频的| 老熟妇乱子伦视频在线观看 | av一本久久久久| 亚洲专区中文字幕在线| 超色免费av| 欧美乱码精品一区二区三区| 欧美激情 高清一区二区三区| 女人精品久久久久毛片| 亚洲专区中文字幕在线| 国产精品成人在线| 老司机深夜福利视频在线观看 | 黑人操中国人逼视频| 1024香蕉在线观看| 2018国产大陆天天弄谢| 精品亚洲成a人片在线观看| 在线观看免费日韩欧美大片| 777久久人妻少妇嫩草av网站| 国产免费现黄频在线看| 50天的宝宝边吃奶边哭怎么回事| 在线观看免费视频网站a站| 最黄视频免费看| 美女国产高潮福利片在线看| 老司机影院毛片| 亚洲欧洲精品一区二区精品久久久| 午夜视频精品福利| 两性夫妻黄色片| 在线 av 中文字幕| 人人妻人人爽人人添夜夜欢视频| 麻豆国产av国片精品| 后天国语完整版免费观看| 99国产精品一区二区蜜桃av | 丁香六月欧美| 国产亚洲av高清不卡| 深夜精品福利| 国产精品成人在线| 国产免费视频播放在线视频| avwww免费| 两性夫妻黄色片| 国产精品 欧美亚洲| 少妇 在线观看| 国产男女超爽视频在线观看| 精品第一国产精品| 国产精品久久久人人做人人爽| 两人在一起打扑克的视频| 久久久久久免费高清国产稀缺| 天堂中文最新版在线下载| 亚洲精品av麻豆狂野| 久热这里只有精品99| 亚洲免费av在线视频| 美女视频免费永久观看网站| 纵有疾风起免费观看全集完整版| 欧美 亚洲 国产 日韩一| 国产欧美日韩精品亚洲av| 国产精品欧美亚洲77777| 乱人伦中国视频| 国产一区二区三区av在线| 老司机在亚洲福利影院| 少妇裸体淫交视频免费看高清 | 久久亚洲精品不卡| 狂野欧美激情性xxxx| 91字幕亚洲| 18在线观看网站| 不卡av一区二区三区| 国产一区二区激情短视频 | 一个人免费在线观看的高清视频 | 欧美变态另类bdsm刘玥| 老司机福利观看| 国产精品影院久久| 操出白浆在线播放| 美女视频免费永久观看网站| 中文欧美无线码| 国产精品一区二区精品视频观看| 大型av网站在线播放| 日日摸夜夜添夜夜添小说| 久久中文看片网| 成人三级做爰电影| 日韩视频在线欧美| 自拍欧美九色日韩亚洲蝌蚪91| 91字幕亚洲| 如日韩欧美国产精品一区二区三区| 午夜激情av网站| 中文字幕人妻丝袜制服| 大片免费播放器 马上看| 亚洲男人天堂网一区| 黑人猛操日本美女一级片| 国产亚洲精品第一综合不卡| 黄色片一级片一级黄色片| 999久久久精品免费观看国产| 国产精品 国内视频| 夜夜骑夜夜射夜夜干| 视频区欧美日本亚洲| 久久人人爽av亚洲精品天堂| 国产伦理片在线播放av一区| 亚洲av电影在线观看一区二区三区| 久久亚洲精品不卡| 法律面前人人平等表现在哪些方面 | 黄片大片在线免费观看| 成人国产一区最新在线观看| 桃红色精品国产亚洲av| 黄网站色视频无遮挡免费观看| 国产成人精品久久二区二区91| 搡老熟女国产l中国老女人| 国产精品.久久久| 日本av手机在线免费观看| 热99久久久久精品小说推荐| 久久ye,这里只有精品| avwww免费| 777米奇影视久久| 天天躁狠狠躁夜夜躁狠狠躁| 国产97色在线日韩免费| 亚洲伊人色综图| 日本一区二区免费在线视频| 热re99久久精品国产66热6| 日韩人妻精品一区2区三区| 亚洲va日本ⅴa欧美va伊人久久 | 青青草视频在线视频观看| 一区二区日韩欧美中文字幕| 国产精品免费大片| 国产淫语在线视频| 大码成人一级视频| 久久国产精品男人的天堂亚洲| 国产成人av教育| 悠悠久久av| 制服诱惑二区| 国产高清视频在线播放一区 | tube8黄色片| 桃花免费在线播放| 亚洲国产毛片av蜜桃av| 狂野欧美激情性xxxx| 国产日韩欧美亚洲二区| 操美女的视频在线观看| 丝瓜视频免费看黄片| 操出白浆在线播放| 老熟女久久久| 亚洲伊人久久精品综合| 国产日韩欧美亚洲二区| 日韩中文字幕视频在线看片| 美女中出高潮动态图| 精品久久蜜臀av无| 久久精品熟女亚洲av麻豆精品| 少妇的丰满在线观看| 精品人妻一区二区三区麻豆| 少妇的丰满在线观看| 在线观看人妻少妇| 少妇人妻久久综合中文| 少妇精品久久久久久久| 午夜激情久久久久久久| av欧美777| 免费久久久久久久精品成人欧美视频| 欧美黑人精品巨大| av天堂久久9| 91麻豆精品激情在线观看国产 | 国产三级黄色录像| 午夜福利视频精品| 国产男女超爽视频在线观看| 午夜91福利影院| 91成年电影在线观看| 精品高清国产在线一区| 叶爱在线成人免费视频播放| 亚洲va日本ⅴa欧美va伊人久久 | 国产免费一区二区三区四区乱码| 香蕉丝袜av| 又黄又粗又硬又大视频| 人成视频在线观看免费观看| 一级黄色大片毛片| 香蕉国产在线看| 亚洲熟女毛片儿| 一区二区三区精品91| 丰满饥渴人妻一区二区三| a在线观看视频网站| 国产亚洲av高清不卡| 超色免费av| 精品国产超薄肉色丝袜足j| 久久精品成人免费网站| 建设人人有责人人尽责人人享有的| 18在线观看网站| 丰满饥渴人妻一区二区三| 国产一区二区三区av在线| 国产精品久久久久久精品古装| 波多野结衣一区麻豆| 欧美日韩亚洲高清精品| 性少妇av在线| 国产一区有黄有色的免费视频| 国产精品亚洲av一区麻豆| 国产又爽黄色视频| 国产精品欧美亚洲77777| 久久毛片免费看一区二区三区| 久久午夜综合久久蜜桃| 亚洲久久久国产精品| 国产日韩一区二区三区精品不卡| 中文字幕人妻丝袜一区二区| 午夜福利视频精品| 中文字幕另类日韩欧美亚洲嫩草| 欧美精品啪啪一区二区三区 | av电影中文网址| 欧美xxⅹ黑人| 一级黄色大片毛片| 一区在线观看完整版| 老熟妇仑乱视频hdxx| 黄色片一级片一级黄色片| 极品少妇高潮喷水抽搐| 亚洲avbb在线观看| 午夜福利,免费看| 啦啦啦中文免费视频观看日本| 日韩,欧美,国产一区二区三区| 午夜福利视频精品| 欧美xxⅹ黑人| 亚洲欧美日韩另类电影网站| 欧美人与性动交α欧美精品济南到| 亚洲国产成人一精品久久久| 久久久久久亚洲精品国产蜜桃av| 精品一区二区三卡| 黑人猛操日本美女一级片| 国产又色又爽无遮挡免| 午夜免费鲁丝| 在线天堂中文资源库| 午夜日韩欧美国产| 男女之事视频高清在线观看| 黄色视频在线播放观看不卡| 免费人妻精品一区二区三区视频| 亚洲全国av大片| 老司机午夜十八禁免费视频| 久久狼人影院| 久久综合国产亚洲精品| 人人妻人人澡人人爽人人夜夜| 亚洲专区字幕在线| 亚洲激情五月婷婷啪啪| 少妇粗大呻吟视频| 在线av久久热| 久久久欧美国产精品| 久久99热这里只频精品6学生| 国产三级黄色录像| 欧美性长视频在线观看| 十八禁人妻一区二区| 国产在线免费精品| 精品高清国产在线一区| 在线看a的网站| 99热全是精品| 人人妻人人澡人人看| 丁香六月天网| 日本猛色少妇xxxxx猛交久久| 久久久欧美国产精品| 久久99热这里只频精品6学生| 一个人免费在线观看的高清视频 | 国产一区二区三区在线臀色熟女 | 国产成人影院久久av| 悠悠久久av| av片东京热男人的天堂| 啦啦啦免费观看视频1| 国产高清国产精品国产三级| 成人免费观看视频高清| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲av片天天在线观看| 交换朋友夫妻互换小说| 国产一级毛片在线| 色婷婷av一区二区三区视频| 两个人免费观看高清视频| 国产精品一区二区在线不卡| 国产免费现黄频在线看| 老熟妇乱子伦视频在线观看 | 水蜜桃什么品种好| 别揉我奶头~嗯~啊~动态视频 | 亚洲欧洲精品一区二区精品久久久| 捣出白浆h1v1| 日韩免费高清中文字幕av| 男女边摸边吃奶| 黄色 视频免费看| 十分钟在线观看高清视频www| 国产主播在线观看一区二区| 国产99久久九九免费精品| 亚洲性夜色夜夜综合| 欧美精品亚洲一区二区| 欧美人与性动交α欧美精品济南到| 涩涩av久久男人的天堂| 国产人伦9x9x在线观看| 国产成人精品在线电影| 九色亚洲精品在线播放| 日本一区二区免费在线视频| 日韩电影二区| 啦啦啦中文免费视频观看日本| 91av网站免费观看| 国产亚洲欧美在线一区二区| 欧美精品啪啪一区二区三区 | 黄色视频在线播放观看不卡| a在线观看视频网站| 中文字幕制服av| 久久久久国产一级毛片高清牌| 在线永久观看黄色视频| 91精品伊人久久大香线蕉| 永久免费av网站大全| 老汉色∧v一级毛片| e午夜精品久久久久久久| 国产精品久久久人人做人人爽| 中文字幕av电影在线播放| 亚洲av日韩在线播放| 不卡一级毛片| 十分钟在线观看高清视频www| 少妇精品久久久久久久| 天堂8中文在线网| 国产精品自产拍在线观看55亚洲 | 夜夜骑夜夜射夜夜干| 日韩大码丰满熟妇| 亚洲av成人不卡在线观看播放网 | 啦啦啦 在线观看视频| 亚洲va日本ⅴa欧美va伊人久久 | 亚洲自偷自拍图片 自拍| 这个男人来自地球电影免费观看| 欧美+亚洲+日韩+国产| 亚洲avbb在线观看| 国产一区二区激情短视频 | 久久久国产成人免费| 免费黄频网站在线观看国产| 91大片在线观看| 99精国产麻豆久久婷婷| 国产精品一二三区在线看| 夜夜夜夜夜久久久久| 国产又色又爽无遮挡免| 大片免费播放器 马上看| 久久免费观看电影| av线在线观看网站| 丰满人妻熟妇乱又伦精品不卡| videosex国产| 777久久人妻少妇嫩草av网站| 麻豆国产av国片精品| 国产又爽黄色视频| 亚洲色图综合在线观看| 欧美精品人与动牲交sv欧美| 欧美+亚洲+日韩+国产| 亚洲avbb在线观看| 亚洲av日韩精品久久久久久密| 美女国产高潮福利片在线看| 女警被强在线播放| 在线永久观看黄色视频| 丰满少妇做爰视频| 久久性视频一级片| 天天影视国产精品| 日日夜夜操网爽| 国产免费福利视频在线观看| 女人被躁到高潮嗷嗷叫费观| 色综合欧美亚洲国产小说| 啦啦啦 在线观看视频| 亚洲国产精品成人久久小说| av福利片在线| 久久精品国产亚洲av香蕉五月 | 欧美久久黑人一区二区| 黄频高清免费视频| 老汉色∧v一级毛片| 欧美另类亚洲清纯唯美| 欧美日韩中文字幕国产精品一区二区三区 | 国产成人a∨麻豆精品| av网站免费在线观看视频| 成人国产一区最新在线观看| 伦理电影免费视频| 91av网站免费观看| 成人av一区二区三区在线看 | 十八禁网站免费在线| 成年人午夜在线观看视频| 欧美日韩福利视频一区二区| 少妇被粗大的猛进出69影院| 天天躁日日躁夜夜躁夜夜| 嫁个100分男人电影在线观看| 丝袜喷水一区| 精品国内亚洲2022精品成人 | 久久精品aⅴ一区二区三区四区| 91精品伊人久久大香线蕉| 国产黄色免费在线视频| 少妇精品久久久久久久| 中文字幕av电影在线播放| 电影成人av| 十八禁高潮呻吟视频| 国产成人av激情在线播放| 大型av网站在线播放| 韩国精品一区二区三区| 久久热在线av| 亚洲一码二码三码区别大吗| 狠狠精品人妻久久久久久综合| 久久ye,这里只有精品| 免费女性裸体啪啪无遮挡网站| 午夜视频精品福利| 欧美精品av麻豆av| 性色av乱码一区二区三区2| 在线亚洲精品国产二区图片欧美| 伦理电影免费视频| 久久人妻熟女aⅴ| 三上悠亚av全集在线观看| 欧美另类一区| 中文字幕人妻丝袜制服| 亚洲精品国产av蜜桃| 久久午夜综合久久蜜桃| 日本a在线网址| 欧美+亚洲+日韩+国产| 国产一区二区 视频在线| 大型av网站在线播放| 亚洲伊人色综图| 黄色怎么调成土黄色| 色精品久久人妻99蜜桃| 91成人精品电影| 亚洲精品av麻豆狂野| 十八禁人妻一区二区| 男人添女人高潮全过程视频| 99久久99久久久精品蜜桃| 波多野结衣一区麻豆|