侯朝勝
(天津大學(xué)建筑工程學(xué)院,天津 300072)
有中心集中荷載作用的任意變厚度的旋轉(zhuǎn)扁薄殼的非線性彎曲
侯朝勝
(天津大學(xué)建筑工程學(xué)院,天津 300072)
中心集中荷載作用的變厚度圓板或旋轉(zhuǎn)扁殼的軸對(duì)稱非線性彎曲,迄今鮮見研究成果.取三次B樣條函數(shù)和對(duì)數(shù)函數(shù)為試函數(shù),用配點(diǎn)法計(jì)算任意變厚度圓板的大撓度和旋轉(zhuǎn)扁殼的非線性穩(wěn)定.計(jì)算了中心集中荷載作用的圓板及它和反向均布荷載同時(shí)作用圓板且其中心撓度為零的特殊情形.給出了中心集中荷載作用下,線性或多項(xiàng)式型變厚度的圓錐殼、球殼或四次多項(xiàng)式型旋轉(zhuǎn)殼的上、下臨界荷載.等厚度圓板和球殼的計(jì)算結(jié)果同其他方法的結(jié)果做了比較.結(jié)果表明樣條配點(diǎn)法有更高的精度和更大的荷載收斂范圍.
旋轉(zhuǎn)扁殼;任意變厚度;非線性穩(wěn)定;中心集中荷載;復(fù)合荷載;樣條配點(diǎn)法
中心集中荷載作用的變厚度薄板殼的軸對(duì)稱大撓度計(jì)算,由于中心力的邊界條件處理困難,迄今鮮見研究成果.但在小撓度假定、線性或二次方變厚度的條件下,已有圓板的三次近似解答[1].中心集中荷載作用的等厚度圓板的大撓度及球殼上臨界荷載的計(jì)算,已有一些解答及實(shí)驗(yàn)結(jié)果[2-7].當(dāng)荷載較大,因非線性較強(qiáng)使收斂性惡化,這些方法得不出解答或得不出可靠解答.筆者附加對(duì)數(shù)函數(shù),把文獻(xiàn)[8]的公式和方法推廣,滿意地解決了中心集中荷載的問題.
采用同文獻(xiàn)[8]一樣的模型,但殼頂還有中心集中荷載P作用.引入同文獻(xiàn)[8]一樣的符號(hào)和無量綱量,再引入
式中:μ 為泊松比;c為殼底面圓半徑;E為彈性模量;h0為殼中心厚度.設(shè)文獻(xiàn)[8]中的分布荷載為均布荷載 q,則變厚度旋轉(zhuǎn)扁薄殼的大撓度方程式的無量綱形式為[2-3,7-9]
因板殼中心有集中荷載,中心點(diǎn)的大撓度方程式不成立,中心是奇點(diǎn),根據(jù)板殼理論,從中心豎向力的平衡可導(dǎo)出邊界條件式(7),故必須尋求滿足邊界條件式(7)的試函數(shù).選對(duì)數(shù)函數(shù)和三次 B樣條函數(shù)為試函數(shù),分劃x定義域?yàn)?n等分,分點(diǎn)號(hào)依次為 0,1,…,n,虛設(shè)2個(gè)結(jié)點(diǎn)-1,n+1,取 1/s n= ,ix is= ,設(shè)
對(duì) i=0結(jié)點(diǎn),忽略變厚度產(chǎn)生的奇異性,按等厚度考慮,并且忽略中心集中荷載產(chǎn)生的徑向力,對(duì)式(1)和式(2)可得[8]
式(12)~式(19)共 2n+6 個(gè)非線性方程,用牛頓迭代法求解可以確定2n+6個(gè)待定系數(shù)Bi、Ci(i=-1,0,1,…,n,n+1),進(jìn)一步可得內(nèi)力及撓度.撓度表達(dá)式為
式中積分常數(shù)1c由邊界條件式(8)確定.
程序中使用雙精度數(shù)(有 16位有效數(shù)字),用牛頓迭代法解非線性方程組,滿足以下兩條件之一,認(rèn)為收斂而結(jié)束迭代:①每個(gè)方程殘數(shù)的絕對(duì)值小于10-10;②每個(gè)方程殘數(shù)的絕對(duì)值小于0.01,并且相鄰兩次迭代Bi、Ci的最大相對(duì)誤差的絕對(duì)值小于10-10.臨界荷載計(jì)算方法見文獻(xiàn)[8].
例1在中心集中荷載作用下圓板的線性解見表 1.
Lo等[1]用參數(shù)法得到了線性解.不考慮薄膜應(yīng)力的影響,可得線性解.即令 Ci=0(i=-1,0,1,…,n+1),解線性方程組式(12)、式(14)、式(16) 和式(18),得到 n+3 個(gè)待定系數(shù) Bi(i=-1,0,1,…,n+1).文獻(xiàn)[1] 中 d1、d2的最大值為 0.3.
例 2受中心集中荷載的固定夾緊等厚度圓板見表2.
文獻(xiàn)[2]的最大值為 P=3.使用攝動(dòng)法,收斂范圍[4]為中心撓度 wc=2.7(對(duì)應(yīng) P=5.53).
表1 在中心集中荷載(P=3)作用下線性或二次方變厚度圓板線性解的中心撓度wcTab.1 Central deflections wc of linear solutions of circular plates with linearly or quadratically variable thickness subjected to central loading(P=3)
表2 受中心集中荷載作用的固定夾緊等厚度圓板Tab.2 Circular plate (uniform thickness) subjected to central loading with rigidly clamped edge
例 3受均布荷載和反向中心集中荷載作用且中心撓度為零的固定夾緊等厚度圓板見表3.
設(shè)均布荷載 q,中心集中荷載 Pi=-Kiq(i=1,2,…),K1=0.25 和 K2=0.24,復(fù)合荷載 q+P1或 q+P2作用在圓板上,計(jì)算得中心撓度分別為 w1、w2.利用線性插值計(jì)算使中心撓度為零的K3,然后在q+P3作用下,計(jì)算得出中心撓度 w3.設(shè) Ki、wi、Ki+1、wi+1、Ki+2和wi+2為已知,根據(jù)拉格朗日二階插值計(jì)算使中心撓度為零的Ki+3,在q+Pi+3作用下,計(jì)算其中心撓度 wi+3.此過程繼續(xù)下去,直到中心撓度的絕對(duì)值小于允許誤差 10-10.當(dāng)荷載很大時(shí)允許誤差應(yīng)適當(dāng)增加.在均布荷載q和中心集中荷載-Kmq共同作用下,圓板中心撓度為零.文獻(xiàn)[3]的最大值為 q=23.文獻(xiàn)[7]的最大值為 q=100.
例 4受中心集中荷載的簡(jiǎn)單支承等厚度球殼上臨界荷載見表4.
有限元法(FEM)的解答是使用 ANSYS程序,剖分為 500個(gè)軸對(duì)稱殼元(shell51),用弧長法得出的臨界荷載.
例 5受中心集中荷載的線性變厚度球殼(b2=10)和圓錐殼(b1=10)的穩(wěn)定見表5.
表3 受均布荷載和反向中心集中荷載且中心撓度為零的固定夾緊等厚度圓板Tab.3 Zero central deflection of circular plate (uniform thickness) subjected to uniformly distributed loads and reverse cen-Tab. 3 tral loading with rigidly clamped edge
表4 受中心集中荷載的簡(jiǎn)單支承等厚度球殼的上臨界荷載Tab.4 Upper critical load of spherical shell subjected to central loading with an uniform thickness and simply supported edge
表5 受中心集中荷載的線性變厚度球殼(b2=10)和圓錐殼(b1=10)的臨界荷載Tab.5 Upper and lower critical loads of spherical shells(b2=10)and conical shells(b1=10) subjected to central loading with Tab.5 linearly variable thickness
表6 受中心集中荷載的十次多項(xiàng)式變厚度、四次多項(xiàng)式旋轉(zhuǎn)殼的臨界荷載、撓度和內(nèi)力Tab.6 Critical loads, deflection and internal forces of quartic polynomial shells subjected to central loading with variable thickness of ten-degree polynomial
表6中,當(dāng)邊界條件變?yōu)楣潭▕A緊或可移夾緊時(shí),臨界荷載不存在(加載時(shí)沒有明顯的跳變荷載值).
(1)導(dǎo)出的任意變厚度旋轉(zhuǎn)殼大撓度的計(jì)算式,當(dāng)不計(jì)薄膜應(yīng)力的影響,令殼的矢高為零,大撓度方程退化為圓板彎曲的線性方程.線性解同用參數(shù)法[1]得的解答非常一致.在等厚度的條件下,當(dāng)荷載較小時(shí)所得的結(jié)果同其他方法包括有限元法所得的結(jié)果非常一致[2-7],這說明本文的方法是可靠的.
(2) 有中心集中荷載作用,本文首次計(jì)算了任意變厚度板殼軸對(duì)稱非線性彎曲問題,并取得了滿意的結(jié)果.本文方法比有限元法的計(jì)算時(shí)間少得多.
(3) 沒有明顯的跳變荷載值是指當(dāng)荷載逐漸增加(每步增加 P=1或 5),中心撓度和內(nèi)力也逐漸增加,加載曲線不會(huì)分支.例5和例6的結(jié)果說明由于邊緣的支承條件、殼厚或曲面形狀改變(盡管殼的矢高不變),殼的穩(wěn)定性問題可不再存在.
(4) 一般,浮點(diǎn)數(shù)的有效數(shù)字足夠長,只要點(diǎn)數(shù)增加,可得到更高精度的解答.用不同的點(diǎn)數(shù)計(jì)算同一問題,比較它們的結(jié)果可判斷解答的精度和收斂范圍.對(duì)比同文獻(xiàn)[8]的結(jié)果,要得到同樣的精度,中心集中荷載比分布荷載需要更多的點(diǎn)數(shù).
(5) 筆者用附加函數(shù)處理奇點(diǎn)的方法,可為許多具有奇點(diǎn)的物理問題的解決提供借鑒和參考.
[1]Lo W K,Lee L T. Equivalent systems for variable thickness circular plates[J].Computers and Structures,1996,58(5):957-977.
[2]Yeh Kaiyuan,Zheng Xiaojing,Zhou Youhe. On some properties and calculation of the exact solution to Von Karman’s equations of circular plates under a concentrated load[J].Int J Non-linear Mech,1990,25(1):17-26.
[3]Zheng Xiaojing,Zhou Youhe.Exact solution to large deflection of circular plates under compound loads[J].Scientia Sinica,Series A,1987,39(4):391-404.
[4]Cao Jingjun. Computer-extended perturbation solution for the large deflection of a circular plate(Part 2):Central loading with clamped edge[J].Quarterly J Mech Appl Math,1997,50(3):333-347.
[5]Kaplan A.Buckling of Spherical Shells:Thin-Shell Structure Theory,Experiment and Design[M]. London:Prentice-Hall,1974.
[6]Bushnell D. Bifurcation phenomena in spherical shells under concentrated and ring loads[J].AIAA J,1967,32:2034-2040.
[7]Hou Chaosheng,Yue Yanlin. Axisymmetrical nonlinear bending and buckling of a circular plate under large load[J].Transactions of Tianjin University,2005,11(3):216-222.
[8]侯朝勝,李 磊. 任意變厚度的旋轉(zhuǎn)扁薄殼非線性穩(wěn)定的樣條函數(shù)解法[J]. 天津大學(xué)學(xué)報(bào),2006,39(12):1446-1450.
Hou Chaosheng,Li Lei. Spline solution of nonlinear stability of revolving shallow shell with arbitrarily variable thickness[J].Journal of Tianjin University,2006,39(12):1446-1450(in Chinese).
[9]侯朝勝,武法聘.任意變厚度的旋轉(zhuǎn)扁薄殼非線性穩(wěn)定的冪函數(shù)解法[J]. 計(jì)算力學(xué)學(xué)報(bào),2005,22(5):633-638.
Hou Chaosheng,Wu Fapin.Power function solution of nonlinear stability of shallow revolutionary shell with arbitrarily variable thickness[J].Chinese Journal of Computational Mechanics,2005,22(5):633-638(in Chinese).
Nonlinear Bending of Revolving Shallow Shells with Arbitrarily Variable Thickness Under Central Loading
HOU Chao-sheng
(School of Civil Engineering,Tianjin University,Tianjin 300072,China)
Heretofore few research on the axisymmetrical nonlinear bending of a circular plate or a revolving shallow shell with variable thickness under a central loading has been published. With cubic B-spline and logarithmic functions taken as trial functions,for the large deflection of a circular plate and nonlinear stability of a revolving shallow shell with arbitrarily variable thickness the solutions were computed bythe method of point collocation. A circular plate was studied when subjected to action of a central loading or the compound loadof it and reverse uniformly distributed loads, in which the central deflection of the circular plate was zero. Under a central loading,upper and lower critical loads of shells were calculated including conical shells,spherical shells and quartic polynomial shells with linearly or polynomial variable thickness. The results of the circular plate and spherical shell of an identical thickness were compared with those obtained by other methods. Results show higher precision and wider range of convergent loads can be reached by using the spline collocation method.
revolving shallow shell;arbitrarily variable thickness;nonlinear stability;central loading;compound load;spline collocation method
TU33
A
0493-2137(2011)03-0210-05
2009-06-30;
2009-10-16.
侯朝勝(1945— ),男,副教授.
侯朝勝,lghcs@yahoo.com.cn.