• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    靶向?qū)Ρ葎〤LT1-(Gd-DTPA)在小鼠乳腺癌磁共振分子成像效果的研究

    2011-06-02 09:36:30FurongYeEunKeeJeongDenisParkerZhengRongLu
    磁共振成像 2011年5期
    關(guān)鍵詞:磁共振靶向分子

    Furong Ye, Eun-Kee Jeong, Denis Parker, Zheng-Rong Lu

    Introduction

    Magnetic resonance imaging (MRI)is a powerful imaging modality for morphological and functional imaging. MRI provides anatomical images of soft tissues with high spatial resolution, but is often limited for molecular imaging because of its low sensitivity[1-3].Signif i cant efforts have been devoted to the design and development of effective targeted MRI contrast agents for molecular imaging of cancer biomarkers expressed on cancer cell surfaces in the last three decades.Targeting agents, e.g. peptides, antibodies and proteins,have been conjugated to polymers or nanoparticles containing a large number of Gd (III)chelates to increase local concentration of contrast agents and to generate detectable MR signals[4-8]. However, the targeted contrast agents based on these polymers or nanoparticles are too large to be excreted from the body via renal filtration,resulting in prolonged tissue retention. Long-term tissue accumulation of Gd (III)based contrast agents may release Gd (III)ions and cause toxic side effects such as systemic nephrogenic fi brosis[9,10]. An innovative design of safe and effective targeted MRI contrast agents is necessary for satisfying the unmet needs for MR cancer molecular imaging.

    We have recently hypothesized that effective MR cancer molecular imaging can be achieved by targeting the molecular biomarkers with high expression in tumor stroma using the agents that can be readily excreted[11-13]. Tumor stroma has a unique extracellular matrix composed of cancer related biomacromolecules needed for cancer cell survival and proliferation. For example, fi brin and fibronectin in tumor stroma are known to associate with increased microvessel permeability and tumor angiogenesis in neoplastic tissues[14,15]. Fibrin and fi bronectin are highly expressed and form complexes in the mesh network of malignant tumors. Their complexes could be a suitable biomarker for cancer molecular imaging with MRI. We have recently synthesized and tested a CLT1-(Gd-DTPA)as a targeted MRI contrast agent for cancer molecular imaging[11]. CLT1 is a cyclic decapeptide, CGLIIQKNEC, that specifically binds to the fi brin-f i bronectin complexes in various tumor tissues with little non-specif i c binding to normal tissues[16]. Our initial study has shown that the agent is effective for MR cancer molecular imaging in a mouse colon cancer model. In this study, we further evaluated the eff i cacy of CLT1-(Gd-DTPA)for cancer molecular imaging in mice bearing MDA-BM-231 breast tumor xenografts.

    1 Materials and Methods

    1.1 Synthesis of CLT1-(Gd-DTPA)

    The CLT1 peptide CGLIIQKNEC was first synthesized using standard solid-phase peptide synthesis from Fmoc-protected amino acids on a 2-chlorotrityl chloride resin. At the end of the peptide synthesis, an excess of DTPA dianhydride in DMSO was reacted with the peptide on the beads at room temperature for 4 hours to conjugate DTPA at the N-terminal of the peptide. The resin was completely washed with water,DMF, dichloromethane and methanol three times each.The CLT1-DTPA was then removed from the resin using a TFA solution (TFA 94%, 1, 2-ethanedithiol 2.5%,triisobutylsilane 2.5%, and water 1%). The product was exposed to air for about 2 hours to allow the formation of disulf i de bonds for the cyclic peptide and then purif i ed using preparative HPLC with a C18 column. CLT1-(Gd-DTPA)was fi nally prepared by complexation of CLT1-DTPA with Gd (OAc)3at pH 6. Excess Gd (OAc)3was removed by precipitation at pH 11. The final product was purif i ed by preparative HPLC.

    1.2 Animal model

    Human breast carcinoma cell line MDA-MB-231 was purchased from American Type Culture Collection(ATCC, Manassas, VA). The MDA-MB-231 human breast cancer cells were cultured in Leibovitz's L-15 medium with 2 mM L-glutamine and 10% FBS. Female athymic nu/nu mice (6 weeks old)were purchased from the National Cancer Institute (Frederick, MD). The mice were cared for according to the guidelines of the IACUC,University of Utah. The mice were subcutaneously implanted in both lower fl anks with 2×106MDA-MB-231 cells in a mixture of 50 μl culture media and 50 μl Matrigel. Mice were used for MRI study when tumor sizes reached 0.5-0.8 cm.

    1.3 MR imaging

    MRI study was performed on a Siemens Trio 3T scanner using a human wrist coil[17]. A clinical contrast agent, Gd(DTPA-BMA), was used as a control. A group of 3 mice were used for each contrast agent. The mice were anesthetized by intramuscular administration of a mixture of ketamine (45 mg/kg)and xylazine (6 mg/kg)for MRI. The CLT1-(Gd-DTPA)and Gd(DTPA-BMA)was intravenously injected at a dose of 0.05 and 0.1 mmol/kg, respectively. High resolution 3D images were acquired with a 3D FLASH sequence with 25°flip angle, TR/TE=7.8/2.7 ms, 0.5 mm slice thickness,120 mm field of view (FOV), 0.5×0.5×0.5 mm3voxel size. T1-weighted 2D axial tumor images were acquired with a 2D spin echo sequence with 90°flip angle, TR/TE = 400/10 ms, 2.0 mm slice thickness, 50 mm FOV, and 0.5×0.5×2 mm3voxel size. Contrast enhanced MR images were acquired before and at 1,5, 10, 15, 20, 30 and 60 minutes after injection. MR images were analyzed with Osirix (http://homepage.mac.com/rossetantoine/osirix/)software. The signal intensity was measured in the tumor periphery and inner core, and the signal to noise ratio (SNR)in the tumor tissues was calculated as SNR= (SItissue-SInoise)/SDnoise.MR signal intensity was also measured in the tissue of interest from high-resolution 3D images and SNR was calculated in these tissues. Statistical analysis was performed with Prism software (Version 4.0b, GraphPad software Inc., San Diego, CA)using two-way repeated ANOVA. Bonferroni post-test was used to determine the signif i cant difference in the comparisons among the conjugates. Statistical signif i cance was considered when P < 0.05.

    1.4 Histological analysis

    Immunohistochemistry was performed to evaluate the expression of fibronectin in tumor tissue.Mice bearing MDA-MB-231 tumor xenografts were sacrificed, and tumor tissues were removed and fixed with 3% paraformaldehyde and embedded in paraffin.Tumor tissue was sectioned into 4 μm slices and incubated in 3% hydrogen peroxide, 10% methanol for 10 min at room temperature to block endogenous peroxidase activity. The tumor sections were then boiled in antigen retrieval solution (1 mmol/L Tris-HCl, 0.1 mmol/L EDTA, pH=8.0)for 15 minutes at high power in a microwave and incubated with primary anti-f i bronectin antibody (Sigma-Aldrich, cat#F3648)at appropriate dilutions overnight. After washing with PBS buffer,the sections were incubated with biotinylated secondary antibody and a horseradish peroxidase-streptavidin complex for 1 h each. Tissue samples were then colorized with 3, 3' diaminobenzidine (DAB)substrate,counterstained, mounted and visualized with a brightfield microscope.

    2 Results and Discussion

    Figure 1 Chemical structure of CLT1-(Gd-DTPA)

    Figure 2 T1-weighted 2D spin-echo images of mice bearing MDA-MB 231 xenografts before and at 5, 30 and 60 minutes after intravenous injection of CLT1-(Gd-DTPA)(A, 0.05 mmol/kg)and Omniscan? (B, 0.1 mmol/kg). Arrows point to the tumor.

    The structure of CLT1-(Gd-DTPA)is shown in Figure 1. Gd-DTPA is a clinical MRI contrast agent.The cyclic peptide CLT1 was conjugated to one of the fi ve carboxylic groups of DTPA. The fi nal product had four carboxylates, one amide carbonyl group and three amino groups complexed to a Gd(III)ion. It should have a thermodynamic stability higher than the clinical agent,Gd(DTPA-BMA). T1 and T2 relaxivities of CLT1-(Gd-DTPA)were 4.22 and 4.45 mM-1sec-1at 3T, comparable to other Gd(III)based clinical MRI contrast agents.

    The effectiveness of CLT1-(Gd-DTPA)for MR molecular imaging of fibrin-fibronectin complexes in tumor stroma was evaluated in female athymic nu/nu mice bearing MDA-MB-231 human breast carcinoma xenografts. Figures 2 shows the axial T1-weighted 2D spin-echo images of the tumor tissues of the mice bearing MDA-MB-231 tumor xenografts before and after the injection of CLT1-(Gd-DTPA)and Gd(DTPABMA). Significant enhancement was observed in tumor tissues for both agents in the fi rst 5 minutes postinjection. Gd(DTPA-BMA)was then cleared from the tumor tissue and tumor enhancement returned to the background level after 30 minutes post-injection.Strong enhancement was still visible in the tumor tissues at 60 minutes after injection for CLT1-(Gd-DTPA). The enhancement of the targeted agent in the tumor periphery was more significant than that in the tumor core. Figure 3 shows the signal-to-noise ratios(SNR)in the tumor periphery before and at various time points after injecting the contrast agents. The SNR in the tumor tissue with Gd(DTPA-BMA)reduced to the background level at 30 minutes post-injection, while approximately 30% increase of SNR was observed at 60 minutes after the injection in the tumor periphery with the targeted contrast agent. The SNR indirectly ref l ects the concentration of the agents in tumor, with higher SNR indicating higher concentrations of the contrast agents in the tissues. The results indicate the binding and retention of the targeted contrast agent in tumor tissue for signif i cant tumor enhancement.

    Figure 3 The plots of SNR versus time in tumor periphery before and after injection of CLT1-(Gd-DTPA)(△)and Omniscan?(○).

    MR signal intensity with the contrast agents in other regions of interest was also determined in the high-resolution 3D MR images of mice to preliminarily evaluate their biodistribution and pharmacokinetic properties. Figure 4 shows SNR in the blood, liver and muscle of the mice injected with CLT1-(Gd-DTPA)and Gd(DTPA-BMA). CLT1-(Gd-DTPA)had similar blood SNR kinetics as Gd(DTPA-BMA), indicating that the targeted agent had similar pharmacokinetics as the clinical agent with little binding to the soluble fi bronectin and fi brinogen in the blood. The blood SNR decreased rapidly for both agents and almost returned to the background level at 60 minutes after the injection.CLT1-(Gd-DTPA)had higher initial SNR in the liver than Gd(DTPA-BMA), possibly due to the lipophilic nature of the peptide. The SNR of the targeted agent in the liver then returned to the similar level as that of Gd(DTPA-BMA)at 60 minutes after the injection.Both agents resulted in minimally increased SNR in the muscle. The results suggest that CLT1-(Gd-DTPA)behaved as a low molecular weight contrast agent and had little non-specif i c binding to normal tissues.

    Immunohistochemistry confirmed the presence of fibronectin in the MDA-MB-231 breast cancer xenografts after in vivo MR imaging. Figure 5 shows the histological images of fibronectin in MDA-MB-231 tumor tissues. The high expression of fibronectin was shown in the tumor stroma with staining of an antifibronectin antibody. The abundant presence of fibrinfibronectin complexes in tumor stroma allowed speci fic and prolonged binding of a sufficient amount of CLT1-(Gd-DTPA)to generate measurable enhancement in the tumor tissue.

    Figure 4 Plots of SNR versus time in the blood (A), liver (B),and muscle (C)of mice bearing MDA-MB 231 xenografts before and after injection of CLT1-(Gd-DTPA)(△, 0.05 mmol/kg)and Omniscan? (○, 0.1 mmol/kg).

    It is difficult for contrast enhanced MRI to effectively detect the biomarkers expressed on cancer cells because of its low sensitivity. We have shown that contrast enhanced MRI can be effective for molecular imaging of cancer biomarkers abundantly expressed in tumor stroma. The presence of cancerrelated biomacromolecules in tumor stroma facilitates cancer cell survival and promotes tumor proliferation and metastasis[14,15]. These biomacromolecules can be used as viable biomarkers for cancer diagnosis and prognosis. Fibrin and fi bronectin form clot complexes upon fibrin polymerization in tumor stroma and serve as a provisional matrix for adhesion and migration of cancer cells. Due to the abundant presence of the fibrinfibronectin complexes in the tumor stroma, a sufficient amount of CLT1-(Gd-DTPA)could specifically bind to the molecular targets. CLT1-(Gd-DTPA)had little non-specific binding to the proteins in the blood and normal tissue. Since the targeted contrast agent was a low molecular weight chelate, the unbound agent could readily be cleared from blood circulation and normal tissues. Consequently, significant tumor enhancement with little background enhancement was observed with the targeted agent since 30 minutes after the injection at a reduced dose. The low molecular weight targeted contrast agent is advantageous as compared to targeted macromolecular contrast agents for further clinical development due to rapid excretion and minimal retention in normal tissues.

    Figure 5 Immunostaining of fibronectin in MDA-MB-231 breast tumor xenografts (right)and muscle tissue (right)with anti-fibronectin primary antibody. The arrow points to the fi bronectin in the extracellular space of tumor tissue.

    CTL1-(Gd-DTPA)resulted in significant enhancement in the tumor periphery of the breast tumor tissue, the regions rich of angiogenic microvessels,similar to the enhancement in the colon cancer model reported in our previous publication[11]. It has been known that the presence of fibrin and fibronectin in tumor extracellular matrix might promote tumor angiogenesis[14,15]. Strong enhancement with the targeted contrast agent in tumor periphery suggested high expression of the fibrin-fibronectin complexes in the highly angiogenic regions of the tumor tissue. This result correlated well to the possible biological functions of fibrin-fibronectin complexes in cancer biology.Accurate characterization of tumor angiogenesis is critical for cancer diagnosis and prognosis and for assessment of tumor response to anticancer therapies.MRI with CLT1-(Gd-DTPA)has a potential to be used for characterizing angiogenesis in breast cancer and for non-invasive evaluation of the efficacy of antiangiogenesis therapy.

    3 Conclusion

    The targeted contrast agent CLT1-(Gd-DTPA)had minimal non-specific binding in blood and in normal tissues. A sufficient amount of CLT1-(Gd-DTPA)specifically bound in the breast tumor and generated strong and prolonged enhancement in the tumor tissue for effective molecular imaging of breast cancer with MRI. CLT1-(Gd-DTPA)is a promising low molecular weight targeted contrast agent for MR molecular imaging of the fibrin-fibronectin complexes in breast cancer. It has a great potential for the accurate detection and diagnosis of breast cancer.

    4 Acknowledgements

    This research was supported in part by the NIH R01 CA097465. We greatly appreciate Dr. Yongen Sun and Ms. Melody Johnson for their technical assistance in animal handling and MRI data acquisition.

    [1]Stephen RM, Gillies RJ. Promise and progress for functional and molecular imaging of response to targeted therapies. Pharm Res, 2007, 24(6): 1172-1185.

    [2]Caravan P, Ellison JJ, McMurry TJ, et al. Gadolinium(III)Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chem Rev, 1999, 99(9): 2293-2352.

    [3]G?hr-Rosenthal S, Schmitt-Willich H, Ebert W, et al.The demonstration of human tumors on nude mice using gadolinium-labelled monoclonal antibodies for magnetic resonance imaging. Invest Radiol, 1993, 28(9): 789-795.

    [4]Sipkins DA, Cheresh DA, Kazemi MR, et al. Detection of tumor angiogenesis in vivo by alphaVbeta3-targeted magnetic resonance imaging. Nat Med, 1998, 4(5): 623-626.

    [5]Curtet C, Maton F, Havet T, et al. Polylysine-Gd-DTPAn and polylysine-Gd-DOTAn coupled to anti-CEA F(ab')2 fragments as potential immunocontrast agents. Relaxometry,biodistribution, and magnetic resonance imaging in nude mice grafted with human colorectal carcinoma. Invest Radiol, 1998, 33(10):752-761.

    [6]Ke T, Jeong EK, Wang X, et al. RGD targeted poly(L-glutamic acid)-cystamine-(Gd-DO3A)conjugate for detecting angiogenesis biomarker alpha(v)beta3 integrin with MRT, mapping. Int J Nanomedicine, 2007, 2(2):191-199.

    [7]Flacke S, Fischer S, Scott MJ, et al. Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation, 2001, 104(11):1280-1285.

    [8]Amirbekian V, Lipinski MJ, Briley-Saebo KC, et al.Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc Natl Acad Sci U S A, 2007, 104(3):961-966.

    [9]Ersoy H, Rybicki FJ. Biochemical safety profiles of gadolinium-based extracellular contrast agents and nephrogenic systemic fibrosis. J Magn Reson Imaging,2007, 26(5): 1190-1197.

    [10]Sieber MA, Pietsch H, Walter J, et al. A preclinical study to investigate the development of nephrogenic systemic fibrosis: a possible role for gadolinium-based contrast media. Nvest Radiol, 2008, 43(1): 65-75.

    [11]Ye F, Wu X, Jeong EK, Jia Z, et al. A peptide targeted contrast agent specif i c to fi brin-f i bronectin complexes for cancer molecular imaging with MRI. Bioconjug Chem,2008n 19(12):2300-2343.

    [12]Tan M, Wu X, Jeong EK, et al. Peptide-targeted Nanoglobular Gd-DOTA monoamide conjugates for magnetic resonance cancer molecular imaging.Biomacromolecules, 2010, 11(3):754-761.

    [13]Tan M, Wu X, Jeong EK, et al. An effective targeted nanoglobular manganese(II)chelate conjugate for magnetic resonance molecular imaging of tumor extracellular matrix.Mol Pharm, 2010, 7(4): 936-943.

    [14]Dvorak HF, Senger DR, Dvorak AM, et al. Regulation of extravascular coagulation by microvascular permeability.Science, 1985, 227(4690): 1059-1061.

    [15]Neri D, Carnemolla B, Nissim A, et al. Targeting by affinity-matured recombinant antibody fragments of an angiogenesis associated fibronectin isoform. Nat Biotechnol, 1997, 15(12): 1271-1275.

    [16]Pilch J, Brown DM, Komatsu M, et al. Peptides selected for binding to clotted plasma accumulate in tumor stroma and wounds. Proc Natl Acad Sci U S A, 2006, 103(8):2800-2804.

    [17]Zong Y, Guo J, Ke T, et al. Effect of size and charge on pharmacokinetics and in vivo MRI contrast enhancement of biodegradable polydisulfide Gd(III)complexes. J Control Release, 2006, 112(3): 350-356.

    猜你喜歡
    磁共振靶向分子
    如何判斷靶向治療耐藥
    超聲及磁共振診斷骶尾部藏毛竇1例
    MUC1靶向性載紫杉醇超聲造影劑的制備及體外靶向?qū)嶒?yàn)
    毛必靜:靶向治療,你了解多少?
    肝博士(2020年5期)2021-01-18 02:50:18
    分子的擴(kuò)散
    磁共振有核輻射嗎
    磁共振有核輻射嗎
    “精日”分子到底是什么?
    新民周刊(2018年8期)2018-03-02 15:45:54
    米和米中的危險(xiǎn)分子
    臭氧分子如是說(shuō)
    日本 av在线| 麻豆成人av在线观看| 日韩大尺度精品在线看网址| 成熟少妇高潮喷水视频| 后天国语完整版免费观看| 亚洲黑人精品在线| 国产成人精品久久二区二区91| 国产精品香港三级国产av潘金莲| www.自偷自拍.com| 欧美精品亚洲一区二区| 亚洲av五月六月丁香网| 超碰成人久久| 可以在线观看毛片的网站| 欧美一级a爱片免费观看看 | 久热爱精品视频在线9| 一区二区三区国产精品乱码| 国内精品久久久久精免费| 淫妇啪啪啪对白视频| 成人18禁在线播放| 99久久综合精品五月天人人| 精品欧美一区二区三区在线| 精品欧美一区二区三区在线| 欧美中文日本在线观看视频| 91麻豆av在线| 日本撒尿小便嘘嘘汇集6| 在线观看免费日韩欧美大片| 91成年电影在线观看| 亚洲av日韩精品久久久久久密| 日本 av在线| 久久精品国产亚洲av香蕉五月| 免费看a级黄色片| av中文乱码字幕在线| 久久欧美精品欧美久久欧美| 久久久久久九九精品二区国产 | 最近最新免费中文字幕在线| 欧美成人性av电影在线观看| 制服丝袜大香蕉在线| 叶爱在线成人免费视频播放| 国产精品日韩av在线免费观看| 国产欧美日韩精品亚洲av| 日韩三级视频一区二区三区| 亚洲国产欧美人成| 国产三级黄色录像| 久久久久久久午夜电影| 国产av不卡久久| 91成年电影在线观看| 我要搜黄色片| 在线观看美女被高潮喷水网站 | 亚洲av成人不卡在线观看播放网| 日韩欧美 国产精品| 国产高清视频在线播放一区| 国内少妇人妻偷人精品xxx网站 | 黑人巨大精品欧美一区二区mp4| 老熟妇乱子伦视频在线观看| 亚洲一区二区三区不卡视频| 亚洲成av人片在线播放无| 成人一区二区视频在线观看| 久久精品国产99精品国产亚洲性色| 99在线视频只有这里精品首页| 亚洲精品久久国产高清桃花| 久久久久国内视频| 亚洲五月婷婷丁香| 欧美黑人巨大hd| 亚洲精品在线美女| 婷婷精品国产亚洲av| 悠悠久久av| 熟女电影av网| 动漫黄色视频在线观看| 精品一区二区三区视频在线观看免费| 一区二区三区激情视频| 在线观看66精品国产| 精品国产超薄肉色丝袜足j| 久久国产精品影院| 变态另类成人亚洲欧美熟女| 久久精品91蜜桃| 18禁观看日本| 久久精品人妻少妇| 国产男靠女视频免费网站| 97人妻精品一区二区三区麻豆| 亚洲美女黄片视频| 巨乳人妻的诱惑在线观看| 国产真人三级小视频在线观看| 成人三级黄色视频| 国产一区二区在线观看日韩 | 国产伦人伦偷精品视频| 亚洲精品美女久久av网站| 久久久久久国产a免费观看| 色综合站精品国产| 香蕉丝袜av| 最近最新中文字幕大全免费视频| 亚洲熟妇熟女久久| 日韩欧美免费精品| 一个人观看的视频www高清免费观看 | 夜夜夜夜夜久久久久| 久久久久性生活片| 国产v大片淫在线免费观看| 欧美国产日韩亚洲一区| 亚洲 欧美一区二区三区| 国产亚洲精品综合一区在线观看 | 日韩欧美一区二区三区在线观看| 亚洲国产精品sss在线观看| www日本黄色视频网| 美女高潮喷水抽搐中文字幕| 欧美日韩中文字幕国产精品一区二区三区| 精品欧美一区二区三区在线| 成人三级做爰电影| 青草久久国产| 日韩欧美免费精品| 91成年电影在线观看| 久久久久久国产a免费观看| 黄频高清免费视频| 午夜免费激情av| 操出白浆在线播放| 久久草成人影院| 性欧美人与动物交配| 伦理电影免费视频| 国产精品野战在线观看| 手机成人av网站| 麻豆久久精品国产亚洲av| 亚洲精品一区av在线观看| 国产免费av片在线观看野外av| 国产三级中文精品| 国内揄拍国产精品人妻在线| 亚洲av成人av| 我要搜黄色片| 1024视频免费在线观看| 后天国语完整版免费观看| 国产视频内射| 一卡2卡三卡四卡精品乱码亚洲| svipshipincom国产片| 欧美久久黑人一区二区| 中文字幕高清在线视频| 久久精品亚洲精品国产色婷小说| 国产精品乱码一区二三区的特点| 手机成人av网站| 久久久久久人人人人人| 久久人人精品亚洲av| 久久中文看片网| 亚洲性夜色夜夜综合| 欧美乱妇无乱码| 18禁黄网站禁片午夜丰满| 成年女人毛片免费观看观看9| svipshipincom国产片| 国产在线精品亚洲第一网站| 男男h啪啪无遮挡| 国产伦一二天堂av在线观看| 岛国在线观看网站| 精品国产超薄肉色丝袜足j| 久久国产精品影院| 少妇粗大呻吟视频| 久久亚洲精品不卡| 一二三四社区在线视频社区8| 哪里可以看免费的av片| 日本a在线网址| 亚洲成人久久爱视频| 久久伊人香网站| 国产亚洲精品综合一区在线观看 | 国产免费av片在线观看野外av| 我要搜黄色片| 久久午夜亚洲精品久久| av片东京热男人的天堂| 色综合欧美亚洲国产小说| 50天的宝宝边吃奶边哭怎么回事| 波多野结衣巨乳人妻| 在线观看免费视频日本深夜| 亚洲精品一区av在线观看| 亚洲精品美女久久av网站| 国产成人精品无人区| 国产视频内射| 麻豆一二三区av精品| 在线观看www视频免费| 99久久精品热视频| 免费观看人在逋| 别揉我奶头~嗯~啊~动态视频| 日韩欧美在线二视频| 久久精品亚洲精品国产色婷小说| 不卡一级毛片| 久久精品aⅴ一区二区三区四区| 黄色视频不卡| 一个人免费在线观看电影 | 国产精品久久视频播放| 日本撒尿小便嘘嘘汇集6| 天堂影院成人在线观看| 亚洲va日本ⅴa欧美va伊人久久| 日韩欧美 国产精品| 香蕉av资源在线| 亚洲七黄色美女视频| 麻豆av在线久日| 亚洲精华国产精华精| 久久久久国产一级毛片高清牌| 91老司机精品| 欧美精品啪啪一区二区三区| 久久婷婷成人综合色麻豆| 国产一区二区在线观看日韩 | 欧美人与性动交α欧美精品济南到| 首页视频小说图片口味搜索| 亚洲 欧美一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 日韩免费av在线播放| 亚洲av美国av| 国模一区二区三区四区视频 | 在线看三级毛片| 啦啦啦韩国在线观看视频| 亚洲人成网站在线播放欧美日韩| 天天躁狠狠躁夜夜躁狠狠躁| 国产一区二区在线av高清观看| 搡老妇女老女人老熟妇| 好男人在线观看高清免费视频| 久久久久国产一级毛片高清牌| 欧美一级a爱片免费观看看 | 免费观看人在逋| 亚洲人成电影免费在线| 中文字幕最新亚洲高清| 搞女人的毛片| 久久欧美精品欧美久久欧美| 亚洲成人国产一区在线观看| 免费看十八禁软件| 中出人妻视频一区二区| 国产成+人综合+亚洲专区| 天天躁夜夜躁狠狠躁躁| 日韩精品青青久久久久久| 他把我摸到了高潮在线观看| 国产亚洲精品久久久久5区| 99久久精品国产亚洲精品| 50天的宝宝边吃奶边哭怎么回事| 国产精品免费视频内射| 精品久久久久久,| 国产精品九九99| 麻豆成人午夜福利视频| 久久久久久久久免费视频了| 欧美精品啪啪一区二区三区| 国产野战对白在线观看| 91麻豆精品激情在线观看国产| 听说在线观看完整版免费高清| 日韩大码丰满熟妇| 欧美一级毛片孕妇| 好看av亚洲va欧美ⅴa在| 99久久久亚洲精品蜜臀av| 丰满人妻一区二区三区视频av | 精品久久蜜臀av无| 精品一区二区三区av网在线观看| 国产精品国产高清国产av| 亚洲美女黄片视频| 亚洲人成77777在线视频| 毛片女人毛片| 国产成人av激情在线播放| 老司机在亚洲福利影院| 国产三级在线视频| 91成年电影在线观看| 女警被强在线播放| 欧美最黄视频在线播放免费| 国产一级毛片七仙女欲春2| 精品国产美女av久久久久小说| 欧美性猛交╳xxx乱大交人| 一进一出抽搐动态| 高潮久久久久久久久久久不卡| 国产黄片美女视频| 色噜噜av男人的天堂激情| 黄频高清免费视频| 国内精品久久久久久久电影| 精品久久久久久久人妻蜜臀av| 国产一级毛片七仙女欲春2| 亚洲男人天堂网一区| 久久久精品欧美日韩精品| 国产黄色小视频在线观看| 国产麻豆成人av免费视频| 日日爽夜夜爽网站| 好男人电影高清在线观看| 欧美一区二区国产精品久久精品 | 国产久久久一区二区三区| 国产乱人伦免费视频| 欧美日本视频| 免费无遮挡裸体视频| 久久精品国产清高在天天线| 久久精品成人免费网站| 一级毛片女人18水好多| 天天躁夜夜躁狠狠躁躁| 99久久精品热视频| 毛片女人毛片| 日日夜夜操网爽| 午夜影院日韩av| 99国产精品一区二区蜜桃av| 丰满人妻熟妇乱又伦精品不卡| 老司机深夜福利视频在线观看| 一级a爱片免费观看的视频| 这个男人来自地球电影免费观看| 久久午夜综合久久蜜桃| 男人舔女人的私密视频| 麻豆国产97在线/欧美 | 亚洲欧美日韩高清在线视频| 亚洲精品在线观看二区| av超薄肉色丝袜交足视频| 国产又黄又爽又无遮挡在线| www日本黄色视频网| 免费在线观看亚洲国产| 成人国产一区最新在线观看| 女警被强在线播放| 久久久久久人人人人人| 禁无遮挡网站| 成人特级黄色片久久久久久久| 男女之事视频高清在线观看| 一本大道久久a久久精品| 久久久久久大精品| 免费一级毛片在线播放高清视频| 精品国产美女av久久久久小说| 国产97色在线日韩免费| www.自偷自拍.com| 99在线视频只有这里精品首页| 欧美精品亚洲一区二区| 欧美黑人巨大hd| 天天一区二区日本电影三级| 午夜亚洲福利在线播放| 超碰成人久久| 丝袜美腿诱惑在线| 亚洲av成人一区二区三| 国产一区二区三区在线臀色熟女| 可以在线观看毛片的网站| 亚洲男人天堂网一区| 亚洲av电影不卡..在线观看| 99re在线观看精品视频| 欧美日韩亚洲国产一区二区在线观看| 人人妻,人人澡人人爽秒播| 麻豆成人午夜福利视频| 少妇粗大呻吟视频| 久99久视频精品免费| 身体一侧抽搐| 麻豆成人午夜福利视频| 国产高清视频在线播放一区| 最近在线观看免费完整版| 日本黄色视频三级网站网址| 91国产中文字幕| 亚洲国产精品合色在线| 岛国在线免费视频观看| 欧美不卡视频在线免费观看 | 久久国产精品影院| 亚洲精品久久国产高清桃花| 熟女电影av网| 国产精华一区二区三区| 在线观看www视频免费| 又大又爽又粗| 亚洲欧美精品综合一区二区三区| 国内毛片毛片毛片毛片毛片| 久久 成人 亚洲| 久久久水蜜桃国产精品网| 日本一本二区三区精品| 精品乱码久久久久久99久播| 国产单亲对白刺激| 日本黄大片高清| 色精品久久人妻99蜜桃| 欧美日韩瑟瑟在线播放| cao死你这个sao货| 久久久久国产精品人妻aⅴ院| 搡老岳熟女国产| 桃红色精品国产亚洲av| 午夜两性在线视频| 日本a在线网址| 50天的宝宝边吃奶边哭怎么回事| 欧美黄色片欧美黄色片| 久久国产精品人妻蜜桃| 国产成年人精品一区二区| 久久热在线av| 他把我摸到了高潮在线观看| 最近最新中文字幕大全电影3| 在线视频色国产色| 97超级碰碰碰精品色视频在线观看| 亚洲成人久久性| 好男人在线观看高清免费视频| 熟女电影av网| 91国产中文字幕| 变态另类成人亚洲欧美熟女| 中国美女看黄片| 久久国产精品影院| 青草久久国产| 动漫黄色视频在线观看| 别揉我奶头~嗯~啊~动态视频| 精品国产亚洲在线| 别揉我奶头~嗯~啊~动态视频| 亚洲精品在线美女| 午夜精品在线福利| 日韩免费av在线播放| 亚洲成人久久爱视频| 18禁观看日本| 三级毛片av免费| 日韩欧美国产一区二区入口| aaaaa片日本免费| 天天躁夜夜躁狠狠躁躁| 午夜精品久久久久久毛片777| av福利片在线观看| 青草久久国产| 亚洲成人免费电影在线观看| 青草久久国产| 国产精品一区二区精品视频观看| 日日干狠狠操夜夜爽| 欧美激情久久久久久爽电影| 久久天躁狠狠躁夜夜2o2o| 日本成人三级电影网站| 制服诱惑二区| 悠悠久久av| 最近在线观看免费完整版| 色哟哟哟哟哟哟| 99精品久久久久人妻精品| 成人特级黄色片久久久久久久| 国产成人影院久久av| av免费在线观看网站| 中亚洲国语对白在线视频| 成年版毛片免费区| 男人的好看免费观看在线视频 | 免费在线观看黄色视频的| 日韩中文字幕欧美一区二区| 久久久国产成人免费| 18禁观看日本| 免费在线观看亚洲国产| 五月伊人婷婷丁香| 在线播放国产精品三级| 老汉色av国产亚洲站长工具| 国产激情欧美一区二区| 露出奶头的视频| 久久精品国产综合久久久| 嫩草影院精品99| 老司机深夜福利视频在线观看| 国产伦人伦偷精品视频| 亚洲一区中文字幕在线| 69av精品久久久久久| 变态另类成人亚洲欧美熟女| 1024手机看黄色片| 97碰自拍视频| 少妇的丰满在线观看| 亚洲成人精品中文字幕电影| 欧美极品一区二区三区四区| 免费av毛片视频| 久久国产精品人妻蜜桃| 亚洲av日韩精品久久久久久密| 日日摸夜夜添夜夜添小说| 天天添夜夜摸| 国产伦一二天堂av在线观看| 老鸭窝网址在线观看| 日本熟妇午夜| 这个男人来自地球电影免费观看| 精品一区二区三区视频在线观看免费| 国产精品日韩av在线免费观看| 欧美久久黑人一区二区| 人人妻人人澡欧美一区二区| 亚洲第一欧美日韩一区二区三区| 中文字幕人成人乱码亚洲影| 九色国产91popny在线| 19禁男女啪啪无遮挡网站| 99精品在免费线老司机午夜| 听说在线观看完整版免费高清| 欧美日韩国产亚洲二区| 成人午夜高清在线视频| 国产视频一区二区在线看| 国产欧美日韩一区二区精品| 2021天堂中文幕一二区在线观| 久久久国产成人精品二区| avwww免费| 精品久久久久久久久久久久久| 亚洲,欧美精品.| 亚洲欧美日韩高清在线视频| 叶爱在线成人免费视频播放| 色老头精品视频在线观看| 99riav亚洲国产免费| 久久久久久人人人人人| 桃色一区二区三区在线观看| 黄色女人牲交| 国产av麻豆久久久久久久| 久久中文字幕一级| 亚洲专区国产一区二区| 欧美日韩福利视频一区二区| 亚洲av成人不卡在线观看播放网| 少妇的丰满在线观看| avwww免费| 中文在线观看免费www的网站 | 国产午夜精品论理片| 啪啪无遮挡十八禁网站| 悠悠久久av| 亚洲人成伊人成综合网2020| 亚洲片人在线观看| 国产探花在线观看一区二区| 日韩欧美免费精品| 精品少妇一区二区三区视频日本电影| 亚洲成av人片免费观看| 人人妻人人澡欧美一区二区| 在线播放国产精品三级| АⅤ资源中文在线天堂| 超碰成人久久| 亚洲一码二码三码区别大吗| 久热爱精品视频在线9| 亚洲成av人片免费观看| 日本五十路高清| svipshipincom国产片| 美女高潮喷水抽搐中文字幕| 久久久久免费精品人妻一区二区| 69av精品久久久久久| 国产一级毛片七仙女欲春2| 在线看三级毛片| 两个人免费观看高清视频| 久久久久久久久免费视频了| 黄色视频不卡| netflix在线观看网站| 成人午夜高清在线视频| 免费在线观看影片大全网站| 成年女人毛片免费观看观看9| 无遮挡黄片免费观看| 亚洲精品国产一区二区精华液| 免费电影在线观看免费观看| 在线观看舔阴道视频| 亚洲av熟女| 精品国产亚洲在线| 亚洲一区高清亚洲精品| 日韩欧美一区二区三区在线观看| 成人一区二区视频在线观看| 国产成人精品无人区| 身体一侧抽搐| 亚洲欧美精品综合久久99| 美女高潮喷水抽搐中文字幕| 无限看片的www在线观看| 精品久久久久久久末码| 97碰自拍视频| 国产av一区在线观看免费| 久久香蕉国产精品| 白带黄色成豆腐渣| 国产成人aa在线观看| 国产精品香港三级国产av潘金莲| 亚洲在线自拍视频| 黄频高清免费视频| 女同久久另类99精品国产91| 精品无人区乱码1区二区| 99久久精品热视频| 午夜日韩欧美国产| av视频在线观看入口| 悠悠久久av| 国产成人欧美在线观看| 国产高清视频在线观看网站| 亚洲欧美日韩东京热| 两性夫妻黄色片| 国产av在哪里看| 欧美大码av| 亚洲九九香蕉| 欧美精品亚洲一区二区| 精品一区二区三区四区五区乱码| 日韩欧美精品v在线| 中文在线观看免费www的网站 | 国内精品一区二区在线观看| 国产真实乱freesex| 国产精品香港三级国产av潘金莲| 国内精品久久久久精免费| 久久精品国产亚洲av高清一级| 日本黄色视频三级网站网址| 免费看日本二区| 国产欧美日韩精品亚洲av| 久久久久国产精品人妻aⅴ院| 欧美成狂野欧美在线观看| 美女免费视频网站| 日日夜夜操网爽| 大型av网站在线播放| 亚洲全国av大片| 在线播放国产精品三级| 成在线人永久免费视频| 亚洲 欧美 日韩 在线 免费| 老司机午夜福利在线观看视频| 男女做爰动态图高潮gif福利片| 国产av麻豆久久久久久久| av超薄肉色丝袜交足视频| 神马国产精品三级电影在线观看 | 亚洲国产欧美人成| 在线观看66精品国产| 国产视频内射| 五月玫瑰六月丁香| 色老头精品视频在线观看| 亚洲人与动物交配视频| 国产欧美日韩一区二区三| 国产伦在线观看视频一区| 精品欧美国产一区二区三| 一级a爱片免费观看的视频| 亚洲 欧美一区二区三区| 岛国在线免费视频观看| 伊人久久大香线蕉亚洲五| 日韩欧美在线二视频| 天天添夜夜摸| 中文亚洲av片在线观看爽| 可以免费在线观看a视频的电影网站| 美女高潮喷水抽搐中文字幕| 亚洲国产精品合色在线| 午夜老司机福利片| 国产又色又爽无遮挡免费看| 一级毛片高清免费大全| 十八禁人妻一区二区| 男女午夜视频在线观看| 精品第一国产精品| 国内毛片毛片毛片毛片毛片| 12—13女人毛片做爰片一| 日本在线视频免费播放| 国产精品av久久久久免费| 女同久久另类99精品国产91| 免费看日本二区| 久久精品综合一区二区三区| 亚洲熟女毛片儿| 女人被狂操c到高潮| 黄色视频不卡| 777久久人妻少妇嫩草av网站| 99久久国产精品久久久| 黄片小视频在线播放| 久久精品亚洲精品国产色婷小说| 午夜精品在线福利| 国产精品av视频在线免费观看| 国产1区2区3区精品| 99久久无色码亚洲精品果冻| 国产三级在线视频| 成人一区二区视频在线观看| 久久精品成人免费网站| 丁香欧美五月| 国产av麻豆久久久久久久| 俺也久久电影网| 色噜噜av男人的天堂激情| 在线观看舔阴道视频|