• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Evaluation of Surface Crack Shape Evolution Using the Improved Fatigue Crack Growth Rate Model

    2011-06-07 07:52:36WANGFangCUIWeichengHUANGXiaoping
    船舶力學(xué) 2011年6期
    關(guān)鍵詞:科學(xué)研究博士裂紋

    WANG Fang,CUI Wei-cheng,HUANG Xiao-ping

    (1 China Ship Scientific Research Center,Wuxi 214082,China;2 State Key Lab of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200030,China)

    Evaluation of Surface Crack Shape Evolution Using the Improved Fatigue Crack Growth Rate Model

    WANG Fang1,CUI Wei-cheng1,HUANG Xiao-ping2

    (1 China Ship Scientific Research Center,Wuxi 214082,China;2 State Key Lab of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200030,China)

    Many investigators have carried out the study on crack shape evolution law but some deficiencies are observed from the predicted results obtained using the existed methods.In this paper,an improved fatigue crack growth model was proposed.The nonlinear effect of the material,the closure behavior of the crack front and its distribution along the crack front are sufficiently considered in this model,which will be used to evaluate the surface crack shape evolution.Moreover,by introducing the concept of equivalent thickness at each point and the assumption of crack propagation at normal direction,the effect of different stress state at each point on crack shape evolution law is reasonably considered and the surface retardation due to boundary effect is successfully predicted.The evaluation precision of crack shape evolution law from this model is highly improved compared with the test data and the predicted curve from Paris law.

    the improved fatigue crack growth rate model;surface crack;crack shape evolution

    Biography:WANG Fang(1979-),female,Ph.D.senior engineer of CSSRC.

    1 Introduction

    Different types of defects always existed in welded components as stiffened panels and tubular sections in ship and offshore structures.The fatigue life of the components will be affected by the majority of initial defects largely.It has been widely accepted that those initial defects can be treated as two-or three-dimensional surface cracks when investigating the fatigue life of the structures.The propagation lives of surface cracks are significant and should not be neglected during investigating the whole life of the structure.That indicates the deficiencies of the traditional fatigue life assessment method based on stress-life curves(S-N curves)which ignores the whole failure process of the welded components[1].Then the approach based on fracture mechanics has been highlighted in fatigue life of welded structures.And evaluating surface crack shape evolution law is the basis of precise fatigue life prediction[2-3].

    Initial surface cracks are usually treaded as semi-elliptical crack in shape and assumed to keep the simi-elliptical shape but with different shape ratio during propagation.The changes in defect aspect ratio depend principally upon initial configuration,relative crack depth and loading condition,but also depend weakly upon stress ratio,loading frequency,growth rate exponent,mean stress and the crack tip stress conditions which alter with changes in crack shape[4].Many investigators have carried out the study on predicting crack shape evolution law as the basis of fatigue life assessment[5-8].

    Paris-law is always applied to estimate crack shape evolution under cyclic loading by evaluating the growth rate of the surface and deepest points[2-3].And it has been observed that the coefficients in the Paris law for the two critical points should not be equal.Some researchers deal with the problem by considering different coefficients for each point along the crack front.For example,Ref.[8]derived the coefficients for initial semi-circular cracks.To further simplify the problem,some other researchers pre-defined the shape ratio equation during propagation and use it in calculating the stress intensity factors.

    However,by summarizing precious research works on the problem,several deficiencies could be noticed:(1)Almost all the research works are based on Paris law.Though many results have demonstrated the reasonability by applying Paris law but it is confined to small shape ratio a/t.Typically,when the shape ratio a/t is larger than 0.6,the large predicted error comparing to test will be found.It is because that linear elastic equation for stress intensity factor range is used in Paris law.However,when the deepest point of the crack approaches to the back of the plate,there will be an apparent strip yielding in the vicinity of the deepest point.Then the ignorance of nonlinear effect results in the deficiency.(2)The‘two-point approach’is always adopted.As introduced above,to simplify the problem,the crack profile is supposed to keep semi-elliptical.The deepest point and surface point will determine the shape of the crack while the effects of other points along the crack front are ignored.(3)The stress state effect is neglected.Qualitatively,the crack profile should be calculated by considering the stress state function along the crack front from a state of high traxiality of stress at the deepest point to a biaxial stress state at the surface point.Some researchers simplified the problem by taking for a plan strain state and a plan stress state respectively at the deepest point and the surface point.But it is not the reality and Paris law is difficult to describe the stress state effect.(4)The boundary effect at the surface crack will not be reflected by the above three assumptions.Crack growth retardation phenomenon is observed during test in the vicinity of surface point along the crack front,which is the boundary effect.

    In the previous study,an improved fatigue crack growth model is proposed based on the work of McEvily et al[9]and the capability of the model has been demonstrated[10-11].It will be used in present paper to evaluate the surface crack shape evolution.The nonlinear effect in the vicinity of crack front and crack closure effect will be sufficiently considered.By introducing the concept of equivalent thickness at each point,the different stress state effect along crack front is taken into account.Surface retardation due to boundary effect can be successfully predicted.The evaluation precision of crack shape evolution law from the current model is highly improved compared with the test data and the predicted curve from Paris law.

    2 Problem description

    Stress concentration magnification factor of semi-elliptical cracks at the toe of fillet welded joints can be expressed as follows:

    where,Kplateis the stress intensity factor in the vicinity of crack tips in a plate and Mkis a magnification factor for welded joints.Bowness and Lee[12]recommended an empirical expression of Mkof semi-elliptical crack.And the calculation methods for stress intensity factors of surface cracks are introduced in Ref.[13].

    As an example,the surface crack in a T-joint is illustrated in Fig.1.And the symbols for joint and crack geometry parameters are labeled in the figure and it is supposed that the joint is subjected to tension stress σtenand bending stress σben.

    Newman-Raju[5]proposed the empirical stress-intensity factor equation for the surface crack,

    3 Basic expression of the improved crack growth rate model

    A good crack growth rate relation should be established for accurate prediction of fatigue life based on fatigue crack propagation theory.As one of the preferable fatigue crack growth models,the modified constitutive relation developed by McEvily and his co-workers[9]is able to explain different fatigue phenomena.Recently,we further improved McEvily’s model for the purpose of explaining more fatigue phenomena[12-13].

    The improved crack growth model can be described as:

    where A is a material-and environmentally-sensitive constant of dimensions(MPa)-2;m is a constant representing the slope of the corresponding fatigue crack growth rate curve;n is the index indicating the unstable fracture;KCis the plane stress fracture toughness of the material;KICis the plan stain fracture toughness of the material;KCfis the fracture toughness of the material under fatigue loading;reis an empirical material constant of the inherent flaw length of the order of 1μm;a is the modified crack length which is equal to replus the actual crack length;σmaxis the maximum applied stress,σminis the minimum applied stress;Y()a is a geometrical factor;Y re()is a geometrical factor when a is equal to re;R is the stress ratio(=σmin/σmax);ΔKeffis the effective range of the stress intensity factor;ΔKeffthis the effective range of the stress intensity factor at the threshold level;Kopis the stress intensity factor at the opening level;α′is the crack tip stress/strain constraint ratio,which is 1 for the plane stress state and 1/1-2( )ν for the plane strain state;σuis the ultimate strength of the material;σYis the yield strength of the material;n′is the hardening exponent of the power-law material;ν is the Poisson’s ratio.It can be noticed that Kmax,fopand KCfare all the functions of crack length a.The effect of n is significant only in the unstable propagation region;a constant value of 6 is recommended for a quick and simple engineering analysis.

    Combining Eqs.(2)and(3),the value of Y(a) for surface cracks in a plain plate can be expressed as:

    4 Equivalent thickness

    Eqs.(3)-(5)are mostly used in the cases of one or two dimensional problems.In order to extend the concepts in the model into surface cracks,the concepts of ‘thickness’ at each point along crack front should be re-defined.The concept of equivalent thickness[3]will be applied into the analysis here.Fig.2 shows the schematic illustration for calculation of equivalent thickness at each point.If there is a semi-elliptical crack Ai-O-Ciin a plate,then the general equation of the semi-elliptical shape is

    The equation of the tangent line can be written as,

    The equation of the normal line can be written as:

    then the coordinates of Pi+1,jcan be obtained,

    The propagated crack shape can be depicted by calculating the coordinates of enough points along the new crack front.Typically,the shape of the new crack front will not keep semi-elliptical.Then the function of stress intensity factor coefficient Y should be calculated by finite element analysis at each step.To save calculation time,it is assumed that Y for the new front is still calculated according to that for semi-elliptical shape but the ellipse should be obtained by fitting the calculated points.The parameters of new semi-elliptical crack will be used for next step of calculation then the Eqs.(1)and(2)can be used reasonably.Accordingly,the crack shape ratio evolution can be obtained through ‘cycle-by-cycle’ calculation.

    4 Model validation

    Ref.[14]conducted tests on series of 7075-T6 plates with semi-elliptical crack and Ref.[3]gave predicted shape ratios using Paris law.They are depicted together with the current predicted results in Fig.3.When the shape ratio a/t is small,the results from Paris law and the present model are similar and agree well with the test data.But when the shape ratio becomes larger with crack propagation,the results from Paris law show discrepancy comparing to the test.On the contrary,the present model can give satisfactory evaluation results by considering nonlinear effect when calculating stress intensity factors.It should be noted that the values of a and c for each step in Fig.3 are the fitted one.Fig.4 gives the current predicted crack profile of the semi-elliptical crack with a0/t=0.2,a0/c0=1.0 in Ref.[14].Apparent growth retardation can be observed in the predicted fronts.

    Similar conclusion can be obtained by comparing the current predicted results with the test data on 7075-T6(51)[15]and the predicted results[3]based on Paris law depicted in Figs.5 and 6.It can be seen that the present model can give more precise results comparing to Paris law.But different shape evolution tendency is observed comparing to Fig.3.The difference results from the values of initial crack shape ratios.Larger initial a/c will result in ascending trend with crack propagation while opposite trend is for small initial a/c.

    5 Conclusions

    In the present study,the improved fatigue crack growth model is used to evaluate the surface crack shape evolution and some useful conclusions can be drawn as follows:

    (1)The strip-yield effect in the vicinity of crack front and crack closure effect could be sufficiently considered by using the nonlinear equation of stress intensity factor in present model;

    (2)By introducing the concept of equivalent thickness at each point,the different stress state effect along crack front can be taken into account;

    (3)Surface retardation due to boundary effect can be successfully predicted;

    (4)The evaluation precision of crack shape evolution law from the current model is highly improved compared with the test data and the predicted curve from Paris law.

    Acknowledgements

    This study was supported by the Innovative Scholars Support Program of Jiangsu Province,Project No.BK2008004,2008-2010.

    [1]Fricke W,Cui W C,Kierkegaard H,Kihl D,Koval M,Lee H L,Mikkola T,Parmentier G,Toyosada M,Yoon J H.Comparative fatigue strength assessment of a structural detail in a containership using various approaches of classification societies[J].Marine Structures,2002,15(1):1-13.

    [2]Chahardehi A,Brennan F P,Han S K.Surface crack shape evolution modeling using an RMS SIF approach[J].International Journal of Fatigue,2010,32:297-301.

    [3]Zhang B,Guo W L.Numerical simulation of surface crack propagation considering the crack closure effects and the threedimensional stress constraints[J].Chinese Journal Computational Mechanics,2005,22(6):716-721.(in Chinese)

    [4]Lin X B,Smith R A.Finite element modelling of fatigue crack growth of surface cracked plates Part II:Crack shape change[J].Engng Fracture Mech,1999,63:523-540.

    [5]Newman J C Jr,Raju I S.Analyses of surface cracks in finite plates under tension or bending loads[R].NASA Technical Paper 1578,1979.

    [6]Mahmoud M A.Quantitative prediction of growth patterns of surface fatigue cracks in tension analysis[J].Engng Fracture Mech,1988,30:735-46.

    [7]Mahmoud M A.Growth patterns of surface fatigue cracks under cyclic bending:a quantitative analysis[J].Engng Fracture Mech,1989,31:357-369.

    [8]Wu S X.Shape change of surface during fatigue growth[J].Engng Fracture Mech,1985,22:897-913.

    [9]McEvily A J,Bao H,Ishihara S.A modified constitutive relation for fatigue crack growth[C].In:Wu X R,Wang Z G,editors.Fatigue’99:Proceedings of the Seventh International Fatigue Congress.Beijing,China:Higher Education Press.1999:329-336.

    [10]Wang F,Cui W C.Effect of three dimensional stress state on unstable fracture condition and crack opening level in a new crack growth model[J].Acta Metall Sinica,2010,1:41-49.

    [11]Wang F,Cui W C.On the engineering approach to estimate the parameters in an improved crack growth rate model for fatigue life prediction[J].Ship and Offshore Structures,2010,3(8):227-241.

    [12]Bowness D,Lee M M K.Prediction of weld toe magnification factors for semi-elliptical cracks in T-butt joint[J].International Journal of Fatigue,2000,22:369-387.

    [13]Han Y,Huang X P,Zhang Y,Cui W C.A comparative study of simplified SIF calculations of surface cracks at weld toe[J].Journal of Ship Mechanics,2005,9(3):87-96.

    [14]Putra I S,Schijve J.Crack opening stress measurements of surface cracks in 70752T 6 aluminium alloy plate specimen through electron fractography[J].Fatigue Fract Engng Mater Struct,1992,15:323-338.

    [15]Kim J H,Song J H.Crack growth and closure behaviour of surface cracks under axial loading[J].Fatigue Fract Engng Mater Struct,1992,15:477-489.

    基于改進(jìn)的統(tǒng)一疲勞裂紋擴展速率模型的表面裂紋擴展規(guī)律預(yù)報

    王 芳1,崔維成1,黃小平2

    (1中國船舶科學(xué)研究中心,江蘇 無錫 214082;2上海交通大學(xué) 海洋工程國家重點實驗室,上海200030)

    很多學(xué)者對表面裂紋形狀變化規(guī)律進(jìn)行了研究,但是理論上仍存在較大缺陷,因此現(xiàn)有方法預(yù)報結(jié)果的準(zhǔn)確性有待考察。文章作者們提出了一個改進(jìn)的統(tǒng)一疲勞裂紋擴展速率模型,本模型合理考慮了材料的非線性效應(yīng)和裂紋前緣的三維約束效應(yīng)及三維約束大小在前緣各點的分布函數(shù)。通過引入等效厚度的概念及法線方向擴展的假定較好地考慮了裂紋前緣各點對擴展之后形狀比變化規(guī)律的影響,預(yù)報得到的裂紋前緣形狀能夠觀察到明顯的邊界點擴展滯后現(xiàn)象,同時本模型預(yù)報結(jié)果與試驗結(jié)果及傳統(tǒng)模型預(yù)報結(jié)果進(jìn)行了比較,證明本模型提高了表面裂紋擴展規(guī)律預(yù)報的精度。

    改進(jìn)的疲勞裂紋擴展率模型;表面裂紋;裂紋形狀變化

    U661.4

    A

    王 芳(1979-),女,博士,中國船舶科學(xué)研究中心高級工程師;

    黃小平(1964-),男,博士,上海交通大學(xué)副教授,碩士生導(dǎo)師。

    U661.4

    A

    1007-7294(2011)06-0660-09

    date:2011-04-07

    Supported by the Innovative Scholars Support Program of Jiangsu Province(Project No.BK2008004,2008-2010)

    崔維成(1963-),男,博士,中國船舶科學(xué)研究中心研究員,博士生導(dǎo)師;

    猜你喜歡
    科學(xué)研究博士裂紋
    歡迎訂閱《林業(yè)科學(xué)研究》
    裂紋長度對焊接接頭裂紋擴展驅(qū)動力的影響
    歡迎訂閱《紡織科學(xué)研究》
    紡織科學(xué)研究
    制冷博士來幫忙
    紡織科學(xué)研究
    神奇博士感冒了
    Epidermal growth factor receptor rs17337023 polymorphism in hypertensive gestational diabetic women: A pilot study
    博士蚊
    潤博士問答
    最近中文字幕2019免费版| 国产精品 欧美亚洲| 久久亚洲精品不卡| 精品少妇一区二区三区视频日本电影| 99九九在线精品视频| 精品高清国产在线一区| 国精品久久久久久国模美| 成人三级做爰电影| 最新在线观看一区二区三区 | av又黄又爽大尺度在线免费看| 操美女的视频在线观看| 欧美日韩一级在线毛片| 男女下面插进去视频免费观看| 美女脱内裤让男人舔精品视频| 五月开心婷婷网| 人人妻人人爽人人添夜夜欢视频| 午夜免费观看性视频| av视频免费观看在线观看| 黄片小视频在线播放| 一本一本久久a久久精品综合妖精| 免费在线观看完整版高清| 欧美激情 高清一区二区三区| 久热这里只有精品99| 考比视频在线观看| 欧美人与善性xxx| 九草在线视频观看| 看十八女毛片水多多多| 丝袜美腿诱惑在线| 大话2 男鬼变身卡| a级毛片在线看网站| 满18在线观看网站| 亚洲黑人精品在线| 中国美女看黄片| 麻豆国产av国片精品| 欧美日韩一级在线毛片| 国产麻豆69| 99久久精品国产亚洲精品| 成人国产av品久久久| 日韩制服丝袜自拍偷拍| 国产爽快片一区二区三区| 黑人巨大精品欧美一区二区蜜桃| 亚洲少妇的诱惑av| 欧美在线黄色| 亚洲视频免费观看视频| 欧美激情 高清一区二区三区| 免费看不卡的av| 两个人免费观看高清视频| 午夜福利乱码中文字幕| 在线观看一区二区三区激情| 中文字幕亚洲精品专区| 婷婷色av中文字幕| 亚洲欧美一区二区三区国产| 久久久久国产精品人妻一区二区| 精品福利观看| 不卡av一区二区三区| 女性被躁到高潮视频| 欧美日韩国产mv在线观看视频| 校园人妻丝袜中文字幕| 久久综合国产亚洲精品| 欧美另类一区| 9色porny在线观看| 伦理电影免费视频| 国产精品免费大片| 久久久国产一区二区| 高清av免费在线| 欧美国产精品一级二级三级| 国产激情久久老熟女| 一边亲一边摸免费视频| 国产一区亚洲一区在线观看| 成人国产av品久久久| 亚洲国产av影院在线观看| 极品人妻少妇av视频| 少妇人妻 视频| 在线观看免费午夜福利视频| 亚洲人成电影观看| 免费高清在线观看视频在线观看| 男的添女的下面高潮视频| 一级片免费观看大全| 免费观看人在逋| 久久精品国产亚洲av高清一级| 在线看a的网站| 成年美女黄网站色视频大全免费| 叶爱在线成人免费视频播放| 人体艺术视频欧美日本| 叶爱在线成人免费视频播放| 天堂中文最新版在线下载| 人体艺术视频欧美日本| 电影成人av| 后天国语完整版免费观看| 在线观看免费午夜福利视频| 精品欧美一区二区三区在线| 欧美大码av| 99国产精品99久久久久| 在现免费观看毛片| 老司机靠b影院| 国产深夜福利视频在线观看| 国产亚洲精品久久久久5区| 你懂的网址亚洲精品在线观看| 51午夜福利影视在线观看| 麻豆av在线久日| 如日韩欧美国产精品一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 久久中文字幕一级| 91精品国产国语对白视频| 国产人伦9x9x在线观看| 亚洲 欧美一区二区三区| 久久久久久久久免费视频了| 少妇人妻 视频| 国产成人精品无人区| 日韩大码丰满熟妇| 国产极品粉嫩免费观看在线| 精品欧美一区二区三区在线| 成人18禁高潮啪啪吃奶动态图| 91精品伊人久久大香线蕉| 97人妻天天添夜夜摸| 黄色 视频免费看| 精品国产一区二区三区四区第35| 亚洲第一青青草原| 成在线人永久免费视频| 亚洲国产精品一区二区三区在线| 欧美人与性动交α欧美精品济南到| 一区二区av电影网| 国产一区亚洲一区在线观看| 精品少妇久久久久久888优播| 欧美乱码精品一区二区三区| 欧美精品亚洲一区二区| 激情视频va一区二区三区| av在线app专区| 欧美激情 高清一区二区三区| 国产高清不卡午夜福利| 欧美xxⅹ黑人| 亚洲熟女精品中文字幕| 成人国语在线视频| 色视频在线一区二区三区| 欧美乱码精品一区二区三区| 日韩中文字幕欧美一区二区 | 欧美精品人与动牲交sv欧美| 别揉我奶头~嗯~啊~动态视频 | 一级毛片 在线播放| 中国国产av一级| 夜夜骑夜夜射夜夜干| 99热全是精品| 午夜免费成人在线视频| 一个人免费看片子| 免费在线观看完整版高清| 女性生殖器流出的白浆| 国产av精品麻豆| 97人妻天天添夜夜摸| 精品一区在线观看国产| 欧美久久黑人一区二区| 天天躁日日躁夜夜躁夜夜| 亚洲五月色婷婷综合| 精品亚洲成a人片在线观看| 亚洲视频免费观看视频| 大陆偷拍与自拍| 亚洲熟女精品中文字幕| 成人三级做爰电影| 黄色毛片三级朝国网站| 手机成人av网站| 中文字幕亚洲精品专区| 国产淫语在线视频| 久久久久精品人妻al黑| 这个男人来自地球电影免费观看| 国产精品亚洲av一区麻豆| 久久影院123| 亚洲国产最新在线播放| 热re99久久精品国产66热6| 新久久久久国产一级毛片| 成人午夜精彩视频在线观看| 叶爱在线成人免费视频播放| 1024视频免费在线观看| 一级毛片 在线播放| 免费久久久久久久精品成人欧美视频| 一级片免费观看大全| 久久这里只有精品19| 精品熟女少妇八av免费久了| 中文字幕色久视频| 国产黄色免费在线视频| 国产色视频综合| 中文字幕色久视频| av国产精品久久久久影院| 水蜜桃什么品种好| 午夜福利视频在线观看免费| 国产在线视频一区二区| 超色免费av| 高清av免费在线| 热re99久久国产66热| 丝袜在线中文字幕| kizo精华| 男女免费视频国产| 99久久精品国产亚洲精品| 黄色毛片三级朝国网站| 久久久久国产精品人妻一区二区| 精品亚洲乱码少妇综合久久| 国产男女超爽视频在线观看| 欧美xxⅹ黑人| bbb黄色大片| 午夜免费鲁丝| 久久国产精品影院| 亚洲国产看品久久| 免费女性裸体啪啪无遮挡网站| 日本wwww免费看| 成人国产av品久久久| 亚洲熟女毛片儿| 欧美97在线视频| 国产av精品麻豆| 黄色片一级片一级黄色片| 亚洲精品久久午夜乱码| 性色av一级| 两个人免费观看高清视频| 亚洲七黄色美女视频| 成人国产av品久久久| 午夜福利,免费看| 亚洲av日韩在线播放| 久久这里只有精品19| 久久青草综合色| 国产视频一区二区在线看| 日韩 欧美 亚洲 中文字幕| 国产有黄有色有爽视频| 国产国语露脸激情在线看| 黄片播放在线免费| 国产精品99久久99久久久不卡| 美女中出高潮动态图| 精品国产乱码久久久久久男人| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品一区二区免费欧美 | 下体分泌物呈黄色| 午夜影院在线不卡| 免费观看av网站的网址| 国产麻豆69| 真人做人爱边吃奶动态| 国产成人欧美| 亚洲,欧美,日韩| 国产精品成人在线| 熟女少妇亚洲综合色aaa.| 亚洲欧美清纯卡通| 新久久久久国产一级毛片| 精品国产一区二区三区久久久樱花| bbb黄色大片| 午夜免费鲁丝| 999精品在线视频| 久久精品国产亚洲av涩爱| 免费人妻精品一区二区三区视频| 欧美另类一区| 久久久久网色| 丝袜喷水一区| 国产伦人伦偷精品视频| 精品一区二区三区四区五区乱码 | 亚洲 国产 在线| 日韩,欧美,国产一区二区三区| 香蕉国产在线看| 丰满人妻熟妇乱又伦精品不卡| 亚洲欧美精品综合一区二区三区| 午夜影院在线不卡| 国产亚洲精品久久久久5区| 首页视频小说图片口味搜索 | 亚洲人成77777在线视频| 精品国产乱码久久久久久小说| 国产成人免费无遮挡视频| 亚洲精品中文字幕在线视频| 捣出白浆h1v1| 亚洲精品久久久久久婷婷小说| 制服人妻中文乱码| 久久久精品区二区三区| 91麻豆精品激情在线观看国产 | 在线亚洲精品国产二区图片欧美| 亚洲av美国av| 超色免费av| 9色porny在线观看| 丰满饥渴人妻一区二区三| 午夜免费观看性视频| 母亲3免费完整高清在线观看| 欧美中文综合在线视频| 亚洲专区国产一区二区| 久久精品aⅴ一区二区三区四区| 视频在线观看一区二区三区| 久久午夜综合久久蜜桃| 啦啦啦啦在线视频资源| 人人妻人人爽人人添夜夜欢视频| 日本色播在线视频| 丁香六月欧美| 欧美日韩亚洲高清精品| av有码第一页| 少妇人妻久久综合中文| 我要看黄色一级片免费的| 精品人妻一区二区三区麻豆| 国产精品一区二区在线观看99| 久久久久久亚洲精品国产蜜桃av| 国产精品久久久久成人av| 男女无遮挡免费网站观看| 欧美精品一区二区大全| 成年女人毛片免费观看观看9 | 欧美日韩视频高清一区二区三区二| 一区二区三区激情视频| 黄片小视频在线播放| 后天国语完整版免费观看| 啦啦啦在线免费观看视频4| 天天躁夜夜躁狠狠躁躁| 五月开心婷婷网| 日韩一卡2卡3卡4卡2021年| 超碰成人久久| 天天躁狠狠躁夜夜躁狠狠躁| 精品免费久久久久久久清纯 | 丝袜美足系列| 亚洲伊人色综图| 成年美女黄网站色视频大全免费| 2018国产大陆天天弄谢| 一级黄色大片毛片| 人妻一区二区av| 欧美人与性动交α欧美精品济南到| 999精品在线视频| 啦啦啦 在线观看视频| 亚洲欧美成人综合另类久久久| netflix在线观看网站| 国产又爽黄色视频| 老鸭窝网址在线观看| 国产亚洲午夜精品一区二区久久| 侵犯人妻中文字幕一二三四区| 国产又爽黄色视频| 天天操日日干夜夜撸| 精品欧美一区二区三区在线| 丝袜脚勾引网站| 18禁国产床啪视频网站| 亚洲一卡2卡3卡4卡5卡精品中文| av国产久精品久网站免费入址| 国产成人系列免费观看| 日韩av在线免费看完整版不卡| 精品第一国产精品| 飞空精品影院首页| 国产男女超爽视频在线观看| 高清av免费在线| 午夜两性在线视频| 精品人妻熟女毛片av久久网站| 别揉我奶头~嗯~啊~动态视频 | 下体分泌物呈黄色| 国产午夜精品一二区理论片| 大香蕉久久成人网| 国产成人a∨麻豆精品| 日本91视频免费播放| 亚洲av欧美aⅴ国产| 黑人猛操日本美女一级片| 美女视频免费永久观看网站| 亚洲av电影在线进入| 少妇的丰满在线观看| 国产精品一区二区精品视频观看| 午夜免费男女啪啪视频观看| 麻豆国产av国片精品| 国产在视频线精品| 久久国产精品男人的天堂亚洲| a级毛片在线看网站| 国产av国产精品国产| 亚洲av在线观看美女高潮| 国产免费福利视频在线观看| 国产精品三级大全| 悠悠久久av| 久久中文字幕一级| 一级毛片电影观看| 国产在线一区二区三区精| 精品福利永久在线观看| 黄色a级毛片大全视频| 丁香六月天网| 在线看a的网站| 午夜免费鲁丝| 精品亚洲乱码少妇综合久久| 国产女主播在线喷水免费视频网站| 成人18禁高潮啪啪吃奶动态图| 中文字幕制服av| 夫妻性生交免费视频一级片| 亚洲精品乱久久久久久| 亚洲欧美激情在线| 国产精品一区二区在线观看99| 午夜久久久在线观看| 婷婷色av中文字幕| 国产熟女欧美一区二区| 久久综合国产亚洲精品| 亚洲少妇的诱惑av| 1024视频免费在线观看| 国产av国产精品国产| 国产一区有黄有色的免费视频| 欧美亚洲 丝袜 人妻 在线| 精品高清国产在线一区| 国产淫语在线视频| 观看av在线不卡| 午夜福利影视在线免费观看| 久久久欧美国产精品| 亚洲免费av在线视频| 日韩一区二区三区影片| 国产成人精品在线电影| 欧美另类一区| 晚上一个人看的免费电影| 99国产精品一区二区蜜桃av | 久久精品亚洲熟妇少妇任你| 久久精品国产亚洲av涩爱| 国产一区亚洲一区在线观看| 国产精品一二三区在线看| 色网站视频免费| 男女国产视频网站| 99久久人妻综合| 久久性视频一级片| 真人做人爱边吃奶动态| h视频一区二区三区| 亚洲欧美成人综合另类久久久| 亚洲精品日本国产第一区| 亚洲成av片中文字幕在线观看| 国产精品人妻久久久影院| 超碰97精品在线观看| 亚洲欧美一区二区三区黑人| av在线播放精品| 人妻 亚洲 视频| 国产精品秋霞免费鲁丝片| 亚洲精品成人av观看孕妇| 女性生殖器流出的白浆| 免费av中文字幕在线| 十八禁高潮呻吟视频| 91国产中文字幕| 2021少妇久久久久久久久久久| 黄片小视频在线播放| 两人在一起打扑克的视频| 婷婷色av中文字幕| 日本黄色日本黄色录像| 久久久精品94久久精品| 精品亚洲乱码少妇综合久久| 嫁个100分男人电影在线观看 | 99国产综合亚洲精品| 脱女人内裤的视频| 国产不卡av网站在线观看| av片东京热男人的天堂| 国产精品国产三级国产专区5o| 免费观看av网站的网址| av在线播放精品| 一区福利在线观看| 日韩制服骚丝袜av| 一区二区三区激情视频| 免费女性裸体啪啪无遮挡网站| 欧美精品av麻豆av| 亚洲伊人色综图| 欧美在线一区亚洲| 男男h啪啪无遮挡| 国产又色又爽无遮挡免| 操美女的视频在线观看| 黄网站色视频无遮挡免费观看| 性色av乱码一区二区三区2| 亚洲 欧美一区二区三区| 青春草视频在线免费观看| 国产成人一区二区三区免费视频网站 | 亚洲国产欧美网| 熟女av电影| 最新在线观看一区二区三区 | www.av在线官网国产| 国产一区二区 视频在线| 欧美在线黄色| 老司机午夜十八禁免费视频| 国产精品国产三级国产专区5o| 男女下面插进去视频免费观看| 99久久精品国产亚洲精品| 女性被躁到高潮视频| av有码第一页| 久久热在线av| 国产主播在线观看一区二区 | av线在线观看网站| 久久九九热精品免费| 国产精品久久久久久精品电影小说| 午夜福利免费观看在线| 国产一区二区 视频在线| 久热这里只有精品99| 只有这里有精品99| 亚洲欧美一区二区三区久久| 尾随美女入室| 国产男女内射视频| tube8黄色片| bbb黄色大片| 亚洲av综合色区一区| 欧美在线一区亚洲| 午夜福利影视在线免费观看| 欧美激情极品国产一区二区三区| 久久久精品94久久精品| 夫妻性生交免费视频一级片| 嫁个100分男人电影在线观看 | videosex国产| 免费av中文字幕在线| 国产又爽黄色视频| 日本wwww免费看| 久久久久久久大尺度免费视频| 婷婷色麻豆天堂久久| 国产老妇伦熟女老妇高清| 成在线人永久免费视频| av在线播放精品| 99re6热这里在线精品视频| 免费av中文字幕在线| 日本欧美视频一区| 一级毛片 在线播放| 好男人电影高清在线观看| 波多野结衣一区麻豆| 亚洲专区国产一区二区| 51午夜福利影视在线观看| av电影中文网址| 亚洲成色77777| 丁香六月欧美| 99国产精品免费福利视频| 黑人欧美特级aaaaaa片| av视频免费观看在线观看| 欧美日韩亚洲国产一区二区在线观看 | 我的亚洲天堂| 另类亚洲欧美激情| 多毛熟女@视频| 午夜福利乱码中文字幕| 首页视频小说图片口味搜索 | 精品国产一区二区久久| 欧美 日韩 精品 国产| 免费高清在线观看视频在线观看| 亚洲精品一卡2卡三卡4卡5卡 | 久久天堂一区二区三区四区| 午夜激情久久久久久久| 巨乳人妻的诱惑在线观看| 国产精品亚洲av一区麻豆| 极品少妇高潮喷水抽搐| 黄色片一级片一级黄色片| 黄色 视频免费看| 日本色播在线视频| 欧美日韩黄片免| 国产精品成人在线| 日韩一区二区三区影片| 亚洲精品日韩在线中文字幕| 亚洲欧美中文字幕日韩二区| 亚洲国产精品一区二区三区在线| 女人爽到高潮嗷嗷叫在线视频| 午夜福利在线免费观看网站| 黄色毛片三级朝国网站| 精品人妻熟女毛片av久久网站| 国产精品一区二区免费欧美 | 一二三四社区在线视频社区8| 黑人欧美特级aaaaaa片| 欧美老熟妇乱子伦牲交| av天堂久久9| av视频免费观看在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 91成人精品电影| 女人精品久久久久毛片| 精品人妻1区二区| 亚洲欧美成人综合另类久久久| 女人被躁到高潮嗷嗷叫费观| 制服诱惑二区| 国产成人欧美| 中文字幕人妻熟女乱码| 欧美日韩亚洲高清精品| 操出白浆在线播放| 中文字幕制服av| 视频区图区小说| 97在线人人人人妻| 国产成人91sexporn| 亚洲少妇的诱惑av| 一本—道久久a久久精品蜜桃钙片| 91成人精品电影| 91麻豆av在线| 一区福利在线观看| 男女边吃奶边做爰视频| 久久毛片免费看一区二区三区| 伦理电影免费视频| 蜜桃在线观看..| 久久久久久久久免费视频了| 精品人妻熟女毛片av久久网站| 国产99久久九九免费精品| 国产欧美亚洲国产| 丝袜美足系列| 国产男女超爽视频在线观看| 国产成人a∨麻豆精品| 90打野战视频偷拍视频| 99久久综合免费| 夫妻性生交免费视频一级片| 一本久久精品| 亚洲欧美一区二区三区黑人| 下体分泌物呈黄色| 久久久亚洲精品成人影院| 午夜激情av网站| 男女边摸边吃奶| 在线观看www视频免费| 欧美人与性动交α欧美精品济南到| 午夜视频精品福利| 亚洲国产av新网站| 精品亚洲成a人片在线观看| 成人国产av品久久久| 国产国语露脸激情在线看| 99久久人妻综合| 国产97色在线日韩免费| 国产又爽黄色视频| 国产男女内射视频| 亚洲精品一二三| 精品第一国产精品| 老汉色av国产亚洲站长工具| 日日摸夜夜添夜夜爱| 人体艺术视频欧美日本| 国产老妇伦熟女老妇高清| 大型av网站在线播放| 又紧又爽又黄一区二区| 免费观看a级毛片全部| 亚洲av成人不卡在线观看播放网 | 成人国语在线视频| 欧美97在线视频| 国产人伦9x9x在线观看| 欧美日本中文国产一区发布| 精品国产国语对白av| 亚洲七黄色美女视频| 侵犯人妻中文字幕一二三四区| 国产一区二区三区av在线| 纯流量卡能插随身wifi吗| 色婷婷av一区二区三区视频| 国产免费又黄又爽又色| 天天躁夜夜躁狠狠久久av| 国产精品99久久99久久久不卡| 男女边摸边吃奶| 悠悠久久av| 99久久精品国产亚洲精品| 日韩精品免费视频一区二区三区| 国产人伦9x9x在线观看| 成年人免费黄色播放视频|