張福珍
(1.中國礦業(yè)大學(xué)理學(xué)院,江蘇徐州 221008;2.九州職業(yè)技術(shù)學(xué)院高等數(shù)學(xué)教研室,江蘇徐州 221116)
一類分?jǐn)?shù)階邊值問題積分共振條件解的存在性
張福珍1,2
(1.中國礦業(yè)大學(xué)理學(xué)院,江蘇徐州 221008;2.九州職業(yè)技術(shù)學(xué)院高等數(shù)學(xué)教研室,江蘇徐州 221116)
利用Mawhin的連續(xù)性定理及迭合度理論,討論了一類分?jǐn)?shù)階非線性微分方程帶積分共振邊界條件解的存在性,得到了解存在的充分條件.
迭合度;分?jǐn)?shù)階;共振
微分方程共振邊值問題起源于物理問題,因?yàn)楣舱駟栴}具有很強(qiáng)的實(shí)際背景,近年來受到國內(nèi)外學(xué)者的廣泛關(guān)注[1,2].分?jǐn)?shù)階微積分理論及分?jǐn)?shù)階微分方程在科學(xué)、工程和數(shù)學(xué)等領(lǐng)域已得到了重要應(yīng)用,例如已成功應(yīng)用于粘彈性材料、信號處理、控制、生物等領(lǐng)域[3].由于分?jǐn)?shù)階微分方程的理論研究剛起步,分?jǐn)?shù)階微分方程邊值問題作為其研究的重要分支之一,近年來已獲得了不少研究成果,參見文獻(xiàn)[4-15].
本文考慮一類分?jǐn)?shù)階非線性微分方程共振積分邊值問題解的存在性:
其中1<α≤2,e(t)∈L1[0,1],m≥1,f:[0,1]×R2→R連續(xù),g:[] 0,1→[)
0,∞為不減函數(shù),并且滿足g(0)=0.邊界條件(2)中所含積分為Riemann-Stieltjes積分.,I分別表示標(biāo)準(zhǔn)的Riemann-Liouville型分?jǐn)?shù)階導(dǎo)數(shù)和積分.
為了證明BVP(1)(2)有解及計(jì)算的方便,我們始終假設(shè)如下條件成立:
首先介紹Mawhin連續(xù)定理:
設(shè)Y,Z是實(shí)Banach空間,L:domL?Y→Z是一個(gè)指標(biāo)為零的Fredholm算子,P:Y→Y,Q:Z→Z是連續(xù)投影算子且滿足ImP=KerL,KerQ=ImL,Y=KerL⊕KerP,Z=ImL⊕ImQ.
則映射L|domL∩KerP:domL∩KerP→ImL是可逆的,記這個(gè)映射的逆映射為Kp,令N:Y→Z是一個(gè)映射,Ω是Y的一個(gè)有界開集且滿足domL∩Ω≠?,如果QN()有界,Kp(I-Q)N:→Y是緊的,則稱N是L-緊的,設(shè)J:ImQ→KerL是一個(gè)線性同構(gòu).
引理1.1[16](Mawhin)設(shè)Ω?Y是一個(gè)有界開集,L是一個(gè)指標(biāo)為零的Fredholm算子,N是L-緊的,如果下面條件成立:
(i)Lx≠λNx,?(x,λ)∈[domLKerL∩?Ω]×[0,1];
(ii)Nx?ImL,?x∈KerL∩?Ω;
(iii)deg(JQN|KerL,KerL∩Ω,0)≠0,其中Q:Z→Z為投影算子并且ImL=KerQ.
則方程Lu=λNu在domL∩Ω中至少有一解.
定義1.1[3]函數(shù)u:(0,+∞)→R的α階Riemann-Liouville分?jǐn)?shù)階積分為
其中α>0,Γ(·)為gamma函數(shù).
定義1.2[3]連續(xù)函數(shù)u:(0,+∞)→R的α階Riemann-Liouville分?jǐn)?shù)階導(dǎo)數(shù)為
其中α>0,Γ(·)為gamma函數(shù),n=[α]+1.
證明由引理1.2及邊界條件(2),易知(5)成立.
對?y∈ImL,?u∈domL,使得y=Lu∈Y,由引理2.2,條件(C1)及(3)知
定理2.1如果條件(C1)成立,假設(shè)滿足下面條件:
(1)存在正函數(shù)a(t),b(t),c(t),r(t)∈L1[0,1]及常數(shù)θ∈[0,1],使得對所有的(t,u,v)∈R3,t∈[0,1]或者有
通過如上討論可知引理1的(i)(ii)滿足,下證(iii)也是滿足的.
令H(u,λ)=±λJ-1u+(1-λ)QNu,根據(jù)以上證明有H(u,λ)≠0,?u∈?Ω∩KerL.因此,根據(jù)同倫不變性可得:
deg(QN|KerL,KerL∩Ω,0)=deg(H(·,0),KerL∩Ω,0)=deg(H(·,1),KerL∩Ω,0)=deg(±J,KerL∩Ω,0)=±1≠0.故Lu=Nu在domL∩Ωˉ中至少有一解,因此BVP(1)(2)在Cα-1[0,1]上至少存在一個(gè)解.最后我們舉例說明定理2.1.例:考慮邊值問題:
[1]林曉潔.幾類非線性微分方程邊值問題解的存在性及振動分析[D].徐州:中國礦業(yè)大學(xué),2010.
[2]Du Z J,Lin X J,Ge W G.On a third-order muti-point boundary value problem at resonace[J].J Math Anal Appl,2005,302(1): 217-229.
[3]Kilbas A A,Srivastava H M,Trujillo J J.Theory and Applications of Fractional Differential Equations[M].Amsterdam:Elsevier,2006.
[4]Bai Z,Lv H.Positive solutions for boundary value problem of nonlinear fractional differential equation[J].J Math Anal Appl,2005,311(2):495-505.
[5]Bai Z B.Solvability for a class of fractional m-point boundary value problem at resonance[J].Comput Math Appl,2011,62(3): 1292-1302.
[6]Zhang Y,Bai Z.Existence of positive solutions for s nonlinear fractional three-point boundary value problem at resonance[J].J Appl Math Comput,2011(36):417-440.
[7]PODLUBN Y I.Fractional Differential Equations,Mathematics in Science and Engineering[M].NewYork,London,Toronto:Academic Press,1999.
[8]Jiang W H.The existence of solutions to boundary value problems of fractional differential equations at resonance[J].Nonlinear Anal,2011,74(5):1987-1994.
[9]Bai Z B.Solvability of fractional three-point boundary value problems with nonlinear growth[J].Appl Math Comput,2011,218(5): 2761-2767.
[10]Xiao J Lin.Existence of Solutions to a Nonlocal Boundary Value Problem with Nonlinear Growth[J/OL].Boundary Value Problem,2011.http://www.hindawi.com/journals/bvp/2011/416416.
[11]Lakshmikantham V,Vatsala A S.Theory of fractional differential inequalities and applications[J].CommuAppl Anal,2007,11: 395-402.
[12]Bai Z,Qiu T.Existence of positive solution for singular fractional differential equation[J].Appl Math Comput,2009,215(7):2761-2767.
[13]Agarwal R P,Lakshmikantham V,Nieto J J.On the concept of solution for fractional differential equations with uncertainty[J]. Nonlinear Anal,2010,72(6):2859-2862.
[14]Ahmad B.Existence results for multi-point nonlinear boundary value problems of fractional differential equations[J].Mem Differ Equ Math Phys,2010,49:83-94.
[15]Bai Z,Zhang Y.The existence of solutions for a factional multi-point boundary value problem[J].Appl Math Comput,2010,60(8):2364-2372.
[16]Gaines R E,Mawhin J L.Coincidence Degree and Nonlinear Differential Equations[M].Berlin:Springer-Verlag,1977.
Existence Results for Boundary Value Problem of Fractional Differential Equations with Integral Conditions at Resonance
ZHANG Fu-zhen1,2
(1.College of Science,China University of Mining&Technology,Xuzhou 221008,China; 2.Advanced Math Teaching and Research Office,Jiuzhou College of Vocational&Technology,Xuzhou 221116,China)
By using the coincidence degree theory due to Mawhin and constructing suitable operators,we study the existence of solutions for boundary value problems of fractional differential equations with integral conditions at resonance.
coincidence degree;fractional nonlinear differential equation;at resonance
O175.8
A
1008-2794(2011)10-0035-07
2011-09-15
張福珍(1981—),女,江蘇徐州人,九州職業(yè)技術(shù)學(xué)院高等數(shù)學(xué)教研室講師,在讀碩士,研究方向:微分方程.