李超然 王智剛 朱運奎(審校)
(1.蘭州大學(xué)第二醫(yī)院,甘肅蘭州 730030;2.蘭州軍區(qū)蘭州總醫(yī)院,甘肅蘭州 730050)
在急性肺損傷(acute lung injury,ALI)與更嚴(yán)重階段的急性呼吸窘迫綜合征(ARDS)時,肺泡上皮細(xì)胞受損是影響氣體交換,引起頑固性低氧血癥的重要原因;促進肺泡上皮的修復(fù)是治療ALI/ARDS,改善呼吸功能的重要方面。在ALI/ARDS三期病理變化:滲出期、增殖期和纖維化期都有Ⅱ型肺泡上皮細(xì)胞(alveolar epithelial cells type Ⅱ,AECⅡ)的參與。除了可以分泌表面活性物質(zhì),AECⅡ還具有諸多功能參與了ALI的發(fā)生和發(fā)展過程。因此,本研究就近年來對AECⅡ的功能以及聯(lián)系A(chǔ)LI/ARDS與AECⅡ的生物標(biāo)志物的研究進行概述,期望通過對AECⅡ的深入了解對ALI有更深入的認(rèn)識。
促炎/抗炎的失衡導(dǎo)致的全身炎癥反應(yīng)綜合征(SIRS)是引起ALI的重要原因。多種炎癥介質(zhì),包括:促炎因子、趨化因子和粘附分子等都參與了這個過程。研究發(fā)現(xiàn)炎癥反應(yīng)時AECⅡ內(nèi)NF-κB上調(diào)[1],并且可以產(chǎn)生MCP-1(單核細(xì)胞趨化蛋白-1)、CXCR3競爭性趨化因子[2]、MIP-2(巨噬細(xì)胞炎性蛋白-2)、GRO[3]、IL-8[4]等促炎趨化因子。Sato等發(fā)現(xiàn)結(jié)核分枝桿菌感染后,AECⅡ還可分泌TNF-α、GM-CSF等促炎因子[4]。說明AECⅡ在ALI的一期病理變化中參與了SIRS的形成。
ALI時,凝血反應(yīng)的失衡導(dǎo)致沉積在肺泡腔和肺泡間隙的纖維蛋白繼續(xù)發(fā)展成纖維化,嚴(yán)重影響氣體交換。依賴TF(組織因子)的外源性凝血途徑在局部凝血級聯(lián)反應(yīng)中發(fā)揮重要作用。Bastarache等發(fā)現(xiàn)AECⅡ可以分泌TF[5]。炎癥刺激能使AECⅡ釋放一種微粒,上調(diào)TF的促凝血活性[6]。在炎癥刺激下,AECⅡ還可以產(chǎn)生TFPI(組織因子途徑抑制劑)[7],凝血酶調(diào)節(jié)素等抗凝物質(zhì)。說明AECⅡ也參與了肺泡內(nèi)凝血反應(yīng)的失衡過程。
Ⅰ型肺泡上皮細(xì)胞(AECⅠ)覆蓋肺泡約95%的表面積,主要功能是進行氣體交換。而AECⅡ所占面積少,數(shù)量較多,含有高活性的Na+-K+-ATP酶,在調(diào)節(jié)肺泡內(nèi)液體的跨上皮轉(zhuǎn)運中發(fā)揮作用[8-9]。ALI時,由于肺泡上皮的受損,大量液體積聚在肺泡內(nèi)影響氣體交換。低氧又導(dǎo)致了Na+-K+-ATP酶活性降低及在AECⅡ上表達(dá)數(shù)量的減少[10]。而KGF、β2受體激動劑[11]等通過上調(diào)Na通道基因表達(dá)及Na+-K+-ATP酶的活性,促進了肺泡液體的清除,改善了氧合,有治療作用。說明Ⅱ型上皮細(xì)胞在調(diào)節(jié)肺泡液體的清除中可能發(fā)揮關(guān)鍵性作用。
肺組織內(nèi)的單核細(xì)胞、巨噬細(xì)胞、樹突狀細(xì)胞、中性粒細(xì)胞(PMN)及淋巴細(xì)胞等構(gòu)成肺內(nèi)的防御系統(tǒng)。而AECⅡ除參與構(gòu)成肺泡壁,分泌表面活性物質(zhì)之外,也是肺內(nèi)的免疫效應(yīng)細(xì)胞。目前其在免疫系統(tǒng)中的作用尚不十分清楚。AECⅡ可持續(xù)表達(dá)MHCⅡ,但不表達(dá)協(xié)同刺激分子CD80、CD86,可表達(dá)協(xié)同刺激分子ICOSL[12],但初始T細(xì)胞缺乏其相應(yīng)配體ICOS,無法激活T細(xì)胞,而且移除AECⅡ后,初始T細(xì)胞仍處無能狀態(tài),導(dǎo)致T細(xì)胞形成對不致病抗原的持久耐受[13]。但Debbabi等[14]發(fā)現(xiàn)AECⅡ可作為抗原提呈細(xì)胞刺激一些效應(yīng)期或記憶性T細(xì)胞,提呈抗原給其特異性的CD4+T細(xì)胞。而且TNF-α、LPS(脂多糖,引起ALI的常見致病因素)等可刺激AECⅡ表達(dá)B7-H2,與活化的T細(xì)胞上表達(dá)的ICOS(B7-H2配體)形成共刺激通路,促進活化的T細(xì)胞增殖和細(xì)胞因子的產(chǎn)生[12]。據(jù)此推測AECⅡ在免疫系統(tǒng)中可能扮演雙重角色。
AECⅡ又稱為AECⅠ的祖細(xì)胞,ALI后可以增殖并轉(zhuǎn)化為AECⅠ。Marsh等[15]發(fā)現(xiàn)MIF(巨噬細(xì)胞遷移抑制因子)可以通過與AECⅡ上CD74的相互作用誘導(dǎo)其增殖,表達(dá)CD74的MLE-12細(xì)胞也增殖,而不表達(dá)CD74的AECⅠ不增殖。說明MIF與CD74的相互作用可能是誘導(dǎo)AECⅡ增殖的重要機制。AECⅡ還可以表達(dá)MMP2和MT1-MMP(膜型機制金屬蛋白酶),可能在修復(fù)時上皮細(xì)胞的延伸和遷移中發(fā)揮作用[16]。而AECⅡ上表達(dá)的CXCR3A亞型和CXCR3B亞型(CXC3趨化因子受體)可誘導(dǎo)細(xì)胞的趨藥性反應(yīng)和增殖[17]。TGF-β1通過上調(diào)PDE4(磷酸二酯酶4)誘導(dǎo)AECⅡ轉(zhuǎn)化為間充質(zhì)細(xì)胞、成纖維細(xì)胞[18]。說明AECⅡ在ALI的二期、三期病理變化中都發(fā)揮作用。
由以上可知具有多種功能的AECⅡ參與了ALI的三期病理變化,在ALI的發(fā)生、發(fā)展和修復(fù)過程中都有形態(tài)和表型的變化。因此推測與AECⅡ相關(guān)的生物標(biāo)志物最能夠代表肺泡上皮細(xì)胞的損傷和修復(fù)狀態(tài)。研究這些生物標(biāo)志物隨時間的變化情況以及與炎癥反應(yīng)的關(guān)系將有利于ALI的診斷、預(yù)測進展、判斷預(yù)后及指導(dǎo)治療。近年來研究較多的主要是表面活性物質(zhì)蛋白A和D(SP-A、SP-D)以及KL-6。
SP-A和SP-D是由AECⅡ分泌的表面活性物質(zhì)相關(guān)蛋白。通過檢測ALI/ARDS患者血漿中SP-A、SP-D的水平,顯示血漿中SP-A的水平高于SP-D,但SP-A與臨床結(jié)局無關(guān),SP-D的高水平與更高的器官衰竭概率,更高的死亡風(fēng)險和更低的脫機時間相關(guān)[19]。而且,AECⅡ分泌的SP-D與肺損傷的嚴(yán)重程度相關(guān)[20]。表明血漿中的SP-D可以作為ALI/ARDS的生物標(biāo)志物,但尚無SP-D與炎癥反應(yīng)關(guān)系的研究。
KL-6是表達(dá)在AECⅡ及呼吸性細(xì)支氣管上皮細(xì)胞上的糖蛋白,ALI/ARDS時,血漿中KL-6的水平與肺損傷的嚴(yán)重程度和疾病的預(yù)后相關(guān)[21-22]。而且,ARDS患者支氣管肺泡灌洗液中KL-6的水平與髓過氧化物酶的活性以及細(xì)胞的計數(shù)相關(guān),與感染的嚴(yán)重性無關(guān)[21]。因此,KL-6能否作為ALI/ARDS理想的標(biāo)志物還需深入研究。
[1] Cox RA,Burke AS,Jacob S,et al.Activated nuclear factor kappa B and airway inflammation after smoke inhalation and burn injury in sheep[J].J Burn Care Res,2009,30(3):489-498.
[2] Pechkovsky DV,Goldmann T,Ludwig C,et al.CCR2 and CXCR3 agonistic chemokines are differently expressed and regulated in human alveolar epithelial cells type Ⅱ[J].Respir Res,2005,6:75.
[3] Vanderbilt JN,Mager EM,Allen L,et al.CXC chemokines and their receptors are expressed in type Ⅱ cells and upregulated following lung injury[J].Am J Respir Cell Mol Biol,2003,29(6):661-668.
[4] Sato K,Tomioka H,Shimizu T,et al.Type Ⅱ alveolar cells play roles in macrophage-mediated host innate resistance to pulmonary mycobacterial infections by producing proinflammatory cytokines[J].J Infect Dis,2002,185(8):1139-1147.
[5] Bastarache JA,Wang L,Geiser T,et al.The alveolar epithelium can initiate the extrinsic coagulation cascade through expression of tissue factor[J].Thorax,2007,62(7):608-616.
[6] Bastarache JA,F(xiàn)remont RD,Kropski JA,et al.Procoagulant alveolar microparticles in the lungs of patients with acute respiratory distress syndrome[J]. Am J Physiol Lung Cell Mol Physiol,2009,297(6):L1035- L1041.
[7] Bastarache JA,Wang L,Wang Z,et al.Intra-alveolar tissue factor pathway inhibitor is not sufficient to block tissue factor procoagulant activity[J].Am J Physiol Lung Cell Mol Physiol,2008,294(5):L874- L881.
[8] Castranova V,Jones GS,Jones GS,et al.Transport properties of isolated type Ⅱalveolar epithelial cells[J].Am Rev Respir Dis,1983,127(5 Pt 2):S28- S32.
[9] Matalon S.Mechanisms and regulation of ion transport in adult mammalian alveolar type Ⅱ pneumocytes [J].Am J Physiol,1991,261(5 Pt 1):C727- C738.
[10] Mairbaurl H,Wodopia R,Eckes S,et al.Impairment of cation transport in A549 cells and rat alveolar epithelial cells by hypoxia[J].Am J Physiol,1997,273(4 Pt 1):L797- L806.
[11] Esper AM,Esper AM.Evolution of treatments for patients with acute lung injury[J].Expert Opin Investig Drugs,2005,14(5):633-645.
[12] Qian X,Agematsu K,Agematsu K,et al.The ICOS-ligand B7-H2,expressed on human typeⅡ alveolar epithelial cells, plays a role in the pulmonary host defense system[J].Eur J Immunol,2006,36(4):906-918.
[13] Lo B,Lo B,Evans K,et al.Alveolar epithelial typeⅡ cells induce T cell tolerance to specific antigen[J].J Immunol,2008,180(2):881-888.
[14] Debbabi H,Ghosh S,Kamath AB,et al.Primary typeⅡ alveolar epithelial cells present microbial antigens to antigen-specific CD4+ T cells[J].Am J Physiol Lung Cell Mol Physiol,2005,289(2):L274- L279.
[15] Marsh LM,Cakarova L,Kwapiszewska G,et al.Surface expression of CD74 by type Ⅱ alveolar epithelial cells:a potential mechanism for macrophage migration inhibitory factor-induced epithelial repair [J].Am J Physiol Lung Cell Mol Physiol,2009,296(3):L442- L452.
[16] Kunugi S,F(xiàn)ukuda Y,Ishizaki M,et al.Role of MMP-2 in alveolar epithelial cell repair after bleomycin administration in rabbits [J].Lab Invest,2001,81(9):1309-1318.
[17] Ji R,Ji R,Gonzales LW,et al.Human typeⅡ pneumocyte chemotactic responses to CXCR3 activation are mediated by splice variant A[J].Am J Physiol Lung Cell Mol Physiol,2008,294(6):L1187- L1196.
[18] Kolosionek E,Savai R,Ghofrani HA,et al.Expression and activity of phosphodiesterase isoforms during epithelial mesenchymal transition:the role of phosphodiesterase 4[J].Mol Biol Cell,2009,20(22):4751-4765.
[19] Eisner MD,Parsons P,Matthay M. A,et al.Plasma surfactant protein levels and clinical outcomes in patients with acute lung injury[J].Thorax,2003,58(11):983-988.
[20] Pan T,Nielsen LD,Allen MJ,et al.Serum SP-D is a marker of lung injury in rats[J].Am J Physiol Lung Cell Mol Physiol,2002,282(4):L824- L832.
[21] Nathani N,Perkins GD,Tunnicliffe W,et al.Kerbs von Lungren 6 antigen is a marker of alveolar inflammation but not of infection in patients with acute respiratory distress syndrome[J].Crit Care,2008,12(1):R12.
[22] Sato H,Callister ME,Mumby S,et al.KL-6 levels are elevated in plasma from patients with acute respiratory distress syndrome[J].Eur Respir J,2004,23(1):142-145.