• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Research on Ventilated Supercavity Shape and Flow Structure in the Turning Motion

    2011-06-22 05:06:54
    船舶力學(xué) 2011年12期
    關(guān)鍵詞:哈爾濱工業(yè)大學(xué)空泡機(jī)動(dòng)

    (School of Astronautics,Harbin Institute of Technology,Harbin 150001,China)

    Numerical Research on Ventilated Supercavity Shape and Flow Structure in the Turning Motion

    ZHANG Guang,YU Kai-ping,ZHOU Jing-jun

    (School of Astronautics,Harbin Institute of Technology,Harbin 150001,China)

    For supercavitating vehicle,the prediction of cavity shape in the process of maneuver is an urgent problem to be investigated.In this paper,in the framework of two-fluid multiphase flow model,a three dimensional numerical model was presented for solving ventilated cavitating flow at the turning motion.By solving the RANS equations and SST(Shear Stress Transport)turbulence equations,the ventilated supercavity of disc cavitator was predictd and compared with the results of Logvinovich independence principle of the cavity section expansion,the comparsion results verified the accuracy of numerical model.On this basis,the influence of different turning radiuses to the cavity shape was analyzed and the flow structure was also investigated under the condition of different Froude number.

    turning motion;ventilated supercavity;two fluid multiphase flow model;numerical simulation

    Biography:ZHANG Guang(1983-),male,Ph.D.student of Harbin Institute of Technology,E-mail:zhangguang925@163.com;YU Kai-ping(1968-),male,professor/tutor of Harbin Institute of Technology.

    1 Introduction

    Supercavitation has become a hot topic due to its potential to significantly enhance the speed of undersea weapons and vehicles.Unlike traditional motion mode of underwater vehicle motion mode,all or most of the supercavitating vehicle surface are surrounded by cavity,and only the cavitator and part of the tail in contact with water.The force state and stability of vehicle are closely related with deformation of supercavity shape[1].

    Based on a large number of experimental researches,foreign scholars summarized a series of formula for calculating cavity shape and analyzed the main factors that affect the cavity shape in the early stage[2-3];recently,using particle image velocimetry test system(PIV)and acoustic test system,the wake details of ventilated cavity were decribed[4]and the properties of the cavity contents were measured[5].These studies have improved our understanding of the physics phenomena.In addition,Chinese researchers have conducted certain experiments and numerical simulations on several aspects of supercavities[6-8].From the above studies,most studies of the cavity shape and flow structure focused on rectilinear motion supercavitating flow.However,with the development of related technologies on supercavitation,more advanced propulsion and control technologes are gradually used in supercavitating weapons,which makes the supercavitating weapons more accurate and agile in underwater navigation.In order to maintain the stability of supercavitating vehicle duing the maneuvering navigation,accurate predictions of supercavity shape is very important.

    In this paper,based on finite volume method using the two fluid multiphase flow model and SST(Shear Stress Transport)[6-7]with the consideration of gas-water interaction and gravity effect,a three dimensional numerical simulations approach was presented for solving ventilated cavitating flow at the turning motion.Main research is on the ventilated supercavity shapes and supercavitating flow structure at the turning motion.

    2 Numerical methods

    2.1 Basic governing equations

    Ventilated cavitation flows is a complicated multiphase viscous flow problem,this study involves only the interaction between two phases of water and gas.The basic approach adopted to simulate consists of solving the continuity equation,standard 3-D Navier Stokes equations,the volume fraction equation and turbulence equations.

    The continuity equation is:

    The momentum equation is:

    here,SMα=γαρg+γαρU2/R,is user defined source term.

    The volume fraction equation is:

    SST turbulence model[9]:

    SST turbulence model was developed based on Baseline(BSL)k-ω model.That Baseline k-ω solves two transport equations,one is for the turbulent kinetic energy,k,and the other is for the turbulence frequency,ω.The two equations are as follows:

    k equation:

    where Pkis the production rate of turbulence,μtis the eddy viscosity.

    The proper transport behavior could be got by a limiter to the formulation of the eddyviscosity.So the SST turbulence model could be obtained.

    The SST model accounts for the transport of the turbulence shear stress and gives highly accurate predictions of the onset and the amount of flow separation under adverse pressure gradients.

    2.2 The Logvinovich principle of independence

    The principle of independence is stated as follows:Each cross section of a cavity expands relatively to the trajectory of the center of a cavitator which happens almost independently from the following or the previous body motion.The expansion occurs according to the definite law which is dependent only upon the difference between the pressure at infinity and the pressure within the cavity,the speed,the size,and the drag of a body at the moment when a body passes the plane of the considered section.Relevant equations see Ref.[10].

    3 Physics model and boundary conditions

    The disk cavitator model is used with diameter of Dn=10mm.Hexahedral elements are employed as shown in Fig.1.The velocity inlet boundary and pressure outlet boundary are defined at inlet and outlet of computational region,pressure distribution is specified at pressure outlet boundary(see Fig.2).The mass inlet boundary is defined at the blowhole.At external boundary,the free-slip wall boundary condition is specified.Using the relative motion method to investigate turning motion of ventilated cavitating flow,attentions need to be paid on a few points.First,to create computational domain as the turning radius of cavitator;second,the inlet velocity distribution of computational domain is initialed according to turning motion characteristics.Finally,a source term is added to the right side of the momentum equation in order to simulate the actual pressure environment.

    Fig.1 Computation model

    Fig.2 Computational region and boundary conditions

    Fig.3 shows the pressure distributions of the middle horizontal cross section(depth H=10m)in calculation domain with and without an additional momentum source term.The pressure curves on the two lines along radial direction in Fig.3 are shown in Fig.4.It is seen that the pressure of the model without source item increases along radial direction,which is not corresponding to the actual flow field.While,the model equipped with an source item has pressure distribution that approaches to the actual status.

    Fig.3 Pressure distribution added before and after the source term

    Fig.4 Radial pressure distribution comparison

    Ventilated cavitation number σc,Froude number Fr,and ventilation coefficientare defined as follows:

    4 The simulation results and discussions

    where Q is the volume flow rate at the pressure of cavity inside.

    4.1 The influence of turning radiuses to the ventilated cavity shape

    First based on CFD method and the principle of independence,supercavities produced from cavitator under the rectilinear motion and turning motion(Turn radius are respectively R1=2m,R2=1m,R3=0.5m)are simulated.In this simulation,ventilation coefficient=0.094 5,Froude number Fr=95.83.Fig.5(top view)shows a comparison of simulation results between the two methods.The upper is CFD method simulation results and the other is the principle of independence simulation results.The auxiliary line is cavitator trajectory,and the contour surface whose air volume fraction is 0.5 is taken as cavity surface in CFD method.In Fig.5,from the comparison of ventilated cavity shapes under the same conditions,the simulation results of both methods are in good agreement.Different from the symmetry cavity produced under rectilinear motion,the cavity produced from turning motion has a bending deformation which increases with the increasing of turning radius.

    Fig.5 Comparison of the simulation results based on two method

    In addition,as the definition of principles of independent,the cavity shape calculated by this method has a typical characteristic that the cavity axis and cavitator motion trajectory coincide with each other.CFD method used in the paper can correctly describe the cavity feature as shown in Fig.5.It also proves that CFD method can effectively predict ventilated cavity shapes under the turning motion.Unlike the the principle of independence,CFD method based on the viscosity multiphase flow model may subtly capture ventilated cavity flow details.It can be seen clearly reentrant jet regime at the tail of the cavity under four motion condition.

    Meanwhile,the influence of turning motion on the cavity shape is investigated under the condition of low Froude number.In this simulation,ventilation coefficient=0.094 5,Froude number Fr=12.76.Under such conditions,significant gravity effect can be seen from Fig.6,the process of turning motion cavity addition to bending deformation.The cavitiy tail was obvious upward drift and showing twin-vortex tubes mode.Fig.7(Top view)shows comparison of cavity shapes,as can be seen bending axis of cavities with strictly consistent motion trajectory of cavitator.

    Fig.6 Cavity shapes at turning motion Fr=12.76

    Fig.7 Comparison of cavitiy shapes Fr=12.76

    From calculated results it can be found that maintaining the same ventilation coefficient,the length and maximum diameter of cavity remain unchanged under the same Froude number.In order to analyze the reasons,10 pressure monitoring points are arranged on the cavity axis to investigate the changes of the pressure in the cavity under different turning motion.Fig.8 shows comparison of pressure distribution within the cavity when Fr=95.83 and Fr=12.76.It can be found that the pressure distribution is not uniform within cavity.The pressure gradually increases from head to tail of cavity.In the case of Fr=95.83,pressure gradient within cavity is larger.Comparing with the rectilinear motion,the turning motion leads to lower pressure within cavity.The maximum relative difference the average pressure is about 0.16%;When Fr=12.76,pressure gradient within cavity is relatively small,and the turning motion make the pressure increase.The maximum relative difference between the average pressure is about 0.01%.

    Fig.8 Comparison of internal pressure distribution of the ventilated cavity

    From the above analysis,it shows that turning motion has little effect on pressure distribution within the cavity.According the definition of ventilated cavitation number,the venti-lated cavitation number does not change when maintaining the ventilation coefficient under different turning motion conditions.

    4.2 The influence of turning radiuses to flow structure

    Based on the above results,the flow structure of ventilated cavitaty is analyzed under the condition of different froude number.Fig.5 shows the streamline distribution of flow field under four motion conditions when Fr=95.83.At cavity tail streamlines collection and come into the cavity forming reentrant jet.Because of the interaction between the outflow and reentrant jet,the internal of cavitaty form gas vortex.The gas vortex is symmetrical in linear motion,while in turning motion the gas vortex is not.

    Fig.9 The streamline of velocity(Fr=79.83)

    Fig.10 The streamline at the tail of cavity(Fr=12.76)

    When Fr=12.76,the lower surface of cavity tail raises up because of the gravity effect.The velocity of gas within the region is reduced.With the further development of raising,the rear cavity is split into two vortex tube,gas-water mixture discharges to the downstream with high speed in the form of twin-vortex tubes.From the streamline distribution within the vortex tube it can also be found that under the linear motion the streamlines distributions in the two vortex tubes are the same,while the streamline distributions are different significantly under the turning motion.

    Quantitative analysis for effects of turning motion on gas leakage of twin-vortex tubes is implemented by monitoring the gas flow within two vortex tube.The introduced parameters fmand fvare defined as follows:

    Fig.11 Top view of cavity shape

    Tab.1 Comparison parameters fv,fmof the four motion conditions

    Values of fvand fmunder four motion conditions are listed in Tab.1.From the variation of fm,the gas leakage quantities of the two vortex tubes at the cavitiy tail are equal under linear motion(≈).Under turning motions,the gas leakage of the two vortex tubes at the cavity tail comes up to be m˙1>m˙2,and the difference becomes larger with the decreasing of the turning radius.Under turning motions,the surface velocity of cavities is different that v1>v2shown in Fig.11,which causes the flow at v1side more gas away from the cavity.To decrease turning radius,the difference between v1and v2becomes larger(that means fvincreases),which leads to the increasing of fmthat represents the gas leakage difference between the two vortex tubes at the tails of cavities.Since fvhas no linear relation with fm,the surface velocity of cavity is only one of main factors of gas leakage.

    5 Conclusions

    In this paper,a three-dimensional numerical model was presented for solving ventilated cavitating flow at the turning motion.The influences of different turning radius on ventilated cavitaty and flow structure were investigated.The validity of the model was verified by the principle of independence.The main conclusions are as follows:

    (1)Under the turning motion,ventilated supercavity has bending deformation which depends on the turning radius,and the cavity axis coincides with the cavitator motion trajectory.

    (2)The effect of the turning on internal pressure of ventilated supercavity is small.Under the same Froude number,the same ventilated cavitation number is obtained by maintaining the same ventilation coefficient,and the size of the cavity is not changed.

    (3)The model in the paper visually simulates the flow structures of the inner eddy and the ventilated cavitating.The different surface velocity of cavities in turning motion leads to obvious difference of gas leakage between the two vortex tubes at the tail of the ventilated cavities.

    [1]Yang Li,Zhang Qingming.Current application and perspectives on supercavitation technology research[J].Tactical Missile Technology,2006(5):6-10.

    [2]Semenenko V N.Artificial supercavitation physics and calculation[C]//VKI Special Course on Supercavitating Flows.Brussels:RTO-AVT and VKI,2001:RTO-EN-010(11).

    [3]Savchenko Y N.Control of supercavitation flow and stability of supercavitating motion of bodies[C]//VKI Special Course on Supercavitating Flows.Brussels,2001:RTO-EN-010(14).

    [4]Wosnik M,Arndt Roger E A.Measurements in high void-fraction bubbly wakes created by ventilated supercavitation[C]//Sixth International Symposium on Cavitation.Wageningen the Netherlands,2006.

    [5]Xiong junwu,Chahine G L.Characterization of the content of the cavity behind a high-speed supercavitating body[J].ASME,Journal of Fluids Engineering,2007,129:136-145.

    [6]Yu Kaiping,Zhou Jingjun,et al.A contribution to study on the lift of ventilated supercavitating vehicle with low Froude number[J].Journal of Fluids Engineering,2010,132.

    [7]Zhou Jingjun,Yu Kaiping,Zhang Guang.Research on the process of supercavity development and the evaluation on two methods of studying the planing state[J].Journal of Ship Mechanics,2011,15(3):200-206.

    [8]Hu Shiliang,Lu Chuanjing,Pan Zhancheng.Research on the gravity effect of ventilated cavitating flows[J].Chinese Journal of Hydrodynamics,2009,24(6):786-792.

    [9]Menter F R,Kuntz M,Langtry R.Ten years of industrial experience with the SST turbulence model[C]//Proc of the 4th International Symposium on Turbulence,Heat and Mass Transfer,2003,4:625-632.

    [10]Vasin A D.The principle of independence of the cavity sections expansion(Logvinovich’s principle)as the basis for investigation on cavitation flows[C]//VKI Special Course on Supercavitating Flows.Brussels:RTO2AVT and VKI,2001:RTO2EN2010(8):105-131.

    轉(zhuǎn)彎運(yùn)動(dòng)通氣超空泡形態(tài)及流場(chǎng)結(jié)構(gòu)數(shù)值研究

    張 廣,于開(kāi)平,周景軍
    (哈爾濱工業(yè)大學(xué)航天學(xué)院,哈爾濱 150001)

    超空泡航行體機(jī)動(dòng)過(guò)程中空泡形態(tài)的預(yù)測(cè)是目前該領(lǐng)域亟待研究的問(wèn)題。文章在兩流體多相流模型的框架內(nèi)建立了用于求解通氣超空泡流轉(zhuǎn)彎?rùn)C(jī)動(dòng)的三維數(shù)值模型。通過(guò)求解RANS方程和SST(Shear Stress Transport)湍流方程,預(yù)測(cè)了圓盤(pán)空化器轉(zhuǎn)彎?rùn)C(jī)動(dòng)條件下生成的通氣空泡形態(tài),并同Logvinovich獨(dú)立膨脹原理的計(jì)算結(jié)果進(jìn)行對(duì)比,驗(yàn)證了文中數(shù)值模型的有效性。在此基礎(chǔ)上,分析了轉(zhuǎn)彎半徑對(duì)通氣空泡的形態(tài)尺度的影響,對(duì)比研究了不同弗魯?shù)聰?shù)條件下通氣空泡的流場(chǎng)結(jié)構(gòu)。

    轉(zhuǎn)彎運(yùn)動(dòng);通氣空泡;兩流體多相流模型;數(shù)值模擬

    TV131.3+2

    A

    張 廣(1983-),男,哈爾濱工業(yè)大學(xué)博士研究生;

    周景軍(1981-),男,哈爾濱工業(yè)大學(xué)博士研究生。

    TV131.3+2

    A

    1007-7294(2011)12-1335-09

    date:2011-08-11

    Support by the major National Natural Science Foundation of China(Grant No.10832007)

    于開(kāi)平(1968-),男,哈爾濱工業(yè)大學(xué)教授,博士生導(dǎo)師;

    猜你喜歡
    哈爾濱工業(yè)大學(xué)空泡機(jī)動(dòng)
    水下航行體雙空泡相互作用數(shù)值模擬研究
    裝載機(jī)動(dòng)臂的疲勞壽命計(jì)算
    《哈爾濱工業(yè)大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    12萬(wàn)畝機(jī)動(dòng)地不再“流浪”
    機(jī)動(dòng)三輪車(chē)的昨天、今天和明天
    《哈爾濱工業(yè)大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    《哈爾濱工業(yè)大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    哈爾濱工業(yè)大學(xué)設(shè)計(jì)學(xué)系
    基于LPV的超空泡航行體H∞抗飽和控制
    基于CFD的對(duì)轉(zhuǎn)槳無(wú)空泡噪聲的仿真預(yù)報(bào)
    船海工程(2015年4期)2016-01-05 15:53:28
    久久精品亚洲av国产电影网| 波多野结衣一区麻豆| 亚洲精品中文字幕一二三四区 | 91av网站免费观看| 99精国产麻豆久久婷婷| 欧美日韩亚洲综合一区二区三区_| 欧美在线黄色| 999精品在线视频| 日韩中文字幕欧美一区二区| 亚洲国产成人一精品久久久| 十八禁网站免费在线| av超薄肉色丝袜交足视频| 爱豆传媒免费全集在线观看| 久久精品国产综合久久久| 三上悠亚av全集在线观看| 亚洲av美国av| 国产精品偷伦视频观看了| 欧美少妇被猛烈插入视频| 天天躁日日躁夜夜躁夜夜| 久久久久久久国产电影| 精品少妇黑人巨大在线播放| 美女主播在线视频| 两个人看的免费小视频| 悠悠久久av| 午夜福利,免费看| 中国美女看黄片| av网站在线播放免费| 中文字幕精品免费在线观看视频| 欧美97在线视频| 男女之事视频高清在线观看| 午夜激情久久久久久久| 女性被躁到高潮视频| 午夜福利视频在线观看免费| 黄频高清免费视频| 老司机福利观看| 国产成+人综合+亚洲专区| 日韩中文字幕欧美一区二区| 久久久水蜜桃国产精品网| 波多野结衣一区麻豆| 黄色怎么调成土黄色| 蜜桃国产av成人99| 日韩熟女老妇一区二区性免费视频| 精品熟女少妇八av免费久了| 亚洲成人手机| 久久久国产欧美日韩av| 最近最新中文字幕大全免费视频| 欧美少妇被猛烈插入视频| 国产精品一区二区精品视频观看| a级片在线免费高清观看视频| 老鸭窝网址在线观看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品粉嫩美女一区| 久久久精品国产亚洲av高清涩受| 夜夜骑夜夜射夜夜干| 精品人妻一区二区三区麻豆| 免费高清在线观看日韩| 成人国产av品久久久| 热re99久久精品国产66热6| 国产av一区二区精品久久| 交换朋友夫妻互换小说| 正在播放国产对白刺激| 欧美亚洲日本最大视频资源| 一个人免费在线观看的高清视频 | 久久久精品区二区三区| 成年人免费黄色播放视频| 男人操女人黄网站| 丝袜美足系列| 国产日韩欧美在线精品| 满18在线观看网站| 久久午夜综合久久蜜桃| 女人被躁到高潮嗷嗷叫费观| 黄色视频,在线免费观看| 在线av久久热| 国产精品久久久久久精品电影小说| 亚洲国产毛片av蜜桃av| 亚洲av国产av综合av卡| 一区二区三区四区激情视频| 午夜免费成人在线视频| 性色av乱码一区二区三区2| 国产麻豆69| 精品卡一卡二卡四卡免费| 亚洲伊人色综图| 国产男女超爽视频在线观看| 国产97色在线日韩免费| 黄色视频在线播放观看不卡| 蜜桃在线观看..| 欧美日韩成人在线一区二区| 国产成人免费无遮挡视频| 91字幕亚洲| 91成年电影在线观看| 菩萨蛮人人尽说江南好唐韦庄| 咕卡用的链子| 一区二区日韩欧美中文字幕| 亚洲色图 男人天堂 中文字幕| 国产av国产精品国产| 999久久久国产精品视频| 午夜福利在线免费观看网站| 成人三级做爰电影| 建设人人有责人人尽责人人享有的| 欧美黄色片欧美黄色片| 国产麻豆69| 国产成+人综合+亚洲专区| 在线观看一区二区三区激情| 丝袜人妻中文字幕| 99国产精品99久久久久| 久久久国产欧美日韩av| 欧美亚洲 丝袜 人妻 在线| 久久综合国产亚洲精品| 精品亚洲乱码少妇综合久久| 交换朋友夫妻互换小说| 黑人欧美特级aaaaaa片| 国产深夜福利视频在线观看| 永久免费av网站大全| 欧美国产精品一级二级三级| 纯流量卡能插随身wifi吗| 国产又色又爽无遮挡免| 人妻一区二区av| 精品福利永久在线观看| 窝窝影院91人妻| 老熟女久久久| 久久天躁狠狠躁夜夜2o2o| 精品第一国产精品| 纯流量卡能插随身wifi吗| 日韩视频一区二区在线观看| 搡老乐熟女国产| 999精品在线视频| 国产精品一区二区在线观看99| 国产区一区二久久| 性色av一级| 视频区欧美日本亚洲| 一本—道久久a久久精品蜜桃钙片| 热99国产精品久久久久久7| 日韩欧美一区二区三区在线观看 | 国产精品二区激情视频| 夜夜夜夜夜久久久久| 国产老妇伦熟女老妇高清| 国产一卡二卡三卡精品| 女人精品久久久久毛片| 久久久精品区二区三区| 狠狠婷婷综合久久久久久88av| 精品欧美一区二区三区在线| 少妇粗大呻吟视频| 国产成人精品久久二区二区91| 男女高潮啪啪啪动态图| 国产在线一区二区三区精| 精品免费久久久久久久清纯 | 大片电影免费在线观看免费| 女人被躁到高潮嗷嗷叫费观| av网站免费在线观看视频| 9色porny在线观看| 国产精品麻豆人妻色哟哟久久| 久久久久久久久久久久大奶| 精品卡一卡二卡四卡免费| 精品一区二区三卡| 18禁黄网站禁片午夜丰满| 久久精品亚洲熟妇少妇任你| 免费在线观看完整版高清| 女警被强在线播放| 国产精品免费视频内射| 俄罗斯特黄特色一大片| 人人澡人人妻人| 亚洲精品一区蜜桃| 视频在线观看一区二区三区| 亚洲精品av麻豆狂野| 午夜福利视频在线观看免费| 亚洲精品日韩在线中文字幕| 真人做人爱边吃奶动态| 精品国产一区二区三区四区第35| 精品熟女少妇八av免费久了| 97精品久久久久久久久久精品| 19禁男女啪啪无遮挡网站| 狂野欧美激情性xxxx| 国产精品国产三级国产专区5o| 在线天堂中文资源库| 18禁裸乳无遮挡动漫免费视频| 国产精品免费视频内射| 久久人妻福利社区极品人妻图片| 黄片播放在线免费| 99国产极品粉嫩在线观看| 电影成人av| 中文字幕av电影在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 波多野结衣一区麻豆| 中文字幕精品免费在线观看视频| 亚洲国产日韩一区二区| 法律面前人人平等表现在哪些方面 | 亚洲国产精品一区二区三区在线| 精品一区二区三区av网在线观看 | 热99久久久久精品小说推荐| 桃花免费在线播放| 999精品在线视频| 狠狠婷婷综合久久久久久88av| 成人18禁高潮啪啪吃奶动态图| 亚洲伊人色综图| 亚洲精华国产精华精| 亚洲色图综合在线观看| 日韩欧美一区二区三区在线观看 | 国产精品自产拍在线观看55亚洲 | 精品久久蜜臀av无| 亚洲国产成人一精品久久久| 99国产精品一区二区蜜桃av | 高清在线国产一区| 国产精品麻豆人妻色哟哟久久| 国产精品成人在线| 免费日韩欧美在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品一卡2卡三卡4卡5卡 | 黄片播放在线免费| 午夜福利乱码中文字幕| 亚洲欧美成人综合另类久久久| 亚洲午夜精品一区,二区,三区| 91精品三级在线观看| 18禁裸乳无遮挡动漫免费视频| 久久久久久免费高清国产稀缺| 中文字幕人妻丝袜制服| 国产99久久九九免费精品| 国产日韩欧美在线精品| 极品人妻少妇av视频| 一二三四在线观看免费中文在| 国产亚洲欧美在线一区二区| 中国国产av一级| 新久久久久国产一级毛片| 国产精品偷伦视频观看了| 我要看黄色一级片免费的| 欧美黄色片欧美黄色片| 欧美少妇被猛烈插入视频| 人人妻,人人澡人人爽秒播| 亚洲一区二区三区欧美精品| 日韩免费高清中文字幕av| 亚洲成av片中文字幕在线观看| 一本—道久久a久久精品蜜桃钙片| 不卡一级毛片| av超薄肉色丝袜交足视频| 9191精品国产免费久久| 人妻一区二区av| 亚洲国产欧美在线一区| 久久人人97超碰香蕉20202| 男女边摸边吃奶| 亚洲av片天天在线观看| 亚洲精品粉嫩美女一区| 天堂8中文在线网| 精品国产一区二区三区四区第35| 最新在线观看一区二区三区| 成人国产一区最新在线观看| 后天国语完整版免费观看| 欧美精品啪啪一区二区三区 | 久久人人爽av亚洲精品天堂| 久久精品熟女亚洲av麻豆精品| 18禁黄网站禁片午夜丰满| 一级黄色大片毛片| 狠狠狠狠99中文字幕| 久久 成人 亚洲| 国产av一区二区精品久久| e午夜精品久久久久久久| 999久久久精品免费观看国产| 天堂中文最新版在线下载| av在线播放精品| e午夜精品久久久久久久| 热re99久久国产66热| 极品少妇高潮喷水抽搐| 精品国产一区二区三区久久久樱花| av网站在线播放免费| 欧美日韩黄片免| 亚洲人成77777在线视频| 日韩中文字幕视频在线看片| 色播在线永久视频| 青青草视频在线视频观看| 搡老乐熟女国产| 男女午夜视频在线观看| cao死你这个sao货| 黑人欧美特级aaaaaa片| 波多野结衣高清作品| 高清毛片免费观看视频网站| www日本在线高清视频| 欧美久久黑人一区二区| 亚洲一区中文字幕在线| 欧美日本视频| 国产69精品久久久久777片 | 久久精品综合一区二区三区| 久久精品91无色码中文字幕| 亚洲欧美激情综合另类| 欧美国产日韩亚洲一区| 91在线观看av| 国产一级毛片七仙女欲春2| 在线观看一区二区三区| 亚洲九九香蕉| 操出白浆在线播放| 怎么达到女性高潮| 一二三四在线观看免费中文在| 好男人电影高清在线观看| 免费高清视频大片| 两个人免费观看高清视频| 男女下面进入的视频免费午夜| 免费看日本二区| 91在线观看av| 少妇人妻一区二区三区视频| 亚洲欧美一区二区三区黑人| 午夜福利成人在线免费观看| 欧美精品啪啪一区二区三区| 久久久久亚洲av毛片大全| 国产亚洲欧美在线一区二区| 成人手机av| 观看免费一级毛片| 999精品在线视频| 亚洲无线在线观看| 欧美黄色淫秽网站| 色老头精品视频在线观看| 国产精品av视频在线免费观看| 精品久久久久久久末码| 最新美女视频免费是黄的| 精品少妇一区二区三区视频日本电影| 美女大奶头视频| 久久精品国产亚洲av高清一级| 欧美日韩福利视频一区二区| 非洲黑人性xxxx精品又粗又长| 天堂影院成人在线观看| 欧美激情久久久久久爽电影| 亚洲乱码一区二区免费版| 九色成人免费人妻av| 亚洲五月天丁香| 首页视频小说图片口味搜索| 亚洲av片天天在线观看| 99久久久亚洲精品蜜臀av| 岛国视频午夜一区免费看| 国产精品久久视频播放| svipshipincom国产片| 色老头精品视频在线观看| 神马国产精品三级电影在线观看 | 怎么达到女性高潮| 精品一区二区三区视频在线观看免费| 动漫黄色视频在线观看| 久久久久久久久中文| 在线观看免费视频日本深夜| 99re在线观看精品视频| 女生性感内裤真人,穿戴方法视频| 狠狠狠狠99中文字幕| 国产伦人伦偷精品视频| 在线观看免费日韩欧美大片| 成人国语在线视频| 日韩欧美在线乱码| 久久精品91蜜桃| 免费av毛片视频| 亚洲av熟女| 成人国语在线视频| 欧美乱色亚洲激情| av中文乱码字幕在线| 长腿黑丝高跟| 狂野欧美白嫩少妇大欣赏| 国产午夜福利久久久久久| 国模一区二区三区四区视频 | 久久婷婷成人综合色麻豆| 1024视频免费在线观看| 亚洲专区国产一区二区| 色精品久久人妻99蜜桃| 国产亚洲av高清不卡| 母亲3免费完整高清在线观看| 欧美绝顶高潮抽搐喷水| 嫩草影院精品99| 久久 成人 亚洲| 日韩三级视频一区二区三区| 天堂av国产一区二区熟女人妻 | 国产成人啪精品午夜网站| 18禁黄网站禁片免费观看直播| 两人在一起打扑克的视频| 此物有八面人人有两片| 很黄的视频免费| 日韩精品青青久久久久久| 别揉我奶头~嗯~啊~动态视频| 日本黄色视频三级网站网址| 久久九九热精品免费| 久久香蕉精品热| 国产精品久久视频播放| 中文亚洲av片在线观看爽| 久久精品91无色码中文字幕| 亚洲中文字幕日韩| 91国产中文字幕| 一边摸一边做爽爽视频免费| 高清毛片免费观看视频网站| 国产一区二区三区视频了| 日本一二三区视频观看| 国产一级毛片七仙女欲春2| 毛片女人毛片| 国产爱豆传媒在线观看 | 啦啦啦免费观看视频1| 最新在线观看一区二区三区| 亚洲国产精品999在线| 欧美中文日本在线观看视频| 2021天堂中文幕一二区在线观| 禁无遮挡网站| 最近最新中文字幕大全电影3| 亚洲第一电影网av| 亚洲国产高清在线一区二区三| 亚洲中文av在线| 在线观看免费午夜福利视频| 国产成人精品无人区| 亚洲国产精品久久男人天堂| 欧美一区二区精品小视频在线| 少妇裸体淫交视频免费看高清 | 欧美 亚洲 国产 日韩一| 亚洲精品粉嫩美女一区| 色综合欧美亚洲国产小说| 嫩草影视91久久| 一级片免费观看大全| 国产成人精品久久二区二区免费| 国产精品香港三级国产av潘金莲| 在线观看免费午夜福利视频| 在线观看66精品国产| 嫩草影院精品99| 一本精品99久久精品77| 男女午夜视频在线观看| 真人一进一出gif抽搐免费| 曰老女人黄片| 91成年电影在线观看| 欧美高清成人免费视频www| 欧美日韩亚洲综合一区二区三区_| 成人欧美大片| 国产一区二区三区在线臀色熟女| 国语自产精品视频在线第100页| av视频在线观看入口| 欧美性长视频在线观看| 男女视频在线观看网站免费 | 欧美日韩一级在线毛片| 日本五十路高清| 老司机午夜福利在线观看视频| 五月伊人婷婷丁香| 中文在线观看免费www的网站 | 日韩国内少妇激情av| 最近最新中文字幕大全免费视频| 久久国产精品影院| 欧美成狂野欧美在线观看| 一进一出抽搐gif免费好疼| 国产成人aa在线观看| av中文乱码字幕在线| 亚洲欧美精品综合久久99| 两个人免费观看高清视频| 两个人看的免费小视频| 久久香蕉国产精品| 看黄色毛片网站| 丝袜美腿诱惑在线| 激情在线观看视频在线高清| 禁无遮挡网站| 久久欧美精品欧美久久欧美| 色综合欧美亚洲国产小说| 他把我摸到了高潮在线观看| 窝窝影院91人妻| a级毛片a级免费在线| 特级一级黄色大片| 日本 欧美在线| 久久久久久免费高清国产稀缺| 日本一区二区免费在线视频| 一级a爱片免费观看的视频| √禁漫天堂资源中文www| 深夜精品福利| 国产探花在线观看一区二区| 精品国产乱码久久久久久男人| 国内精品一区二区在线观看| 午夜福利视频1000在线观看| 久久精品人妻少妇| 精品午夜福利视频在线观看一区| 国产精品久久久人人做人人爽| 两个人看的免费小视频| 国产一区二区三区在线臀色熟女| 手机成人av网站| 18禁裸乳无遮挡免费网站照片| 999精品在线视频| 在线看三级毛片| 巨乳人妻的诱惑在线观看| 欧美国产日韩亚洲一区| 国产午夜精品久久久久久| 成人永久免费在线观看视频| 色精品久久人妻99蜜桃| ponron亚洲| 性欧美人与动物交配| 国产精品久久久人人做人人爽| 脱女人内裤的视频| 久久人妻福利社区极品人妻图片| 欧美精品亚洲一区二区| av福利片在线| 国产一区在线观看成人免费| 亚洲av成人精品一区久久| 亚洲人成77777在线视频| 亚洲欧美日韩东京热| 国模一区二区三区四区视频 | 91成年电影在线观看| 搡老熟女国产l中国老女人| 国产精品自产拍在线观看55亚洲| 怎么达到女性高潮| 黄色 视频免费看| 国内揄拍国产精品人妻在线| av片东京热男人的天堂| 日韩免费av在线播放| www.www免费av| 欧美精品亚洲一区二区| 日本a在线网址| 国产精品亚洲美女久久久| 国产亚洲欧美在线一区二区| 一级毛片女人18水好多| 丰满人妻一区二区三区视频av | 老熟妇仑乱视频hdxx| 亚洲色图 男人天堂 中文字幕| 久热爱精品视频在线9| 日日干狠狠操夜夜爽| 老司机深夜福利视频在线观看| 午夜福利免费观看在线| 一区二区三区国产精品乱码| 日韩三级视频一区二区三区| 窝窝影院91人妻| 久久香蕉国产精品| 波多野结衣巨乳人妻| 亚洲中文av在线| 看片在线看免费视频| videosex国产| netflix在线观看网站| 欧美性猛交黑人性爽| 国产av麻豆久久久久久久| 国产黄a三级三级三级人| 丁香六月欧美| 琪琪午夜伦伦电影理论片6080| 人人妻人人看人人澡| 老鸭窝网址在线观看| 成人av一区二区三区在线看| 中出人妻视频一区二区| 亚洲精品色激情综合| 一本综合久久免费| 两性夫妻黄色片| 久久国产乱子伦精品免费另类| 中文字幕最新亚洲高清| 亚洲九九香蕉| 999久久久精品免费观看国产| 久久久国产成人精品二区| 久久久久久久久久黄片| 国产免费男女视频| 青草久久国产| 久久久国产欧美日韩av| 久久久精品大字幕| 欧美成人性av电影在线观看| ponron亚洲| 午夜成年电影在线免费观看| 九色成人免费人妻av| 手机成人av网站| 亚洲人与动物交配视频| 色综合亚洲欧美另类图片| 亚洲av片天天在线观看| 18禁裸乳无遮挡免费网站照片| 国产男靠女视频免费网站| 精品久久久久久久久久久久久| 嫩草影院精品99| 中文亚洲av片在线观看爽| 最新在线观看一区二区三区| 日本精品一区二区三区蜜桃| 久久久久免费精品人妻一区二区| 日本a在线网址| 国产亚洲精品av在线| 日本成人三级电影网站| 欧美成人性av电影在线观看| 国产乱人伦免费视频| 中文字幕熟女人妻在线| 成人亚洲精品av一区二区| 美女大奶头视频| 成熟少妇高潮喷水视频| 久久婷婷人人爽人人干人人爱| www.熟女人妻精品国产| 国产精品一及| 夜夜躁狠狠躁天天躁| 老汉色av国产亚洲站长工具| 日日爽夜夜爽网站| 国内毛片毛片毛片毛片毛片| 亚洲va日本ⅴa欧美va伊人久久| 久久亚洲真实| 亚洲 欧美 日韩 在线 免费| 在线观看日韩欧美| 亚洲精品在线观看二区| 久久久久国产一级毛片高清牌| 午夜福利欧美成人| 精品久久久久久久久久久久久| www.999成人在线观看| 波多野结衣巨乳人妻| 国产亚洲精品久久久久5区| 免费在线观看视频国产中文字幕亚洲| 欧美成人性av电影在线观看| 一二三四在线观看免费中文在| 成人手机av| 91字幕亚洲| 性欧美人与动物交配| 国产主播在线观看一区二区| 精品第一国产精品| 19禁男女啪啪无遮挡网站| 黑人操中国人逼视频| 俺也久久电影网| 亚洲国产精品sss在线观看| 日韩大尺度精品在线看网址| 99久久无色码亚洲精品果冻| 亚洲精品在线观看二区| 50天的宝宝边吃奶边哭怎么回事| 免费搜索国产男女视频| 午夜免费成人在线视频| 午夜精品一区二区三区免费看| 母亲3免费完整高清在线观看| 最好的美女福利视频网| 精品一区二区三区av网在线观看| 欧美在线一区亚洲| 久久欧美精品欧美久久欧美| 夜夜躁狠狠躁天天躁| 欧美黑人巨大hd| 午夜免费成人在线视频| 啦啦啦观看免费观看视频高清| 亚洲五月天丁香| 欧美av亚洲av综合av国产av| 国产99久久九九免费精品| 亚洲精华国产精华精| 少妇人妻一区二区三区视频| 99国产精品99久久久久| 黄片大片在线免费观看| 日韩精品免费视频一区二区三区|