• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    On Implementing a Practical Algorithm to Generate Fatigue Loading History or Spectrum from Short Time Measurement

    2011-06-07 07:52:26LIShanshanHUANGZhiboCUIWeicheng
    船舶力學(xué) 2011年6期
    關(guān)鍵詞:雨流海洋工程科學(xué)研究

    LI Shan-shan,HUANG Zhi-bo,CUI Wei-cheng,

    (1.State Key Lab of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200030,China;2.China Ship Scientific Research Center,Wuxi 214082,China)

    On Implementing a Practical Algorithm to Generate Fatigue Loading History or Spectrum from Short Time Measurement

    LI Shan-shan1,HUANG Zhi-bo2,CUI Wei-cheng1,2

    (1.State Key Lab of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200030,China;2.China Ship Scientific Research Center,Wuxi 214082,China)

    Fatigue life prediction requires the information of fatigue loading history or spectrum over the whole design life.However,in many cases,the measured or simulated load history only includes a very short time compared to the entire design life.How to extrapolate the measured loads to longer time and how to count the information for every cycle are two important problems to be solved in fatigue analysis.In this paper,a method to extrapolate the measured loads to longer time is introduced together with the rainflow cycle counting method.Both methods have been implemented into computer programs.An example calculation is given to show the process.Problems on how to use these two methods to determine the design load are also pointed out.

    load history;rainflow filter;load extrapolation;load spectrum;rainflow cycle;counting

    Biography:LI Shan-shan(1985-),female,Ph.D.student of Shanghai Jiao Tong University;

    HUANG Zhi-bo(1984-),male,engineer of CSSRC.

    1 Introduction

    Fatigue is defined as a process of cycle by cycle accumulation of damage in a material undergoing fluctuating stresses and strains[1].A significant feature of fatigue is that the load is not large enough to cause immediate failure.Instead,failure occurs after a certain number of load fluctuations have been experienced,i.e.after the accumulated damage has reached a critical level.For marine structures such as ships and offshore platforms they are subjected to this type of cyclic loading,so fatigue is one of the most significant failure modes[2-4].Accurate prediction of the fatigue life of marine structures under service loading is very important for both safe and economic design and operation.

    It is well-known that there are two types of fatigue life prediction methods[5].One is the cumulative fatigue damage(CFD)analysis where fatigue loading is expressed as a spectrum.The other is the fatigue crack propagation(FCP)analysis where fatigue loading is expressed as a time history.In this paper we distinguish the fatigue load history with the fatigue load spectrum while many other authors may not make this distinguish,e.g.,Schijve[6].When we say a fatigue load history,it means a time-domain destinction,e.g.P(t).When we say a fatigue spectrum,it means a frequency-domain destinction,e.g.Weibull distribution.The fatigue load history is used in fatigue crack propagation process while the fatigue load spectrum is used in cumulative fatigue damage calculation.

    In fatigue life prediction of a structure,both the fatigue loading and fatigue strength are essential parameters.Hence,in order to obtain a proper fatigue design,it is crucial to consider real environmental loads.However,in many cases,the measured or simulated load history only covers a very short time,compared to the entire design life.Therefore,how to extrapolate the measured or calculated short term loads to longer time needs to be solved.The simplest method is to repeat one observed load block until the design life.This has the drawback that only the cycles in the measured signal will appear in the extrapolation,even though other cycles are also possible.In order to allow more extreme loads than the observed ones,statistical theories have to be employed.In Ref.[7],a statistical method is used that was proposed by Dressler et al.[8]where the rainflow matrix is extrapolated using kernel smoothing.An extrapolation method based on statistical extreme value theory[9]in combination with kernel smoothing is presented in Ref.[10].

    In 2006,Johannesson[11]proposed an extrapolation method which can be applied to any signal and be used for any purpose.This method is implemented to study its performances and feasibility to be used for marine structures.

    For fatigue life analysis,the load time history needs to be converted into cycle sequence or load spectrum.This can be done by choosing a suitable counting method.It is a common consensus that the rainflow cycle counting is the best[6,12].

    In this paper,a practical method for extrapolation of a measured time signal to a longer time period,based on statistical extreme value theory is first introduced.Then the method of rainflow cycle counting is introduced.Both methods have been implemented into computer programs.In order to demonstrate the application,the measurements of longitudinal strain in a deck position of a surface ship for 15 minutes[13]are used for extrapolation and rainflow cycle counting.Finally,issues to determine the design fatigue loading using the measured short history are pointed out for further study.

    2 Generating longer loading history from short time measurement

    2.1 Method for extrapolation of a load history

    The methodology introduced here is updated from Ref.[11].The main idea of this method is to repeat the measured load block,but modify the highest maxima and lowest minima in each block.The random regeneration of each block is based on statistical extreme value theory.An example showing the principle of the method is shown in Fig.1,where three repetitions of a measured block are compared to three extrapolated blocks.

    Fig.1 Three repetitions of a measured block(black),compared to three extrapolated blocks(grey).The horizontal dashed lines represent the threshold levels,umin=-6 and umax=6,where the extrapolation starts(Ref.[11]).

    The theoretical basis for the method is the so-called Peak Over Threshold(POT)technique in statistical extreme value theory,see Ref.[14].Only the extreme excesses over a high level u is modeled,i.e.the height of the excursions above u,see Fig.2.If we fix a high load level and study the excesses over this level,then under certain conditions these excesses approximately follow an exponential distribution for high enough threshold levels u.We then have the approximation for the excess Z=Max-u∈Exp(m),with cumulative distribution function

    Fig.2 Definition of excess over a threshold u(Ref.[11])

    The estimation of the parameter in the exponential distribution is the sample mean of the excesses z1,…,zN

    The family of possible distributions for excesses in extreme value theory is the Generalized Pareto Distribution(GPD),

    where the shape parameter-∞<ξ<∞ and the scale parameter σ>0.when ξ<0,the GPD has an upper endpoint,0<z<-σ/ξ,while for ξ≥0,z>0.The special case of ξ=0 is the exponential distribution.The estimation of the parameters in the GPD is known to be problematic,often giving large systematic errors,especially for small sample sizes.Care should be taken for the selection of moment method or maximum likelihood.Details on the maximum likelihood estimation can be found in Refs.[14,27],methods based on moments are discussed in Ref.[28]

    Mathematically the extreme value approximations are formulated as asymptotic results.For a random process{X(t):t∈[0, T]}satisfying certain mixing conditions,it can be shown that the excesses over a level u(T)converges in distribution to a GPD as T→∞ and n(T)/T→0,where n(T)is the number of excesses over u(T).The parameters of the limiting GPD de-pend on the distributional properties of the process.

    As a matter of fact,the exponential distribution of excesses is equivalent to modeling the global maximum as a Gumbel distribution,which works well in many applications.In this section,the model for excesses over a high level will be the exponential distribution,but it is straightforward to replace it by a GPD.

    The generation of a k-fold extrapolated signal(sequence of turning points)can be performed in the following steps[11]:

    (1)Start with a time signal.

    (2)Extract the turning points of the time signal,where the small cycles should be removed by using a rainflow filter.

    (3)Choose threshold levels uminand umaxfor the POT extrapolation.The choice of levels is discussed in section 2.2.Extract the excesses under uminand the excesses over umax.

    (4)Estimate the mean excesses mminand mmaxunder and over the thresholds uminand umax,respectively.

    (5)Generate an extrapolated load block by simulating independent excesses as exponential random numbers.Replace each observed excess under uminby a simulated exponential number with mean mminand each observed excess over umaxby a simulated exponential number with mean mmax.

    (6)Repeat step 5 until you have generated k extrapolated load blocks.

    (7)The k-fold extrapolated signal is obtained by putting the generated load blocks after each other.

    From the k-fold extrapolated load time signal,we can also obtain the k-fold extrapolated load spectrum by applying the rainflow cycle counting algorithm which will be introduced in Section 3.In order to show the method for generating a k-fold extrapolated signal more clearly,a flow chart is given in Fig.3.

    2.2 Choice of threshold levels

    For the extrapolation,we need to choose the threshold levels where the extrapolation will start(see Fig.2).The choice of proper threshold levels is a difficult problem that demands some judgments.Note that the levels need to be chosen high enough for the extreme value theory to be a reasonable approximation,however also low enough to obtain a sufficient number of exceedances.Hence,it is important to verify that the exponential assumptions are fulfilled for the chosen threshold levels.

    A useful diagnostic tool,for assessing the threshold,is the mean excess plot.The estimate of the mean exceedance over the threshold is plotted as a function of the threshold level(see Fig.4).For too low threshold levels,the extreme value approximation is not good enough,giving a systematic error,and for very high levels there is little information giving large scatter,which is seen through the confidence intervals.Hence,a proper level should be a compromise and be chosen somewhere in between in a region where the estimate is stable,i.e.the mean excess plot is approximately horizontal.Unfortunately,the mean excess plots may be hard to interpret,but they are still a valuable tool together with the exponential probability plots.

    Fig.3 Flow chart of the generation of k-fold extrapolated signal

    The choice of proper threshold levels is the most tricky part of the extrapolation.Here one needs to use experience together with the diagnostic tools to ensure that the exponential distribution is a good approximation.A default choice that seems to work well in many cases is to find threshold levels such that there are aboutexceedances,where N0is the number of cycles in the signal.

    Fig.4 Mean excess plots,i.e.estimate of mean excesses as function of the threshold level,for Norway measurements.The dashed lines represent 95%confidence intervals for the estimate.The threshold level should be chosen in a region where the estimate is stable,i.e.where the plot is approximately horizontal(Ref.[11]).

    3 Rain flow cycle counting

    Cycle counting is the process of reducing a complex variable amplitude load history into a number of constant amplitude stress excursions,that can be related to available constant amplitude test data.This is a necessary step that needs to be carried out in order to predict fatigue crack growth in components subjected to variable amplitude loading.The method of cycle counting used often depends on the occurrences in the particular sequence that are considered to be significant in terms of fatigue damage[6,12].

    The definition of a cycle varies with the method of cycle counting.In fatigue analysis,a cycle is the load variation from the minimum to the maximum and then to the minimum load.At the moment,there is no frequency information contained in any cycle counting method but this can easily be added if three independent quantities are used.Furthermore,some of the counting methods can also give the information of the order of the cycles.Cycle counts can be made for all time histories such as force,stress,strain,torque,acceleration,deflection or other loading parameters of interest.

    Cycle counting yields the marginal probability density distribution of the single quantity like amplitude or the joint probability density distribution of the pair such as(maximum,minimum)or(amplitude,mean)or(maximum,range).

    Up to now,many different cycle counting methods have been developed such as level crossing counting,range counting and rainflow counting,see Refs.[6,15].One of the most important considerations in cycle counting is that the basis of the counting method needs to be com-patible with the understanding of the relevance of stress fluctuations to the fatigue process.Using this criterion,now it is almost the common consensus that the rainflow cycle counting method is the best cycle counting method[16-17].

    The rainflow counting algorithm was first developed by Endo and Matsuiski in 1968[18].Downing and Socie[19]created one of the more widely referenced and utilized rainflow cyclecounting algorithms in 1982,and which was included as one of many cycle-counting algorithms in ASTME 1049-85[16].Rychlik[20]gave a mathematical definition for the rainflow counting method,thus enabling closed-form computations from the statistical properties of the load signal.

    In principle,range counting includes counting of all successive load ranges,also small load variations occurring between adjacent larger ranges.It might be thought that small load variations can be disregarded in view of a negligible contribution to fatigue damage.A fundamental counting problem arises if a small load variation occurs between larger peak values.This situation is illustrated in Fig.5.A two-parameter range counting procedure will count the ranges AB,BC and CD,and store this information in a matrix.Now,consider the situation that the intermediate range BC would not occur.Then,the large range AD would be counted only.Traditionally it was thought that fatigue damage is related to load ranges but now it is found that the maximum value is also important[e.g.Refs.21,22].It should be expected that the fatigue damage of the large range AD alone is larger than for the three separate ranges AB,BC and CD.This has led to the so-called rainflow counting method of Endo and Matsuiski[18].The intermediate small load reversal BC is counted as a separate cycle and then removed from the major load range AD.This larger range can then be counted as a separate load range,see Fig.5b.If four successive peak values are indicated by Pi,Pi+1,Pi+2and Pi+3,the rainflow count requirement for counting and removing a small range from a larger range is

    If the intermediate small load reversal occurs in a descending load range,see Fig.5c,the requirement is

    Fig.5 Intermediate load reversal as part of a larger range[6].

    In other words,the peak values of the intermediate small load reversal should be inside the range of the two peak values of the larger range.Successive rainflow counts are indicated in Fig.6.In Fig.6a five rainflow counts can be made.After counting and removing these small cycles,Fig.6b is obtained.In this figure again three rainflow counts can be made,but now of larger ranges.Removing these cycles leads to Fig.6c in which again two still larger load reversals can be counted and removed.In the final residue,Fig.6d,no further counts are possible.The ranges of the residue must be counted separately at the end of the counting procedure.The rainflow count results can be stored in a two-parameter matrix.

    The rainflow count procedure has found some support by considering cyclic plasticity.A short load sequence is given in Fig.7a,which leads to counting two intermediate load reversals by the rainflow count method,as indicated in this figure.The corresponding plastic behavior is schematically indicated in Fig.7b,which could be applied to local plasticity at the material surface during the initiation period,or to crack tip plasticity during crack growth.The intermediate load reversals C1 and C2 are causing hysteresis loops inside the major hysteresis of the major cycle between A and B.It is thus assumed that the intermediate plasticity loops do not affect the major loop.This reasoning gives somewhat speculative support to the rainflow counting method.

    The rainflow counting method can also be illustrated in Fig.8.The original method was so-called because,if the stress or strain history is presented vertically,the algorithm can be considered analogous to the behaviour of rain flowing from a pagoda style roof.

    The rules for this method are as follows[15]:

    Let X denote the range under consideration;Y,the previous range adjacent to X;and S the starting point in the history.

    (1)Read the next peak or valley.If out of data go to Step(6).

    (2)If there are fewer than three points go to Step(1).Form ranges X and Y using the three most recent peaks and troughs that have not been discarded.

    Fig.6 Successive rainflow counts[6]

    Fig.7 Hysteresis loops associated with rainflow counts[6]

    (3)Compare the absolute values of ranges X and Y.

    (a)If X<Y,go to Step(1).

    (b)If X≥Y,go to Step(4).

    (4)If range Y contains the starting point S,go to Step(5);otherwise,count range Y as one cycle;discard the peak and trough of Y;and go to Step(2).

    (5)Count range Y as one-half cycle;discard the first point(peak or trough)in range Y;move the starting point to the second point in range Y;and go to Step(2).

    (6)Count each range that has not previously been counted as one half cycle.

    These rules may be converted to an algorithm suitable for computation.Commercial program for rainflow cycle counting is also available now,e.g.Durability Rainflow Cycle Counting 2002[23,24].In this paper,a named‘RAINFLOW’code developed by Nieslony[24]is used.It first searches turning points from signals and then carries out rainflow cycle counting according to the algorithm mentioned above.The range and maximum of every cycle can be obtained by an improved edition of this code.

    4 A practical example of extrapolation and rainflow cycle counting of a load history

    In order to demonstrate the extrapolation and rainflow cycle counting methods introduced above,a full scale test of wave bending moments on a surface ship is used.Fig.9 shows the measurements of the longitudinal strain in a deck position of a surface ship for 15 minutes[13].

    Fig.8 The rainflow cycle counting method[15]

    Fig.9 The measured load signals[13]

    For this example,we first choose the first three minutes to be extrapolated to a 5 times as a longer time period and compare with the original measurement.First the turning points of the time signal are extracted.Further the signal should be rainflow filtered in order to remove small oscillations that do not contribute to the fatigue damage.It is also advantageous for the POT analysis,since it removes small oscillations during excursions.A default choice for the rainflow filter is to set the threshold range to 5%of the total range of the signal,see Fig.10.Then the threshold levels uminand umaxfor the POT extrapolation are chosen.We choose 121με and-111με as umaxand umin,respectively,see Fig.11.Here we use a default choice to find threshold levels such that there are aboutexceedances,where N0is the number of cycles in the signal.For assessing if the thresholds are proper,we use the mean excess plot method to check it,the result is shown in Fig.12,wherethe chosen threshold levels are in the regions where the estimate is almost stable.With the measured time period increasing,e.g.15 minutes chosen to be extrapolated in this example,the horizontal region in Fig.12 is more clear.The comparison between measured time signal and extrapolated time signal for 15 minutes is shown in Fig.13.

    Fig.10 The rainflow filtered load signal for first three minutes

    Fig.11 Threshold levels

    Fig.12 Mean excess plot

    Fig.13 A comparison between measured time signal and extrapolated time signal for 15 minutes

    Let us apply the rainflow cycle counting method to the two load-time series shown in Fig.13.For each time series,we will obtain a certain number of complete cycles and some half cycles.For these half cycles,every two half cycles are merged as an equivalent complete cycle and they are put in the end of the series of cycles.For each cycle,we use both maximum and minimum values to represent it.The counted results are shown in Fig.14.

    For the counted maximum values and the ranges,they can be plotted as a spectrum.Fig.15a shows a comparison of the load spectra of the 5-fold extrapolations to the 15 minutes of the measured ones for the maximum value of each cycle while Fig.15b shows the range.As is customary,the load spectra are plotted as the cumulative number of cycles larger than a given amplitude as function of the amplitude.We observe that the extrapolation looks reasonable since it agrees well with the observed load spectrum.Further,the load spectra are extrapolated to higher amplitudes,and are smoother compared to the observed ones.These are the properties of the recommended extrapolation method.

    Fig.14 Rainflow cycle counted results for two load time signals given in Fig.13(threshold range to 5%of the total range)

    Fig.15 Five-fold extrapolated load spectra compared to the measured load spectra

    Now let us take the original measurement of 15 minutes as the source data for extrapolation and to check the effect of folds on the distribution properties.The extrapolation method is based on a random simulation of the high maxima and low minima.Hence,the resulting extrapolated turning points,and hence also the load spectra,will be different from each new simulation.As the number of simulations or the number of folds increases,the load spectra will converge.Fig.16 shows the load spectra for the range of cycles for five different fold numbers:1-fold(original measurement of 15minutes),4-fold(1hour),96-fold(1day).Due to the limit of hard disk,longer extrapolations are not carried out here.

    Fig.16 Effect of fold number on the load spectra for the range of cycles

    5 Further issues for the determination of design load from the short time measurement

    How to construct the design load from limited practical measurements is a very important issue.However,from Fig.16 one may be aware that using different measurement results may result in different design loads if we simply apply the method introduced above.This is certainly not satisfactory from practical application point of view.In order to overcome this deficiency,we suggest to take into account the corresponding wave data information.In order to determine the design load for a specific ship,we first need to provide the time fraction for each sea state,(Si,pi),where i is the sea state number from 0 to 12,0 can be used as the port time,Siis the ith sea state number and piis the time fraction of the ith sea state.Now if we know a short time period of sea state k.We can convert this measurement to different sea states assuming all the responses are in linear range.Then for each sea state,we extrapolate to the corresponding fraction of the design life and count the cycles.Summarizing all the cycles for different sea states,we can derive the load spectra.This load spectrum will be independent of the short time measurements.If the time fraction for each sea state,(Si,pi)has been specified,no matter what sea state is used for the short time measurement,the same design load spectrum will be derived.However,how to construct the time sequence is another challenging problem.This is basically the problem to construct a so-called standardized load history[25-26].This problem will be investigated in the future.

    6 Summary and conclusions

    Fatigue life prediction requires the information of fatigue loading history or spectrum over the whole design life.There are basically two types of methods to determine the fatigue loads,one is based on calculation and the other is based on experiment.However,in many cases,the measured load history can only include a very short time compared to the entire design life.How to extrapolate the measured loads to longer time and how to count the information for every cycle are two important problems to be solved in fatigue analysis.In this paper,a method to extrapolate the measured loads to longer time has been introduced together with the rainflow cycle counting method.Both methods have been implemented into computer programs.An example calculation is given to illustrate the process.Problems on how to use these two methods to determine the design load are also pointed out.

    Acknowledgements

    This study was supported by the Innovative Scholars Support Program of Jiangsu Province,Project No.SBK2008004,2008-2010.

    [1]Almar-Naess A.Fatigue Handbook[K].Tapir,1985.

    [2]Petershagen H.Fatigue problems in ship structures[M].Advances in Marine Structures,Elsevier Applied Science,London,1986:281-304.

    [3]Clarke J D.Fatigue crack initiation and propagation in warship hulls[M].Advances in Marine Structures-2,Smith C S and Dow R S,(eds),Elsevier Applied Science,London,1991:42-60.

    [4]Liu D,Thayamballi A.Local cracking in ships-causes,consequences,and control[C]//Proceedings:Workshop and Symposium on the Prevention of Fracture in Ship Structure,March 30-31,1995.Washington,D.C.,Marine Board,Committee on Marine Structures,National Research Council,1996.

    [5]Cui W C.A state-of-the-art review on fatigue life prediction methods for metal structures[J].J Mar Sci Technol.,2002,7:43-56.

    [6]Schijve,Jaap.Fatigue of Structures and Materials[M].Second Edition with CD-Rom.Springer Science+Business Media,B.V.,2009.

    [7]Socie D.Modelling expected service usage from short-term loading measurements[J].Int.J Mater.Prod.Technol.,2001,16:295-303.

    [8]Dressler K,Gründer B,Hack M,K?ttgen V B.Extrapolation of rainflow matrices[R].SAE Technical Paper 960569,1996.

    [9]Castillo E.Extreme Value Theory in Engineering[M].Academic Press,San Diego,1988.

    [10]Johannesson P,Thomas J J.Extrapolation of rainflow matrices[Z].Extremes 4,2001:241-262.

    [11]Johannesson P.Extrapolation of load histories and spectra[J].Fatigue Fract Engng Mater Struct,2006,29:201-207.

    [12]Etube L S.Fatigue and fracture mechanics of offshore structures[M].Professional Engineering Publishing Limited,London and Bury St.Edmunds,UK,2001.

    [13]Hu Jiajun.The full scale measurement of a surface ship under high sea states[R].Technical Report No.07150,China Ship Scientific Research Center,2007.(in Chinese)

    [14]Davison A C,Smith R L.Models for exceedances over high thresholds[J].J Royal Stat.Soc.,Ser.B,1990,52:393-442.

    [15]ESDU 95006.Fatigue life estimation under variable amplitude loading using cumulative damage calculations[Z].Issued September 1995 With Amendment A,1995.

    [16]ASTM Standard practices for cycle counting in fatigue analysis[K].American Society for Testing and Materials,Philadelphia,PA,USA.E1049-85(Reapproved 1990).

    [17]Amzallag C,et al.Standardization of the rainflow counting method for fatigue analysis[J].Int.J of Fatigue,1994,16(4):287-293.

    [18]Matsuishi M,Endo T.Fatigue of metals subjected to varying stress[M].Jpn Soc Mech Eng,Fukuoka,Japan,1968.

    [19]Downing S D,Socie D F.Simple rainflow counting algorithms[J].Int.J Fatigue,1982,4(1):31-40.

    [20]Rychlik I.A new definition of the rainflow cycle counting method[J].Int.J Fatigue,1987,9:119-121.

    [21]Vasudevan A K,Sadananda K,Glinka G.Critical parameters for fatigue damage[J].International Journal of Fatigue,2001,23:S39-S53.

    [22]Sadananda K,Sarkar S,Kujawski D,Vasudevan A K.A two-parameter analysis of S-N fatigue life using Δσ and σmax[J].International Journal of Fatigue,2009,31:1648-1659.

    [23]Rainflow Cycle Counting Software[CP].2002 Release,Durability,Inc.1995-2002.

    [24]Nieslony A.Determination of fragments of multiaxial service loading strongly influencing the fatigue of machine components[J].Mechanical Systems and Signal Processing,2009,23(8):2712-2721.

    [25]Berger,et al.Betriebsfestigkeit in Germany-an overview[J].International Journal of Fatigue,2002,24:603-625.

    [26]Heuler P,Kl?tschke H.Generation and use of standardised load spectra and load-time histories[J].International Journal of Fatigue,2005,27:974-990.

    [27]Grimshaw S D.Computing maximum likelihood estimates of the generalized Pareto distribution[J].Technometrics,1993,35:185-191.

    [28]Hosking J R M,Wallis J R.Parameter and quantile estimation of the generalized Pareto distribution[J].Technometrics,1989,29:339-349.

    從短期測(cè)量數(shù)據(jù)來(lái)生成疲勞載荷的一種實(shí)用算法的開發(fā)

    李珊珊1,黃志博2,崔維成1,2

    (1上海交通大學(xué)海洋工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海 200030;2中國(guó)船舶科學(xué)研究中心,江蘇 無(wú)錫 214082)

    疲勞壽命預(yù)報(bào)需要知道在全設(shè)計(jì)壽命期內(nèi)的疲勞載荷時(shí)間歷程或載荷譜的信息。但是,在很多情況下,實(shí)際測(cè)量或模擬的載荷時(shí)間歷程與設(shè)計(jì)壽命相比只包含很短的一段時(shí)間。如何將測(cè)量的數(shù)據(jù)外插到更長(zhǎng)的時(shí)間段以及如何計(jì)數(shù)出每周的信息是疲勞分析中必須要解決的兩個(gè)重要問(wèn)題。文中的主要目的就是介紹一種將實(shí)測(cè)載荷外插的方法以及雨流計(jì)數(shù)法。這兩種方法均被編成相應(yīng)的計(jì)算程序。一條水面船的實(shí)測(cè)數(shù)據(jù)用作例子來(lái)演示計(jì)算過(guò)程。最后對(duì)如何采用這兩種方法來(lái)構(gòu)建疲勞設(shè)計(jì)載荷問(wèn)題也提出了思路。

    載荷歷程;雨流過(guò)濾器;載荷外插;載荷譜;雨流計(jì)數(shù)

    U662.2

    A

    李珊珊(1985-),女,上海交通大學(xué)海洋工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,博士研究生;

    崔維成(1963-),男,中國(guó)船舶科學(xué)研究中心研究員,博士生導(dǎo)師。

    U662.2

    A

    1007-7294(2011)03-0286-15

    date:2011-01-23

    Supported by the Innovative Scholars Support Program of Jiangsu Province(No.SBK 2008004,2008-2010)

    王志博(1984-),男,中國(guó)船舶科學(xué)研究中心工程師;

    猜你喜歡
    雨流海洋工程科學(xué)研究
    歡迎訂閱《林業(yè)科學(xué)研究》
    歡迎訂閱《紡織科學(xué)研究》
    紡織科學(xué)研究
    紡織科學(xué)研究
    葉柵式反推力裝置輔助導(dǎo)軌疲勞壽命預(yù)測(cè)
    海洋工程專家 劉培林
    《海洋工程》第二屆理事會(huì)
    海洋工程(2015年1期)2015-10-28 01:36:21
    海洋工程學(xué)會(huì)第四屆理事會(huì)
    海洋工程(2015年1期)2015-10-28 01:29:14
    雨流計(jì)數(shù)法在結(jié)構(gòu)疲勞損傷計(jì)算中的應(yīng)用
    科技視界(2015年16期)2015-02-27 10:18:12
    北斗RDSS在海洋工程數(shù)據(jù)傳輸中的應(yīng)用
    97在线视频观看| 中文字幕av成人在线电影| 国产av不卡久久| 午夜福利高清视频| 精品国产一区二区三区久久久樱花 | 女人久久www免费人成看片 | 美女国产视频在线观看| 自拍偷自拍亚洲精品老妇| 三级经典国产精品| 波多野结衣巨乳人妻| 国产亚洲av片在线观看秒播厂 | 亚洲精品国产成人久久av| 亚洲欧洲国产日韩| 国产亚洲5aaaaa淫片| 欧美一区二区精品小视频在线| h日本视频在线播放| 波多野结衣巨乳人妻| 美女被艹到高潮喷水动态| 久久精品国产99精品国产亚洲性色| 天美传媒精品一区二区| 亚洲怡红院男人天堂| 精品人妻视频免费看| 日韩人妻高清精品专区| 午夜福利网站1000一区二区三区| 黄色日韩在线| 亚洲国产精品合色在线| 国产精品人妻久久久久久| 久久久a久久爽久久v久久| 蜜桃久久精品国产亚洲av| 国产亚洲一区二区精品| 人妻少妇偷人精品九色| 最后的刺客免费高清国语| 久久韩国三级中文字幕| 免费观看人在逋| 国产精品爽爽va在线观看网站| 色吧在线观看| 国产真实伦视频高清在线观看| 一区二区三区高清视频在线| 在线观看66精品国产| 久久婷婷人人爽人人干人人爱| 国产精品综合久久久久久久免费| 在线天堂最新版资源| 网址你懂的国产日韩在线| 精品酒店卫生间| 亚洲欧美成人精品一区二区| 欧美潮喷喷水| 久久久a久久爽久久v久久| 国产美女午夜福利| 一级二级三级毛片免费看| 久久国产乱子免费精品| 插逼视频在线观看| 国产成人freesex在线| 久久久久久久亚洲中文字幕| 男人狂女人下面高潮的视频| 三级毛片av免费| 久久国内精品自在自线图片| 亚洲五月天丁香| 综合色丁香网| 又爽又黄无遮挡网站| 欧美日本视频| 国产一区二区三区av在线| 激情 狠狠 欧美| 熟女人妻精品中文字幕| av在线亚洲专区| 午夜福利在线观看免费完整高清在| 特级一级黄色大片| 麻豆精品久久久久久蜜桃| 国产亚洲精品久久久com| 欧美zozozo另类| 噜噜噜噜噜久久久久久91| АⅤ资源中文在线天堂| 日本wwww免费看| 男人舔女人下体高潮全视频| 亚洲真实伦在线观看| 人妻夜夜爽99麻豆av| 午夜福利网站1000一区二区三区| 欧美一区二区精品小视频在线| 国内揄拍国产精品人妻在线| 欧美成人一区二区免费高清观看| 国产高清三级在线| 午夜福利高清视频| 欧美性感艳星| 18禁动态无遮挡网站| 亚洲欧美日韩东京热| 久久国产乱子免费精品| 成人国产麻豆网| 亚洲精品乱码久久久久久按摩| 又粗又爽又猛毛片免费看| 中文天堂在线官网| 日韩av在线免费看完整版不卡| 欧美精品一区二区大全| 亚洲精品aⅴ在线观看| 日本免费在线观看一区| 免费观看在线日韩| 一级黄色大片毛片| 亚洲国产高清在线一区二区三| av.在线天堂| 国产成人精品久久久久久| 身体一侧抽搐| 日本免费一区二区三区高清不卡| 日韩av不卡免费在线播放| 汤姆久久久久久久影院中文字幕 | 国产欧美日韩精品一区二区| 免费一级毛片在线播放高清视频| 精品久久久久久久人妻蜜臀av| 亚洲在线观看片| 少妇人妻精品综合一区二区| 日韩欧美精品免费久久| 深爱激情五月婷婷| 亚洲欧美日韩卡通动漫| 欧美成人a在线观看| 插阴视频在线观看视频| 久久99热6这里只有精品| 国产高清三级在线| 欧美激情久久久久久爽电影| 日韩欧美 国产精品| 婷婷六月久久综合丁香| 听说在线观看完整版免费高清| 男人的好看免费观看在线视频| 欧美3d第一页| 精品国内亚洲2022精品成人| 国产白丝娇喘喷水9色精品| 午夜日本视频在线| 亚洲精品乱久久久久久| 一二三四中文在线观看免费高清| 中文字幕av在线有码专区| 99视频精品全部免费 在线| 欧美日韩在线观看h| 长腿黑丝高跟| 亚洲婷婷狠狠爱综合网| 干丝袜人妻中文字幕| 成人欧美大片| 成人亚洲欧美一区二区av| 国产真实伦视频高清在线观看| 国产成人福利小说| 国语对白做爰xxxⅹ性视频网站| 又爽又黄无遮挡网站| 看片在线看免费视频| 亚洲国产高清在线一区二区三| 看非洲黑人一级黄片| 狂野欧美激情性xxxx在线观看| 亚洲精品国产av成人精品| 91精品国产九色| 桃色一区二区三区在线观看| 亚洲无线观看免费| 国产爱豆传媒在线观看| 亚洲怡红院男人天堂| 天美传媒精品一区二区| 少妇人妻精品综合一区二区| 99热这里只有是精品50| 国语自产精品视频在线第100页| 亚洲成人精品中文字幕电影| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 亚洲国产精品国产精品| 国产色婷婷99| 老司机影院毛片| 欧美日韩在线观看h| 丰满乱子伦码专区| 一本一本综合久久| 中文在线观看免费www的网站| 久久精品国产亚洲av涩爱| 国产精品国产三级专区第一集| 日韩制服骚丝袜av| 日日干狠狠操夜夜爽| 久久久国产成人免费| av黄色大香蕉| 色综合色国产| 神马国产精品三级电影在线观看| 亚洲一级一片aⅴ在线观看| 99国产精品一区二区蜜桃av| 麻豆精品久久久久久蜜桃| 国产精品野战在线观看| 亚洲中文字幕日韩| 国产精品,欧美在线| 丝袜美腿在线中文| 99在线视频只有这里精品首页| 婷婷色av中文字幕| 国产成人a区在线观看| 欧美+日韩+精品| 久久久亚洲精品成人影院| 黑人高潮一二区| 久久午夜福利片| 99热这里只有精品一区| 不卡视频在线观看欧美| 神马国产精品三级电影在线观看| 国产黄a三级三级三级人| 亚洲av免费高清在线观看| 久久精品国产亚洲av天美| 国产又色又爽无遮挡免| 日韩人妻高清精品专区| 精品久久国产蜜桃| 99久国产av精品国产电影| 亚洲国产成人一精品久久久| 内射极品少妇av片p| 村上凉子中文字幕在线| 我要看日韩黄色一级片| 精品一区二区三区视频在线| 久久久a久久爽久久v久久| 小说图片视频综合网站| 婷婷六月久久综合丁香| 亚洲aⅴ乱码一区二区在线播放| 成人鲁丝片一二三区免费| 看黄色毛片网站| 国产熟女欧美一区二区| 国产亚洲5aaaaa淫片| 男女边吃奶边做爰视频| 精品一区二区三区视频在线| 精品久久久噜噜| av.在线天堂| 日本wwww免费看| 国产成人a∨麻豆精品| 欧美另类亚洲清纯唯美| 一个人看的www免费观看视频| 日韩中字成人| 久久久久久久午夜电影| 99在线视频只有这里精品首页| 亚洲av成人精品一区久久| 欧美日韩一区二区视频在线观看视频在线 | 欧美性猛交╳xxx乱大交人| 国产精品一区www在线观看| 成人欧美大片| 你懂的网址亚洲精品在线观看 | 欧美xxxx性猛交bbbb| 久久久国产成人精品二区| 亚洲人成网站高清观看| 欧美三级亚洲精品| 久久这里只有精品中国| videossex国产| 乱码一卡2卡4卡精品| 熟女电影av网| 久久久久久久久久黄片| 男插女下体视频免费在线播放| 级片在线观看| 九九在线视频观看精品| 黑人高潮一二区| 国产片特级美女逼逼视频| 日韩视频在线欧美| 成人毛片a级毛片在线播放| 亚洲内射少妇av| 亚洲欧美一区二区三区国产| 国产精品不卡视频一区二区| 国产精品国产三级专区第一集| 深爱激情五月婷婷| 欧美3d第一页| 高清视频免费观看一区二区 | 国产三级在线视频| 午夜亚洲福利在线播放| 亚洲欧美精品综合久久99| 国产黄片美女视频| 91aial.com中文字幕在线观看| 国产高清视频在线观看网站| 一区二区三区乱码不卡18| 国产精品蜜桃在线观看| 亚洲在线自拍视频| 成人亚洲欧美一区二区av| 成人国产麻豆网| 久久99热这里只频精品6学生 | 亚洲国产日韩欧美精品在线观看| 伊人久久精品亚洲午夜| 深夜a级毛片| 国产av不卡久久| 欧美成人午夜免费资源| 在线a可以看的网站| 精品久久久久久电影网 | 天天躁夜夜躁狠狠久久av| 青春草亚洲视频在线观看| 中文字幕制服av| 九九在线视频观看精品| 精品久久久久久久久av| 中文字幕精品亚洲无线码一区| 日本一本二区三区精品| 超碰97精品在线观看| 国产伦在线观看视频一区| 少妇被粗大猛烈的视频| 狂野欧美激情性xxxx在线观看| 午夜福利在线在线| 久久这里只有精品中国| 69av精品久久久久久| 特大巨黑吊av在线直播| 人人妻人人澡人人爽人人夜夜 | 中文亚洲av片在线观看爽| 精品人妻偷拍中文字幕| a级毛片免费高清观看在线播放| 亚洲欧美日韩卡通动漫| 如何舔出高潮| 人妻制服诱惑在线中文字幕| 搡女人真爽免费视频火全软件| 少妇猛男粗大的猛烈进出视频 | 国产精品日韩av在线免费观看| 最近的中文字幕免费完整| 内射极品少妇av片p| 精品久久久久久久久av| 联通29元200g的流量卡| 亚洲av成人av| 亚洲图色成人| 日本午夜av视频| 热99re8久久精品国产| 身体一侧抽搐| 午夜老司机福利剧场| 国产成人freesex在线| or卡值多少钱| 美女被艹到高潮喷水动态| 久久久久久久久久黄片| 久久人妻av系列| 亚洲怡红院男人天堂| 极品教师在线视频| 国产 一区精品| 国产中年淑女户外野战色| 国产精品一区二区性色av| 好男人视频免费观看在线| 亚洲在久久综合| 嫩草影院精品99| 国产淫语在线视频| 国产乱人视频| 日日摸夜夜添夜夜爱| 亚洲精品乱码久久久v下载方式| 亚洲最大成人中文| 国产高清视频在线观看网站| av女优亚洲男人天堂| 麻豆成人av视频| 黑人高潮一二区| 国产69精品久久久久777片| 日韩国内少妇激情av| 精品国产三级普通话版| 天天躁日日操中文字幕| 日本熟妇午夜| 国产精品女同一区二区软件| 国产成人一区二区在线| 视频中文字幕在线观看| 亚洲精华国产精华液的使用体验| 丰满乱子伦码专区| kizo精华| 中国国产av一级| 午夜免费男女啪啪视频观看| 淫秽高清视频在线观看| kizo精华| 青青草视频在线视频观看| kizo精华| 深爱激情五月婷婷| 搞女人的毛片| 嫩草影院新地址| 中国美白少妇内射xxxbb| 淫秽高清视频在线观看| 久久亚洲国产成人精品v| 久久久久久国产a免费观看| 免费人成在线观看视频色| 国产精品av视频在线免费观看| 成人av在线播放网站| 特级一级黄色大片| 免费不卡的大黄色大毛片视频在线观看 | 菩萨蛮人人尽说江南好唐韦庄 | 亚洲无线观看免费| 久久这里只有精品中国| 少妇熟女欧美另类| h日本视频在线播放| 色综合站精品国产| 久久久久久久国产电影| 中文天堂在线官网| 成人午夜高清在线视频| 天堂网av新在线| 欧美日韩在线观看h| 日本欧美国产在线视频| 久久精品国产亚洲av涩爱| 变态另类丝袜制服| 久久这里有精品视频免费| 九色成人免费人妻av| 免费观看精品视频网站| 一边亲一边摸免费视频| 中文字幕av在线有码专区| 色综合站精品国产| 亚洲无线观看免费| 岛国在线免费视频观看| 国产精品一区二区在线观看99 | 亚洲欧美中文字幕日韩二区| 91午夜精品亚洲一区二区三区| 日韩 亚洲 欧美在线| 男女啪啪激烈高潮av片| 最近2019中文字幕mv第一页| 婷婷色麻豆天堂久久 | 免费播放大片免费观看视频在线观看 | 天天一区二区日本电影三级| 色播亚洲综合网| 亚洲色图av天堂| 亚洲婷婷狠狠爱综合网| 精品熟女少妇av免费看| 能在线免费观看的黄片| 汤姆久久久久久久影院中文字幕 | 国产在视频线在精品| 亚洲av男天堂| 99热这里只有是精品50| 男女边吃奶边做爰视频| 中国美白少妇内射xxxbb| 在线观看美女被高潮喷水网站| 亚洲无线观看免费| 日日干狠狠操夜夜爽| 国产精品.久久久| 精品久久久久久久末码| 全区人妻精品视频| 久久久国产成人免费| 在线观看av片永久免费下载| a级毛色黄片| 深夜a级毛片| 中文字幕亚洲精品专区| 草草在线视频免费看| 国产在视频线在精品| 免费不卡的大黄色大毛片视频在线观看 | 欧美高清成人免费视频www| 淫秽高清视频在线观看| 久久精品国产亚洲av涩爱| 亚洲av熟女| 人人妻人人澡人人爽人人夜夜 | 国产视频内射| av国产免费在线观看| 午夜福利成人在线免费观看| www.色视频.com| 波多野结衣高清无吗| 日本欧美国产在线视频| 亚洲激情五月婷婷啪啪| 亚洲精品456在线播放app| www日本黄色视频网| 欧美极品一区二区三区四区| 国产精品一及| 亚洲三级黄色毛片| 亚洲av电影在线观看一区二区三区 | 免费在线观看成人毛片| 欧美日本亚洲视频在线播放| 老司机福利观看| 亚洲伊人久久精品综合 | 搡女人真爽免费视频火全软件| 99久久成人亚洲精品观看| 日韩大片免费观看网站 | 欧美日韩精品成人综合77777| 九九爱精品视频在线观看| 我的女老师完整版在线观看| 国产精品野战在线观看| 超碰av人人做人人爽久久| 国产精品一区二区三区四区免费观看| 97热精品久久久久久| 日本黄大片高清| 亚洲欧美日韩高清专用| 天堂中文最新版在线下载 | 亚洲人成网站在线观看播放| 久久久久久伊人网av| 韩国av在线不卡| 午夜福利网站1000一区二区三区| 美女内射精品一级片tv| 高清视频免费观看一区二区 | 嫩草影院新地址| 欧美高清成人免费视频www| 成人鲁丝片一二三区免费| 夜夜看夜夜爽夜夜摸| 色播亚洲综合网| 伊人久久精品亚洲午夜| 久久久精品欧美日韩精品| 成人一区二区视频在线观看| 久久久久久久久久黄片| av线在线观看网站| 少妇人妻一区二区三区视频| 午夜激情福利司机影院| 国产女主播在线喷水免费视频网站 | 日韩欧美三级三区| 亚洲精品一区蜜桃| 久久精品国产自在天天线| 欧美xxxx性猛交bbbb| 91久久精品电影网| 精品欧美国产一区二区三| 黄色日韩在线| 69av精品久久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 日韩强制内射视频| 国产探花在线观看一区二区| 日韩欧美三级三区| 又黄又爽又刺激的免费视频.| 精品久久久久久电影网 | 国产伦精品一区二区三区视频9| 如何舔出高潮| 亚洲成人精品中文字幕电影| 中文字幕精品亚洲无线码一区| 久久久久久九九精品二区国产| 男人和女人高潮做爰伦理| 小说图片视频综合网站| 六月丁香七月| 三级经典国产精品| 亚洲五月天丁香| 国产精品.久久久| 女人十人毛片免费观看3o分钟| 国产午夜精品论理片| 舔av片在线| 久久亚洲国产成人精品v| 狂野欧美激情性xxxx在线观看| 国产激情偷乱视频一区二区| 亚洲自偷自拍三级| 日韩欧美国产在线观看| 热99在线观看视频| 久99久视频精品免费| 国内精品一区二区在线观看| 精品免费久久久久久久清纯| 联通29元200g的流量卡| 深夜a级毛片| 日本黄色片子视频| 亚洲乱码一区二区免费版| 国产视频内射| 国产精品福利在线免费观看| 干丝袜人妻中文字幕| 日韩欧美精品v在线| 久久久国产成人精品二区| 亚洲成人精品中文字幕电影| 久久精品久久久久久久性| 亚洲乱码一区二区免费版| 啦啦啦啦在线视频资源| 亚洲成人精品中文字幕电影| 免费看av在线观看网站| 亚洲自拍偷在线| 国产一级毛片在线| 日韩欧美精品v在线| 麻豆精品久久久久久蜜桃| 91aial.com中文字幕在线观看| 啦啦啦啦在线视频资源| 亚洲成人精品中文字幕电影| 欧美丝袜亚洲另类| 人妻夜夜爽99麻豆av| 国产片特级美女逼逼视频| 欧美精品一区二区大全| 熟女人妻精品中文字幕| 男人舔奶头视频| 久久久久性生活片| 2021天堂中文幕一二区在线观| 最近的中文字幕免费完整| 亚洲精品久久久久久婷婷小说 | 伦精品一区二区三区| av在线天堂中文字幕| 日日摸夜夜添夜夜添av毛片| 亚洲av电影在线观看一区二区三区 | 亚洲18禁久久av| 老女人水多毛片| 我的女老师完整版在线观看| 丝袜喷水一区| 国产精品人妻久久久影院| 久久久精品大字幕| 99在线人妻在线中文字幕| 国产淫语在线视频| 色哟哟·www| 国产精品野战在线观看| 综合色av麻豆| 中文资源天堂在线| 18禁在线播放成人免费| 亚洲在久久综合| 六月丁香七月| 成年女人看的毛片在线观看| 男人狂女人下面高潮的视频| 国产亚洲91精品色在线| 欧美激情久久久久久爽电影| 亚洲成人久久爱视频| 少妇被粗大猛烈的视频| a级一级毛片免费在线观看| 欧美潮喷喷水| 亚洲五月天丁香| 日日啪夜夜撸| 国产综合懂色| 校园人妻丝袜中文字幕| 永久免费av网站大全| 国产91av在线免费观看| 亚洲精品国产成人久久av| 欧美日韩综合久久久久久| 色视频www国产| 在线免费观看的www视频| 国产精品99久久久久久久久| 久久久久网色| 成人国产麻豆网| 18+在线观看网站| 男人的好看免费观看在线视频| 91aial.com中文字幕在线观看| 午夜精品一区二区三区免费看| 久久99热这里只频精品6学生 | 亚洲综合精品二区| 亚洲精品日韩av片在线观看| 免费人成在线观看视频色| 六月丁香七月| 国产精品福利在线免费观看| 国产色婷婷99| 99九九线精品视频在线观看视频| 少妇熟女aⅴ在线视频| 久久韩国三级中文字幕| 人体艺术视频欧美日本| 国内精品宾馆在线| 又粗又爽又猛毛片免费看| 麻豆成人午夜福利视频| 国产三级中文精品| 女人被狂操c到高潮| 少妇被粗大猛烈的视频| av黄色大香蕉| 国产国拍精品亚洲av在线观看| 国产精品野战在线观看| 狂野欧美激情性xxxx在线观看| 熟妇人妻久久中文字幕3abv| 国产免费视频播放在线视频 | 亚洲激情五月婷婷啪啪| 国产精品伦人一区二区| 久久99蜜桃精品久久| 亚洲av不卡在线观看| 亚洲综合色惰| 青春草视频在线免费观看| 噜噜噜噜噜久久久久久91| 看免费成人av毛片| 久久国内精品自在自线图片| 91午夜精品亚洲一区二区三区| 久久精品国产鲁丝片午夜精品| 免费观看人在逋| 日韩人妻高清精品专区| 久久久a久久爽久久v久久| 91久久精品国产一区二区成人| 国产亚洲5aaaaa淫片| 99热精品在线国产| 午夜老司机福利剧场| 日韩中字成人|