• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Determination of 3-Monochloropropane-1,2-diol in Soy Sauce and Oyster Sauce by Solid Phase Extraction Combined with Gas Chromatography-Mass Spectrometry

    2011-04-14 21:53:03XIONGJunGONGLiangLAIYidong
    食品科學 2011年14期
    關(guān)鍵詞:丙二醇檢出限分類號

    XIONG Jun,GONG Liang,LAI Yi-dong

    (Guangdong Dongguan Quality Supervision and Testing Center, Dongguan 523808, China)

    Determination of 3-Monochloropropane-1,2-diol in Soy Sauce and Oyster Sauce by Solid Phase Extraction Combined with Gas Chromatography-Mass Spectrometry

    XIONG Jun,GONG Liang,LAI Yi-dong

    (Guangdong Dongguan Quality Supervision and Testing Center, Dongguan 523808, China)

    Abstract :A simple and sensitive method for determination of 3-monochloropropane-1,2-diol (3-MCPD) in sauce samples by solid phase extraction (SPE) coupled with with gas chromatography-mass spectrometry (GC-MS) is described. In this work, elution solvent type and amount and sample loading amount were investigated to optimize SPE conditions. The optimal sample preparation procedure for treating 5.0 g of samples involved homogenization with 5 mol/L sodium chloride solution, clean-up on SPE column and derivitization prior to GC-MS analysis. The limit of detection of the method for 3-MCPD was 0.15μg/kg, and the linear range 0.51-6144μg/kg, with a correlation coefficient of 0.9998 and a relative standard deviation of 8.8% (RSD, n = 5). The method was applied to determine soy sauce and oyster sauce samples and spiked recoveries of 87.2%-109.4% with RSDs (n = 3) of 5.6%-10.2% were obtained.

    Key words:solid phase extraction;3-monochloropropane-1,2-diol;gas chromatography-mass spectrometry (GC-MS);sauce samples

    3-Monochloropropane-1,2-diol (3-MCPD) was first detected in acid-hydrolyzed vegetable protein (HVP) by the reaction of hydrochloric acid with residual vegetable lipid and had been obtained more and more attention during the last few decades due to its carcinogenic effects[1]. Several studies have showed that 3-MCPD exists in a wide variety of food during food processing such as nontraditionally prepared soy sauce, vinegar and so on, its formation is origin from glycerol or acylglycerols and chloride ions and influenced by a series of factors including moisture, lipid content, pH value and food type[2-4]. Therefore, it is necessary to set safe levels of consumption to protect human health from the adverse effects of 3-MCPD. Commission Regulation (EC) No 1881/2006 of 19 December 2006[5]sets the tolerable daily intake (TDI) at 2μg/kg bw. Besides, the maximum permitted concentration of 3-MCPD in foodstuffs are controlled by legislation. For example, maximum levels in foodstuffs (in particular HVP and soy sauce) are 20μg/kg for a liquidproduct containing 40% dry matter, while a maximum level of 50μg/kg in dry matter. In view of the situation a sensitive, fast, simple and accurate method of analysis is required and it is necessary to determine its level in food and to ensure it is within the permitted limits.

    However, it is difficult to analyse 3-MCPD sensitively due to its high boiling point and absence of a suitable chromophore. At present, the determination of 3-MCPD in food samples is mainly carried out by gas chromatography (GC) with a variety of detectors including flame ionization detector (FID)[6], electron capture detector (ECD)[7-8]and mass spectrometry (MS)[7,9-13]. Among the above detectors, FID and ECD are subject to interference, which makes the qualitative analysis difficult. Relatively speaking, GC-MS is the most powerful technique for the analysis of 3-MCPD due to its high selectivity and high accuracy. Because of high polarity and low volatility, 3-MCPD needs derivatisation. Heptafluorobutyrylimidazole (HFBI), heptafluorobutyric acid anhydride (HFBA), boronic acid, ketones, N,O-bis (trimethylsilyl) trifluoroacetamide (BSTFA) derivatives are usually used as derivatization reagents.

    To date, in order to detect low levels of the analytes, a preconcentration step is needed prior to instrumental determination. Liquid-liquid extraction (LLE)[8]and solid-phase extraction (SPE)[6-7,9-12]were the most popular sample pretreatment techniques. But LLE has many drawbacks such as time consumption, being labour-intensive and the use of large volumes of solvent, which often leads to the formation of emulsions. In addition, a large volume of sample is often required due to the low concentration of analytes in the samples. SPE is less time-consuming compared with LLE. In recent years, methods based on SPE, derivatisation and subsequent GC-MS analysis usually enable quantification of 3-MCPD at theμg/kg level[6-7,9-12]. For example, SPE-GC-MS for the determination of 3-MCPD in foods and food ingredients using HFBI as a derivatization reagent was purposed by Brereton et al[6].

    In the present work, the effective and sensitive method based on SPE has been developed for the determination of 3-MCPD in sauce samples by GC-MS. To obtain an optical condition for the extraction of 3-MCPD, a serious of influencing factors including type of elution solvent, volume of elution solvent and sample have been investigated. The developed method has been validated by the analysis of 3-MCPD in real samples.

    1 Materials and Methods

    1.1Reagents and materials

    3-MCPD and HFBI were obtained from Thermo Fisher Scientific (Fair Lawn, NJ, USA). Their purity was above 98.0%. Hexane, ethyl acetate and ether were purchased from Sinopharm Chemical Reagent Co. Ltd., (Shanghai, China). All reagents used were at least of analytical reagent grade. Doubly distilled water was used throughout this work. Standard stock solution (1.280 mg/mL) of 3-MCPD was prepared in hexane and stored in refrigerator. Working solutions used in further studies were prepared freshly by diluting different amounts from the standard solution with doubly distilled water to the required concentrations. All solutions were stored at 4 ℃ in a refrigerator prior to use.

    1.2Preparation of samples

    The soy sauce and oyster sauce samples were purchased from a local supermarket in Dongguan, China. About 5.000 g of soy sauce sample was weighed into a glass tube, and 5 mol/L NaCl solution was added until the mixture solution was 10 mL. Then, the tube was tightly closed and mixed on the vortex meter for 3 min. Subsequently, the mixture solution was directly processed according to SPE procedure under the optimized condition.

    For the oyster sauce sample, the preparation process of weight and mixture was the same to the soy sauce. Then, the mixture solution was centrifuged for 5 min at 6000 r/min due to its complicated matrix. Finally the upper solution was directly processed according to SPE procedure under the optimized condition.

    For the recovery study, the samples were prepared by spiking a known amount of the target analyte, and processed according to SPE procedure under the optimized condition.

    1.3Procedure

    The SPE column using 15 mL (3000 mg) of the MN Chromabond-XTR was not conditioned. 3.0 mL of the sample mixture solution passed through the column. After 30 min, the column was leached with 10.0 mL of n-hexane and then eluted by 12.0 mL of the mixture solution of ethyl acetate and ether (9∶1,V/V) at a flow rate of 1.0 mL/min. The elution solution was collected and concentrated under a gentle nitrogen flow. The residue was redissolved in 1.0 mL n-hexane and derivated with HBFI at 70 ℃ for 20 min in the subsequent. After cooling to room temperature, 2 mL of 5 mol/L NaCl solution was added to remove the excess derivatization agent. The nhexane layer was separated and analyzed by GC-MS.

    1.4GC-MS analysis

    Chromatographic analysis was made on an Agilent 6890N gas chromatograph equipped with 5975B mass spec-trometry (MS) system (Agilent Technologies, Palo Alto, CA, USA). A DB-5MS capillary column (30 m × 0.25 mm id and 0.25μm film thickness) purchased from J & W Scientific (Folsom, CA, USA) was employed. The injection was made in the splitless mode at 250 ℃. Helium was used as carrier gas with constant flow of 1.0 mL/min. The column oven temperature was as follows∶ first held at 50 ℃ for 1 min, then programmed at 5 ℃/min to 90 ℃, finally 50 ℃/min to 250 ℃ and held for 6.0 min. The GC-MS was operated in the electronimpact mode at 70 eV with the transfer line temperature of 280 ℃ and an ion source trap temperature of 200 ℃. Full scan data acquisitions were carried out over the mass range m/z 40 -500. Qualitative and quantitative analysis was carried out by selectively monitoring the detector response of characteristic molecular ions at m/z 253, 275, 289, 291, 453 for the derivative of 3-MCPD.

    2 Results and Analyses

    In order to obtain best sensitivity, different parameters affecting on SPE including elution solvent type, the volume of elution solvent and sample have been optimized and established.

    2.1Optimization of solid phase extraction

    2.1.1Effect of elution solvent type

    Fig.1 Effect of elution solvent on SPE

    Careful attention should be paid to the selection of the elution solvent, which is very important for achieving good selectivity of the target compound. The elution solvent should fulfill the following requirements∶ First, it should have high elution efficiency; Second, it should not interfere with analyte and have low toxicity; Third, it should have compatibility with GC system. Hence, ether, ethyl acetate, and the mixture solution of ethyl acetate and ether have been investigated. Fig.1 was the effect of elution solvent on the recovery of target. As could be seen, compared with other elution solvents ether showed relative poorer elution efficiency for 3-MCPD, while, the mixture solvent of ethyl acetate and ether (9∶1, V/V) gave the best elution efficiency for the tested target analyte. Therefore, the mixture solvent of ethyl acetate and ether (9∶1, V/V) was selected as the elution solvent in subsequent experiments.

    Fig.2 Effect of the volume of elution volume

    2.1.2Effect of volume of elution solvent

    SPE will attain the maximum sensitivity after the target analyte has been completely eluted. Therefore, the effect of the volume of elution solvent on the recovery was investigated with the volume in the range of 6-12 mL. The result showed that the recovery of 3-MCPD increased with the increase the volume and 3-MCPD could be quantitatively recovered when the volume was 12 mL (Fig.2). To ensure acquisition of satisfied recovery and trade off the analytical speed and the sensitivity, a volume of 12 mL was employed as the volume of eluent solvent for the following experiments. 2.1.3Effect of breakthrough volume of SPE column

    Fig.3 Effect of the volume of sample volume

    Under the following constant conditions (elution solvent, the mixture solution of ethyl acetate and ether (9∶1,V/V); eluent solvent volume, 12 mL; flow rate, 1.0 mL/min), different volumes (1.0, 2.0, 3.0, 3.5 mL) of the standard solution of the studied analyte passed through the SPE. Fig.3 was the effect of the breakthrough volume of the sample solution on the 3-MCPD recovery. As could be seen, the recovery was not lower than 90% when the volume of sample was less than 3.5 mL. To obtain better recovery and sensitivity, a volume of 3.0 mL was used for further experiments.

    Table 1 Analytical performance of SPE-GC-MS for the determination 3-MCPD

    2.2Analytical performance of the SPE procedure

    The linearity of calibration curve of SPE for the target compound was observed in the range of 0.51-6144μg/kg with the correlation coefficient of 0.9998, which showed good linearity. Under the optimal experimental conditions, the repeatability, expressed as relative standard deviation (RSD) for five replicate analyse, spiked at 0.76μg/L of the target compound, was 8.8%. The limit of detection (LOD, RSN=3) was 0.15μg/kg (Table 1). From the above data, the LOD data showed that the sensitivity of method was good enough to ensure reliable measurements.

    Table 2 is the comparison of the limit of detection obtained by LLE, SPE and SPME for extraction and determination of 3-MCPD in real samples. As could be seen, the LOD obtained by this method is lower than that reported in references[7-14], comparable with that obtained in the reference[15], and the proposed SPE-GC-MS method is sensitive and effective.

    2.3Application of the SPE to the real samples

    Quantitative analysis of real sample was carried out by SPE mode. Fig.4 depicted typical chromatogram of the real sample obtained after SPE. Peak identification of the 3-MCPD in samples was based on the comparison with the retention time of standard compounds, characteristic molecular ions and was confirmed by spiking known standard compounds to the sample. Accuracy was calculated as the percentage recovery of known amounts of target analyte added to soy sauce and oyster sauce and subjected to the SPE method under the optimized conditions. The recovery was defined as the ratio of the concentration of analyte found to the concentration of analyte spiked. With the application of external standard method, the average concentration of target compound in sauce and oyster sauce were determined by the proposed method and the results were given in Table 3. It could be seen that the recoveries for the spiked real samples varied from 87.2% to 109.4% and the RSDs calculated from these experiments were from 5.6% to 10.2%. The results showed that recoveries were good for the analyte, thus illustrating the practical effectiveness of the method.

    Table 2 Comparison of detection limits found in the literature for the determination of 3-MCPD in real samples

    Table 3 Analytical results and recoveries of target analytes in samples by SPE-GC-MS

    Fig.4 Chromatogram of real sample obtained by SPE-GC-MS under optimized conditions

    3 Conclusion

    The determination of 3-MCPD in soy sauce and oyster sauce samples by means of solid phase extraction (GC-MS) with gas chromatography-mass spectrometry is described. The proposed method has many practical advantages such as not condition, simplicity of the extraction, high sensitivity and an outstanding capacity of avoiding the necessity of separate sample cleanup and was applied to soy sauce and oyster sauce samples. The recovery ranging from 87.2%-109.4% with RSDs of 5.6%-10.2% were obtained for SPE. References:

    [1]VELISEK J, DAVIDEK J, HAJSLOVA J, et al. Chlorohydrins in protein hydrolysates[J]. Z Lebensm Unters Forsch, 1978, 167(4)∶ 241-244.

    [2]CREWS C, HOUGH P, BRERETON P, et al. Survey of 3-monochloropropane-1,2-diol (3-MCPD) in selected food groups, 1999 -2000[J]. Food Addit Contam, 2002, 19(1)∶ 22-27.

    [3]COLLIER P D, CROMIE D D O, DAVIES A P. Mechanism of formation of chloropropanols present in protein hydrolysates[J]. J Am Oil Chem Soc, 1991, 68(10)∶ 785-790.

    [4]HASNIP S, CREWS C, BRERETON P, et al. A concerted study of factors affecting the formation of 3-MCPD in foods[J]. Pol J Food Nutr, 2002, 52(11)∶ 119-121.

    [5]EC Commission Regulation. (EC) No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs[S]. Off J Eur Union, L364∶ 5-24.

    [6]BRERETON P, KELLY J, CREWS C, et al. Determination of 3-chloro-1,2-propanediol in foods and food ingredients by gas chromatography with mass spectrometric detection∶ collaborative study[J]. Journal of AOAC International, 2001, 84(2)∶ 455-465.

    [7]Van BERGEN C A, COLLIER P D, CROMIE D D O, et al. Determination of chloropropanols in protein hydrolysates[J]. J Chromatogr A, 1992, 589(1/2)∶ 109-119.

    [8]MATTHEW B M, ANASTASIO C. Determination of halogenated monoalcohols and diols in water by gas chromatography with electron-capture detection[J]. J Chromatogr A, 2000, 866(1)∶ 65-77.

    [9]CHUNG W C, HUI K Y, CHENG S C. Sensitive method for the determination of 1,3-dichloropropan-2-ol and 3-chloropropane-1,2-diol in soy sauce by capillary gas chromatography with mass spectrometric detection[J]. J Chromatogr A, 2002, 952(1/2)∶ 185-192.

    [10]ABU-EI-HAJ S, BOGUSZ M J, IBRAHIM Z, et al. Rapid and simple determination of chloropropanols (3-MCPD and 1,3-DCP) in food products using isotope dilution GC-MS[J]. Food Control, 2007, 18(1)∶ 81-90. [11]XU Xiaomin, REN Yiping, WU Pinggu, et al. The simultaneous separation and determination of chloropropanols in soy sauce and other flavourings with gas chromatography-mass spectrometry in negative chemical and electron impact ionization modes[J]. Food Addit Contam, 2006, 23(2)∶ 110-119.

    [12]CHUNG S W C, KWONG K P, YAU J C W, et al. Chloropropanols levels in foodstuffs marketed in Hong Kong[J]. J Food Comp Anal, 2008, 21(7)∶ 569-573.

    [13]LEE M R, CHIU T C, DOU J. Determination of 1,3-dichloro-2-propanol and 3-chloro-1,2-propandiol in soy sauce by headspace derivatization solid-phase microextraction combined with gas chromatography-mass spectrometry[J]. Anal Chim Acta, 2007, 591(2)∶ 167-172.

    [14]MARKUS K S, UTE B, ALEXANDRA O G, et al. Rapid and simple micromethod for the simultaneous determination of 3-MCPD and 3-MCPD esters in different foodstuffs[J]. J Agric Food Chem, 2010, 58 (11)∶ 6570-6577.

    [15]CAO Xiujun, SONG Guoxin, GAO Yihan, et al. A novel derivatization method coupled with GC-MS for the simultaneous determination of chloropropanols[J]. Chromatographia, 2009, 70(3/4)∶ 661-664.

    中圖分類號:TS207.3

    文獻標識碼:A

    文章編號:1002-6630(2011)14-0232-05

    收稿日期:2010-11-09

    基金項目:廣東省質(zhì)量技術(shù)監(jiān)督局科技項目(2008SJ029)

    作者簡介:熊珺(1978—),女,博士,研究方向為痕量化合物的檢測技術(shù)。E-mail:xxiongjjun@yahoo.com.cn

    固相萃取與氣相色譜-質(zhì)譜聯(lián)用分析調(diào)味料中3-氯-1,2-丙二醇

    熊 珺,龔 亮,賴毅東
    (廣東省東莞市質(zhì)量監(jiān)督檢測中心,廣州 東莞 523808)

    摘 要:建立固相萃取與氣相色譜-質(zhì)譜聯(lián)用(solid phase extraction with gas chromatography-mass spectrometry,SPEGC-MS)測定調(diào)味料中3-氯-1,2-丙二醇的新方法。對影響分析物SPE萃取效率的諸因素如洗脫溶劑、洗脫溶劑的體積和上樣體積等進行詳細考察和優(yōu)化。最佳萃取條件為5.0g樣品與5mol/L氯化鈉溶液混勻,經(jīng)SPE萃取凈化、衍生后,以GC-MS進行測定,該方法對3-氯-1,2-丙二醇的檢出限為0.15μg/kg,線性范圍為0.51~6144μg/kg,相關(guān)系數(shù)和相對標準偏差(relative standard deviation,RSD)(n=5)分別為0.9998和8.8%。該方法成功應用于調(diào)味料3-氯-1,2-丙二醇的分析,加標回收的回收率為87.2%~109.4%。

    關(guān)鍵詞:固相萃?。?-氯-1,2-丙二醇;氣相色譜-質(zhì)譜聯(lián)用;調(diào)味液

    猜你喜歡
    丙二醇檢出限分類號
    陶氏推出可持續(xù)丙二醇生產(chǎn)技術(shù)
    環(huán)境監(jiān)測結(jié)果低于最低檢出限數(shù)據(jù)統(tǒng)計處理方法
    定量NMR中多種檢出限評估方法的比較
    波譜學雜志(2022年2期)2022-06-14 09:52:02
    A Study on the Change and Developmentof English Vocabulary
    丙二醇頭孢曲嗪的有關(guān)物質(zhì)檢查
    Translation on Deixis in English and Chinese
    基于EP-17A2的膠體金法檢測糞便隱血的空白限、檢出限及定量限的建立及評價
    用濕巾擦手后吃東西等于吃毒,是真的嗎?
    The law of exercise applies on individual behavior change development
    石墨爐原子吸收法測定土壤中痕量金檢出限的不確定度分析
    国产片特级美女逼逼视频| av黄色大香蕉| 国产精品不卡视频一区二区| 此物有八面人人有两片| 成人特级av手机在线观看| 午夜老司机福利剧场| 亚洲一区高清亚洲精品| 日韩国内少妇激情av| 日韩av不卡免费在线播放| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 日本黄色视频三级网站网址| 国产精品,欧美在线| 亚洲av第一区精品v没综合| 亚洲国产色片| 午夜爱爱视频在线播放| 亚洲va在线va天堂va国产| 18禁在线无遮挡免费观看视频| 亚洲欧美清纯卡通| 久久久国产成人免费| 国产美女午夜福利| 国产日韩欧美在线精品| av在线蜜桃| 深夜精品福利| 国产美女午夜福利| 有码 亚洲区| 99久久中文字幕三级久久日本| 日日干狠狠操夜夜爽| 夜夜夜夜夜久久久久| 免费av观看视频| 久久精品91蜜桃| 亚洲精品亚洲一区二区| 国产精品综合久久久久久久免费| 日本黄色视频三级网站网址| 两个人的视频大全免费| ponron亚洲| 亚洲成人精品中文字幕电影| 免费av毛片视频| 国产一区二区亚洲精品在线观看| 国产精品一二三区在线看| 欧美变态另类bdsm刘玥| 91aial.com中文字幕在线观看| 中国国产av一级| 三级毛片av免费| 日韩大尺度精品在线看网址| 神马国产精品三级电影在线观看| 欧美日韩乱码在线| 色尼玛亚洲综合影院| 人人妻人人澡人人爽人人夜夜 | 亚洲av中文字字幕乱码综合| 不卡视频在线观看欧美| 不卡视频在线观看欧美| 久久精品国产亚洲av涩爱 | 毛片一级片免费看久久久久| 亚洲va在线va天堂va国产| 在线免费十八禁| 熟女人妻精品中文字幕| 免费在线观看成人毛片| 干丝袜人妻中文字幕| 特大巨黑吊av在线直播| 精品久久久久久久久久久久久| 成人一区二区视频在线观看| 国产毛片a区久久久久| 波多野结衣巨乳人妻| 91精品国产九色| 国产色爽女视频免费观看| 中文字幕av在线有码专区| 日韩国内少妇激情av| 色哟哟哟哟哟哟| 波多野结衣高清作品| 久久国内精品自在自线图片| 日韩一区二区视频免费看| 一区二区三区高清视频在线| av在线天堂中文字幕| 久久精品久久久久久久性| 国产伦理片在线播放av一区 | 一边摸一边抽搐一进一小说| 亚洲在线自拍视频| 日产精品乱码卡一卡2卡三| 一级二级三级毛片免费看| 国产视频内射| 精品少妇黑人巨大在线播放 | 久久久精品欧美日韩精品| 久久综合国产亚洲精品| 日本爱情动作片www.在线观看| 午夜福利在线观看吧| 午夜免费激情av| 青春草国产在线视频 | 小说图片视频综合网站| 亚洲精品乱码久久久久久按摩| 在线观看一区二区三区| 国产一区亚洲一区在线观看| 我要搜黄色片| 一本久久中文字幕| 国产成人aa在线观看| 老司机福利观看| 黄色一级大片看看| 黑人高潮一二区| 亚洲欧美清纯卡通| 美女高潮的动态| 午夜久久久久精精品| 欧美高清成人免费视频www| 亚洲人成网站在线播放欧美日韩| av在线观看视频网站免费| avwww免费| 一级二级三级毛片免费看| 欧美zozozo另类| 99riav亚洲国产免费| 午夜激情欧美在线| 一卡2卡三卡四卡精品乱码亚洲| 天堂网av新在线| 欧美激情国产日韩精品一区| 边亲边吃奶的免费视频| 国产真实伦视频高清在线观看| 国产精品国产三级国产av玫瑰| 国产精华一区二区三区| 亚洲精华国产精华液的使用体验 | 国产v大片淫在线免费观看| 国内精品一区二区在线观看| 亚洲av成人av| 少妇熟女欧美另类| 日本成人三级电影网站| 成人特级av手机在线观看| a级毛色黄片| 日日啪夜夜撸| 天堂√8在线中文| 熟女人妻精品中文字幕| 亚洲国产精品合色在线| 长腿黑丝高跟| 99热全是精品| 亚洲经典国产精华液单| 国产精品,欧美在线| 国产精品久久久久久精品电影小说 | 国产精品,欧美在线| 国产精品爽爽va在线观看网站| 美女高潮的动态| 免费无遮挡裸体视频| 国产精品国产三级国产av玫瑰| 人妻少妇偷人精品九色| 欧美人与善性xxx| 久久这里只有精品中国| 乱系列少妇在线播放| 亚洲性久久影院| 26uuu在线亚洲综合色| 日韩欧美精品免费久久| 91精品一卡2卡3卡4卡| 色噜噜av男人的天堂激情| 午夜免费激情av| 欧美区成人在线视频| 亚洲内射少妇av| 成年免费大片在线观看| 亚洲人成网站在线播放欧美日韩| 偷拍熟女少妇极品色| 成年av动漫网址| 亚洲中文字幕一区二区三区有码在线看| 97在线视频观看| 久久草成人影院| 亚洲成人av在线免费| 亚洲熟妇中文字幕五十中出| 中文字幕免费在线视频6| 国产熟女欧美一区二区| 嫩草影院精品99| 欧美极品一区二区三区四区| 91久久精品电影网| 天天躁日日操中文字幕| 中文字幕久久专区| 少妇被粗大猛烈的视频| 国产美女午夜福利| 麻豆国产97在线/欧美| 色视频www国产| .国产精品久久| 国产成人福利小说| 亚洲国产精品久久男人天堂| 三级国产精品欧美在线观看| 欧美日韩乱码在线| 青春草视频在线免费观看| 2021天堂中文幕一二区在线观| 久久综合国产亚洲精品| 51国产日韩欧美| 国产大屁股一区二区在线视频| 在线播放无遮挡| ponron亚洲| 综合色丁香网| 国产色婷婷99| 男人舔女人下体高潮全视频| 国产精品一区www在线观看| 不卡视频在线观看欧美| 有码 亚洲区| 成人亚洲精品av一区二区| 插逼视频在线观看| 亚洲一级一片aⅴ在线观看| 国产人妻一区二区三区在| 日韩,欧美,国产一区二区三区 | 最近手机中文字幕大全| 黄色配什么色好看| 亚洲精品国产成人久久av| 亚洲精品乱码久久久v下载方式| 精品熟女少妇av免费看| АⅤ资源中文在线天堂| 午夜精品在线福利| 欧美+日韩+精品| 搡女人真爽免费视频火全软件| videossex国产| 高清毛片免费看| 欧美日韩一区二区视频在线观看视频在线 | 国产高清三级在线| 国产成人午夜福利电影在线观看| 寂寞人妻少妇视频99o| av免费在线看不卡| 亚洲欧美日韩卡通动漫| 久久久国产成人免费| 亚洲第一电影网av| 欧美+亚洲+日韩+国产| av卡一久久| 成人欧美大片| 国产精品国产三级国产av玫瑰| a级毛色黄片| 国产精品久久久久久久电影| 日本av手机在线免费观看| 久久久久久久亚洲中文字幕| 国内揄拍国产精品人妻在线| 欧美丝袜亚洲另类| 身体一侧抽搐| 亚洲欧美日韩卡通动漫| 亚洲成av人片在线播放无| 美女国产视频在线观看| 校园春色视频在线观看| 亚洲欧美精品专区久久| 国产麻豆成人av免费视频| 国产精品一区二区在线观看99 | 国产一级毛片七仙女欲春2| 国产黄片视频在线免费观看| 亚洲欧美成人精品一区二区| 变态另类丝袜制服| 久久精品国产鲁丝片午夜精品| 神马国产精品三级电影在线观看| 精品一区二区三区视频在线| 你懂的网址亚洲精品在线观看 | 亚洲av不卡在线观看| 国产免费一级a男人的天堂| 日日摸夜夜添夜夜爱| 国产激情偷乱视频一区二区| 在线免费观看的www视频| 非洲黑人性xxxx精品又粗又长| 久久久久免费精品人妻一区二区| 啦啦啦观看免费观看视频高清| 啦啦啦观看免费观看视频高清| 日本熟妇午夜| 99久久精品热视频| 卡戴珊不雅视频在线播放| 精品久久久久久成人av| 免费av不卡在线播放| 精品一区二区免费观看| 插阴视频在线观看视频| 成年av动漫网址| 婷婷精品国产亚洲av| av福利片在线观看| 色综合亚洲欧美另类图片| а√天堂www在线а√下载| 看片在线看免费视频| 伊人久久精品亚洲午夜| 精品一区二区免费观看| 免费看美女性在线毛片视频| 免费看av在线观看网站| 欧美变态另类bdsm刘玥| 午夜福利高清视频| 我的女老师完整版在线观看| 国产亚洲av嫩草精品影院| 一级毛片aaaaaa免费看小| 麻豆成人av视频| 欧美最新免费一区二区三区| 久久精品国产亚洲av香蕉五月| 在线观看美女被高潮喷水网站| 狂野欧美白嫩少妇大欣赏| 国产成人午夜福利电影在线观看| 美女大奶头视频| 日日干狠狠操夜夜爽| 久久久久性生活片| 日韩欧美在线乱码| 欧美+亚洲+日韩+国产| 久久久久久久久久黄片| 狠狠狠狠99中文字幕| 久久精品国产99精品国产亚洲性色| 99热这里只有是精品50| 伦理电影大哥的女人| 国产精品福利在线免费观看| 国产黄片视频在线免费观看| 国产精品伦人一区二区| 国产精品永久免费网站| 精品久久久久久久人妻蜜臀av| 午夜福利在线在线| 亚洲精品粉嫩美女一区| 久久精品国产99精品国产亚洲性色| 欧美变态另类bdsm刘玥| 18禁黄网站禁片免费观看直播| 我要看日韩黄色一级片| 欧美性猛交╳xxx乱大交人| 久久久久网色| 久久久a久久爽久久v久久| 欧美又色又爽又黄视频| 亚洲18禁久久av| 非洲黑人性xxxx精品又粗又长| 免费一级毛片在线播放高清视频| 久久国产乱子免费精品| 偷拍熟女少妇极品色| 亚洲美女搞黄在线观看| 国语自产精品视频在线第100页| 国产亚洲91精品色在线| 免费观看的影片在线观看| 亚洲久久久久久中文字幕| 精品一区二区三区人妻视频| 亚洲国产欧洲综合997久久,| a级毛色黄片| 国产日韩欧美在线精品| 成人毛片a级毛片在线播放| 丰满人妻一区二区三区视频av| 欧美成人a在线观看| a级一级毛片免费在线观看| 亚洲乱码一区二区免费版| 最近中文字幕高清免费大全6| 高清毛片免费看| 伦理电影大哥的女人| 欧美bdsm另类| 免费看美女性在线毛片视频| 秋霞在线观看毛片| 可以在线观看毛片的网站| 丰满人妻一区二区三区视频av| 色综合站精品国产| 青春草国产在线视频 | www.av在线官网国产| 美女国产视频在线观看| 国产精品美女特级片免费视频播放器| 国内精品一区二区在线观看| 久久6这里有精品| 伦精品一区二区三区| 中国国产av一级| 色综合色国产| 欧美成人a在线观看| 国内精品一区二区在线观看| 搡老妇女老女人老熟妇| 午夜视频国产福利| 综合色av麻豆| 亚洲欧美成人精品一区二区| 免费看美女性在线毛片视频| 日日摸夜夜添夜夜添av毛片| 超碰av人人做人人爽久久| 国产亚洲精品av在线| 国产精品爽爽va在线观看网站| 波多野结衣巨乳人妻| 国产精品三级大全| 国产精品人妻久久久久久| 色综合站精品国产| 免费av观看视频| or卡值多少钱| 亚洲,欧美,日韩| av在线天堂中文字幕| 久久久欧美国产精品| 一级毛片电影观看 | 26uuu在线亚洲综合色| 如何舔出高潮| 久久精品夜夜夜夜夜久久蜜豆| 女的被弄到高潮叫床怎么办| 色噜噜av男人的天堂激情| 特大巨黑吊av在线直播| 国产成年人精品一区二区| av在线老鸭窝| 欧美精品国产亚洲| 成人欧美大片| 我要看日韩黄色一级片| 国产探花极品一区二区| 少妇猛男粗大的猛烈进出视频 | 亚洲国产精品成人久久小说 | 国产精品蜜桃在线观看 | 成人性生交大片免费视频hd| 亚洲精品自拍成人| 夜夜夜夜夜久久久久| 亚洲自拍偷在线| 国产精品伦人一区二区| 日韩精品有码人妻一区| 99久久成人亚洲精品观看| 国产老妇女一区| 插阴视频在线观看视频| 麻豆久久精品国产亚洲av| 欧美色视频一区免费| 国产高潮美女av| 熟女人妻精品中文字幕| 只有这里有精品99| 精品日产1卡2卡| 精品国产三级普通话版| 中文在线观看免费www的网站| av免费在线看不卡| 欧美最黄视频在线播放免费| 欧美又色又爽又黄视频| 亚洲成a人片在线一区二区| 村上凉子中文字幕在线| 欧美成人精品欧美一级黄| 男人舔女人下体高潮全视频| 乱码一卡2卡4卡精品| 国产成年人精品一区二区| 免费观看精品视频网站| 久久久精品欧美日韩精品| 国产成人一区二区在线| 免费搜索国产男女视频| 一级黄色大片毛片| 亚洲欧美日韩高清专用| 此物有八面人人有两片| 中出人妻视频一区二区| 免费观看a级毛片全部| 午夜精品国产一区二区电影 | 成人二区视频| 亚洲欧美成人综合另类久久久 | 国产精品久久久久久久电影| 亚洲欧美中文字幕日韩二区| 99国产极品粉嫩在线观看| 夜夜夜夜夜久久久久| 免费观看a级毛片全部| 熟女电影av网| 亚洲国产色片| 日本与韩国留学比较| 性欧美人与动物交配| 国产不卡一卡二| 99久久人妻综合| 免费不卡的大黄色大毛片视频在线观看 | 午夜老司机福利剧场| 免费观看在线日韩| 国产美女午夜福利| 美女大奶头视频| 亚洲精品乱码久久久v下载方式| 国产私拍福利视频在线观看| 日韩一区二区视频免费看| 我要看日韩黄色一级片| 老熟妇乱子伦视频在线观看| 免费观看的影片在线观看| 国产爱豆传媒在线观看| 干丝袜人妻中文字幕| 男女下面进入的视频免费午夜| av黄色大香蕉| 国产一区二区激情短视频| 久久亚洲国产成人精品v| 嫩草影院新地址| 国产精品1区2区在线观看.| 国产亚洲av嫩草精品影院| 在线观看av片永久免费下载| 久久精品久久久久久久性| avwww免费| av在线老鸭窝| 噜噜噜噜噜久久久久久91| 亚洲在久久综合| 久久午夜福利片| 国产精品一区二区性色av| 51国产日韩欧美| 成人三级黄色视频| 中文字幕人妻熟人妻熟丝袜美| 天堂√8在线中文| 久久亚洲国产成人精品v| 日日摸夜夜添夜夜爱| 高清午夜精品一区二区三区 | 欧美bdsm另类| 久久久精品大字幕| 18禁在线播放成人免费| 三级经典国产精品| 国产精品久久久久久精品电影小说 | 婷婷色综合大香蕉| 国产又黄又爽又无遮挡在线| 淫秽高清视频在线观看| 成年版毛片免费区| 九九久久精品国产亚洲av麻豆| 又爽又黄无遮挡网站| 久久这里只有精品中国| 一级毛片aaaaaa免费看小| 免费大片18禁| 小说图片视频综合网站| 狂野欧美白嫩少妇大欣赏| 97人妻精品一区二区三区麻豆| 国产在视频线在精品| 九色成人免费人妻av| 欧美人与善性xxx| 欧美xxxx黑人xx丫x性爽| 国产女主播在线喷水免费视频网站 | 国产精品爽爽va在线观看网站| 成人高潮视频无遮挡免费网站| videossex国产| 久久久久久九九精品二区国产| 久久久国产成人精品二区| 国产蜜桃级精品一区二区三区| 在线观看免费视频日本深夜| 日韩 亚洲 欧美在线| 18禁黄网站禁片免费观看直播| 国产又黄又爽又无遮挡在线| 激情 狠狠 欧美| 亚洲最大成人中文| 亚洲av免费高清在线观看| av在线观看视频网站免费| 日本在线视频免费播放| 麻豆国产97在线/欧美| 日韩国内少妇激情av| 亚洲精品国产av成人精品| 成人毛片a级毛片在线播放| 国产淫片久久久久久久久| 永久网站在线| 成人鲁丝片一二三区免费| 99久久精品热视频| 国产又黄又爽又无遮挡在线| 深夜精品福利| 亚洲精华国产精华液的使用体验 | 午夜福利高清视频| 成熟少妇高潮喷水视频| 99在线人妻在线中文字幕| 日韩国内少妇激情av| 给我免费播放毛片高清在线观看| 国产午夜精品久久久久久一区二区三区| 国产av一区在线观看免费| 久久久精品94久久精品| 免费无遮挡裸体视频| 国产精品久久久久久精品电影小说 | 我的女老师完整版在线观看| 国产亚洲精品av在线| 一区二区三区免费毛片| 男女啪啪激烈高潮av片| 日本三级黄在线观看| 久久久久久国产a免费观看| 欧美不卡视频在线免费观看| 精品人妻熟女av久视频| 成人国产麻豆网| 美女被艹到高潮喷水动态| 亚洲欧美日韩卡通动漫| 男的添女的下面高潮视频| 欧美另类亚洲清纯唯美| 亚洲内射少妇av| 色综合色国产| 欧美xxxx性猛交bbbb| 男女做爰动态图高潮gif福利片| 亚洲av中文字字幕乱码综合| 六月丁香七月| 日日啪夜夜撸| 国产 一区 欧美 日韩| 中文字幕熟女人妻在线| 一级黄色大片毛片| 99热这里只有是精品在线观看| 日日撸夜夜添| 伦精品一区二区三区| 国内精品宾馆在线| 精品久久久久久久久亚洲| 成人一区二区视频在线观看| 免费搜索国产男女视频| 男人舔奶头视频| 在线播放国产精品三级| av在线天堂中文字幕| av.在线天堂| 午夜激情欧美在线| 免费av毛片视频| 亚洲欧美成人精品一区二区| 日本一二三区视频观看| 日本色播在线视频| 欧美潮喷喷水| 亚洲五月天丁香| 亚洲精品久久久久久婷婷小说 | 亚洲第一电影网av| 成人漫画全彩无遮挡| 精品熟女少妇av免费看| 女的被弄到高潮叫床怎么办| 国产一区二区亚洲精品在线观看| av天堂中文字幕网| 美女高潮的动态| 国产成人精品婷婷| 日日摸夜夜添夜夜添av毛片| 两个人视频免费观看高清| 三级男女做爰猛烈吃奶摸视频| 美女cb高潮喷水在线观看| 国产欧美日韩精品一区二区| 国产三级在线视频| 欧美丝袜亚洲另类| 欧美日韩精品成人综合77777| 国产 一区 欧美 日韩| 九九热线精品视视频播放| 国产探花极品一区二区| 禁无遮挡网站| av天堂在线播放| 直男gayav资源| 国产一区二区激情短视频| 一个人看视频在线观看www免费| 最近中文字幕高清免费大全6| 久久久久久久久久久免费av| 亚洲av免费高清在线观看| 男人舔奶头视频| 蜜桃久久精品国产亚洲av| 五月玫瑰六月丁香| 国产亚洲精品av在线| 男女视频在线观看网站免费| 国产熟女欧美一区二区| 熟女人妻精品中文字幕| 97人妻精品一区二区三区麻豆| 老女人水多毛片| a级毛片免费高清观看在线播放| 国产午夜精品论理片| 夜夜爽天天搞| 身体一侧抽搐| 精品无人区乱码1区二区| av免费观看日本| 久久精品国产鲁丝片午夜精品| 国产亚洲91精品色在线| 91狼人影院| 毛片一级片免费看久久久久| 不卡一级毛片| 桃色一区二区三区在线观看| 欧美bdsm另类| 精品久久久噜噜| 一级二级三级毛片免费看| 国产精品1区2区在线观看.| 久久久国产成人免费| 亚洲自拍偷在线| 高清在线视频一区二区三区 | 国内精品久久久久精免费| 嫩草影院精品99| 91狼人影院| 一级毛片久久久久久久久女|