• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Economic Comparison of Three Gas Separation Technologies for CO2 Capture from Power Plant Flue Gas*

    2011-03-22 10:08:24YANGHongjun楊宏軍FANShuanshi樊栓獅LANGXuemei郎雪梅WANGYanhong王燕鴻andNIEJianghua聶江華
    關(guān)鍵詞:江華

    YANG Hongjun (楊宏軍), FAN Shuanshi (樊栓獅), LANG Xuemei (郎雪梅), WANG Yanhong(王燕鴻)** and NIE Jianghua (聶江華)

    Key Laboratory of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, South China University of Technology, Guangzhou 510640, China

    1 INTRODUCTION

    Large amounts of greenhouse gases releasing to the atmosphere in a short period can lead to global warming, among which CO2is the main contributor and accounts for about 60% of the greenhouse effect[1]. Coal-fired power plants are one of the major sources of the intensive emission of CO2and responsible for roughly 30% of the total emission of CO2[2]. According to the report of the U.S. energy information administration, 43% of the electricity is generated by coal-fired power plants all over the world before 2030[3], so more CO2will be released to the atmosphere and the climate change will be more serious. Hence,the emissions of greenhouse gases must be reduced greatly. One of the feasible methods to solve the dilemma is CO2capture and storage (CCS), including the separation of CO2from sources, transportation to a storage location, and long-term isolation from the atmosphere [3], in which CO2capture accounts for about 70%-80% of the total cost. There are three options for capture CO2from power plants, namely,pre-combustion capture, oxy-fuel combustion capture,and post-combustion capture [4-6], among which the post-combustion capture is the simplest and suitable for newly-built and existing coal-fired power plants without requiring substantial change [7]. Since the post-combustion capture is essentially a separation of CO2from flue gas (mainly consisted of N2, CO2, O2and H2O), the traditional gas separation technologies,such as chemical absorption, membrane separation,and pressure swing adsorption, can be applied. The objective of this work is to analyze the cost of the three technologies and determine the most feasible and cost-effective one.

    2 RESEARCH PROGRESS

    2.1 Economic indicators

    Two major indicators are used here to evaluate the economic performance of different CO2capture technologies, namely, CO2avoided cost and captured cost [8, 9], which are defined as

    Where,Cis the cost of electricity($·kW-1·h-1),M1is the amount of CO2emission per kWh of the net electricity output to grid (t·kW-1·h-1), before or after means the same power plant without or with CO2capture,M2is CO2captured amount per kWh of the net electricity output to grid (t·kW-1·h-1). Furthermore,it is worth noting that the cost of CO2capture consists of the expense for the separation of CO2from flue gas and the subsequent compression to about 10 MPa to transport, usually by pipeline.

    The definition of CO2captured and avoided is shown in Fig. 1. The amount of CO2captured is that captured by a CO2capture system, while the amount of CO2avoided is the difference in CO2emission per kWh from the power plant before and after CO2capture.In other words, it is the amount of CO2eliminated from the atmosphere. In the same case, CO2captured cost is always less than CO2avoided cost. For simplicity, both cost units are omitted.

    Figure 1 The definition of CO2 captured and avoided [7, 10]

    2.2 Chemical absorption

    Absorption and stripping constitute the main process of capturing CO2from flue gas. CO2reacts with absorbent in the absorber to form an intermediate compounds, separating CO2from flue gas. The intermediate compounds will release CO2if the alkaline solution is heated. Two kinds of absorbers may be used, such as packed column and membrane contactor[11], which is referred to membrane absorption.

    The CO2capture cost by chemical absorption[6, 12-36] according to time and absorbent type is shown in Figs. 2 and 3, respectively. Fig. 2 shows that CO2avoided cost is mainly $30-$60 and the minimum value is $10 [26], while CO2captured cost ranges from$20 to $42. Both CO2recovery and purity are greater than 90% in these researches. From 2001 to 2009, at least two reports for CO2capture cost by chemical absorption appear each year, indicating that chemical absorption is mature in the CO2capture. Most of the processes are carried out in packed columns, and only two publications are on membrane absorption. The CO2captured cost for membrane absorption only include the direct investment for construction of additional units and the cost of system operation [18, 19],so more research on this topic is needed. Fig. 3 shows that monoethanolamine (MEA) is the main absorbent used for CO2capture from flue gas and the CO2avoided cost is mainly $30-$60. A few new adsorbents have been used, such as NH3, KS1 and K2CO3,where the economical absorbent is NH3with a CO2avoided cost of $10-$37. Thus investigations for new absorbents are needed.

    Figure 2 CO2 capture cost by chemical absorption according to time● CO2 avoided cost; ○ CO2 captured cost

    Figure 3 CO2 capture cost by chemical absorptionwith different absorbents● CO2 avoided cost; ○ CO2 captured cost

    Based on the above-mentioned researches, four methods are proposed to reduce the cost of CO2capture from flue gas in the power plants with chemical adsorption method.

    (1) Optimize the operation parameters. The small flow rate ratio of absorbent to flue gas can reduce the investment for pumps and equipment and the operating cost [13]. In addition, the cost may be reduced by optimizing the load and concentration of absorbent,and stripping pressure [20].

    (2) Integrate CO2capture units with power plants.This measure can partly recover the waste heat in the system to improve the total energy efficiency of the power plant [17].

    (3) Use new absorbents. The CO2avoided cost with NH3and MEA is $47 and $27, respectively. The overall cost can drop from $47 to $10 with NH3considering byproduct of fertilizer [26].

    (4) Improve the membrane life-span for membrane absorption. The price of membrane has more effect on the equipment investment than the operation cost. In the operation, one should ensure 3 to 5 years of membrane life [19].

    2.3 Membrane separation

    The principle of membrane gas separation is that when flue gas passes through the membrane, CO2is enriched on one side of the membrane due to its selectivity and permeability to CO2and other gases. Pressure difference is the driving force for the process.The required pressure ratio can be achieved either by compression the flue gas or using a vacuum pump on the permeate side, termed as pressurization separation and vacuum separation, respectively.

    Figure 4 CO2 captured cost by membrane separation○ CO2 captured cost; △ CO2 recovery; ▲ CO2 purity

    Figure 4 shows the CO2captured cost based on literature [37-41]. The cost is from $25 to $217, the main range is $40-$100, and the minimum cost is $25[40]. Both CO2recovery and purity are greater than 90% except one case. Most of data do not include the cost for compression of CO2product. Fig. 5 is a summary for CO2avoided cost based on literature [22-24, 42],in which CO2avoided cost is $50-$78 and the CO2recoveries are 90% except one case. The CO2purity is 43%-77%, with the main range in 43%-60%, which is much less than 90%. The comparison of Figs. 4 and 5 shows that most of the previous studies are based on CO2captured cost, since most of membrane separations for CO2capture from flue gas are on the laboratory level or only through numerical simulation. Fig. 5 shows a wide range of CO2purity, since the membranes used in the researches include commercial product and those used in laboratory only at the moment. The other reason may be that these results are from the membrane systems with different stages.More stages give higher CO2purity.

    Figure 5 CO2 avoided cost by membrane separation● CO2 avoided cost; △ CO2 recovery; ▲ CO2 purity

    Based on the results in literature, two methods are proposed to reduce CO2capture cost with membrane separation.

    (1) If CO2/N2selectivity is less than 30, the CO2capture cost is higher, so membranes with higher selectivity should be used. If CO2/N2selectivity is higher than 30, permeability of membrane has more influence on the cost, membranes with higher CO2permeability should be selected [40].

    (2) Membranes with higher price are suitable for pressurization separation process and those with lower price are suitable to vacuum separation process [40, 42].If the price of membrane is lower, it is cost-effective to choose a membrane with higher CO2/N2selectivity.If the price is higher, a membrane with a higher CO2permeability is more suitable [22].

    2.4 Pressure swing adsorption

    Pressure swing adsorption is based on different adsorption abilities of absorbent to components in the flue gas. The process consists of two primary steps,namely, CO2adsorption by adsorbent at high pressure and desorption at low pressure. A large pressure difference between adsorption and desorption is needed.Adsorption at higher pressure and desorption at atmospheric pressure is termed as high pressure swing adsorption (HPSA), and adsorption at pressure slightly above atmospheric pressure and desorption under vacuum condition is termed as vacuum pressure swing adsorption (VPSA).

    Figure 6 gives the CO2capture cost by pressure swing adsorption [24, 43]. CO2avoided cost is $40-$63.The CO2recovery is less than 90% and the purity is less than 50%, which can not meet the requirement of CCS process. The data currently available are much less than those by chemical absorption and membrane separation. To evaluate the economic performance of pressure swing adsorption for capturing CO2from flue gas, further investigations are needed.

    Figure 6 CO2 capture cost by pressure swing adsorption

    Some measures may be used to reduce the cost.

    (1) VPSA is superior to HPSA. The energy consumption for compression of flue gas by VPSA is much less [24, 43, 44].

    (2) Increase work capacity and N2/CO2selectivity of adsorbent [24].

    (3) Increase adsorption and desorption rate. The amount of adsorbent is reduced and the CO2purity is increased, decreasing the investment in CO2capture units and the operating cost [24].

    3 COMPARISON OF THREE GAS SEPARATION TECHNOLOGIES

    To mitigate global warming caused by greenhouse emission, CO2avoided amount is preferable to CO2captured amount, so CO2avoided cost is chosen as the economic indicator to evaluate the technologies.In addition, CO2recovery and purity are selected as indicators for technology feasibility. CO2avoided costs are presented in Tables 1 and 2, and also plotted in Fig. 7. The chemical absorption presents the lowest cost and highest CO2recovery and purity.

    4 CONCLUSIONS

    The targets of European Union for CO2capture in coal-fired power plants include that the recovery of CO2is no less than 90% and the cost is €20-€30 per ton(based on CO2captured) [45]. The goals of U.S. Department of Energy for CO2capture are that CO2recovery is not less than 90% and the cost of electricity does not increase more than 20% [4]. Based on these targets, some conclusions are obtained for the three traditional gas separation methods for CO2capture from power plant flue gas.

    (1) For the CO2recovery, both chemical absorption and membrane separation can meet the requirement for CO2capture. Chemical absorption is betterthan membrane separation, if CO2avoided cost is taken into account.

    Table 1 CO2 avoided cost by chemical absorption

    Table 2 CO2 avoided cost by membrane separation and pressure swing adsorption

    Figure 7 Comparison of chemical absorption, membrane separation and pressure swing adsorption● CO2 avoided cost; △ CO2 recovery; ▲ CO2 purity; Bracketed number-data number with same value

    (2) The major drawback for chemical absorption is the energy consumption [6, 13, 46] and further reduction in cost is relatively difficult.

    (3) Membrane separation for CO2capture from flue gas is not as mature as chemical absorption and the minimum cost reaches $25 per ton (based on CO2captured) by now, which meets the economic requirement for CO2capture [40]. An advantage of the approach is that membrane can be easily added to the power plant without requiring complicated integration[41]. With further improvement on the membrane performance, CO2capture cost can be significantly reduced, making membrane gas separation the most promising substitute for chemical absorption technology in the future.

    NOMENCLATURE

    Ccost of electricity, $·kW-1·h-1

    F1CO2avoided cost, $·t-1(based on CO2avoided)

    F2CO2captured cost, $·t-1(based on CO2captured)

    M1amount of CO2emission per kW·h of the net electricity output to grid, t·kW-1·h-1

    M2amount of CO2captured per kW·h of the net electricity output to grid, t·kW-1·h-1

    1 Yamasaki, A., “An overview of CO2mitigation options for global warming-Emphasizing CO2sequestration options”,J.Chem.Eng.Japan, 36 (4), 361-375 (2003).

    2 Zhang, A.L., Fang, D., Greenhouse Gas CO2Control and Recovery,China environmental science press, Beijing (1996). (in Chinese)

    3 U.S. EIA, “International energy outlook 2010”, Washington, DC,2010 [2010-10-13], http://www.eia.doe.gov/oiaf/ieo.

    4 National Energy Technology Laboratory (NETL), “Pulverized coal oxy-combustion power plants”, 2008[2011-02-05], http://www.netl.doe.gov/energy-analyses/pubs/PC%20Oxyfuel%20Combustion%20 Revised%20Report%202008.pdf.

    5 Yang, H.Q., Xu, Z.H., Fan, M.H., Gupta, R., Slimane, R.B., Bland,A.E., Wright, L., “Progress in carbon dioxide separation and capture:A review”,J.Environ.Sci., 20 (1), 14-27 (2008).

    6 Ho, M.T., Allinson, G.W., Wiley, D.E., “Factors affecting the cost of capture for Australian lignite coal fired power plants”,EnergyProcedia, 1 (1), 763-770 (2009).

    7 Herzog, H., Meldon, J., Hatton, A., “Advanced post-combustion CO2capture”, 2009 [2011-02-05], http://web.mit.edu/mitei/docs/reports/ herzog-meldon-hatton.pdf.

    8 Klemes, J., Bulatov, I., Cockerill, T., “Techno-economic modeling and cost functions of CO2capture processes”,Comput.Aided Chem.Eng., 20, 295-300 (2005).

    9 Hoffmann, S., Bratlett, M., Finkenrath, M., Evulet, A., Ursin, T.P.,“Performance and cost analysis of advanced gas turbine cycles with precombustion CO2capture”,J.Eng.for Gas Turbines and Power,131 (2), 021701, 1-7.

    10 Metz, B., Davidson, O., Coninck, H. D., Loos, M., Meyer, L., “Carbon dioxide capture and storage”, Cambridge University Press, 2005[2010-10-13], http://www.climatescience.gov/workshop2005/presentations/breakout_2ARubin.pdf.

    11 Li, J.L., Chen, B.H., “Review of CO2absorption using chemical solvents in hollow fiber membrane contactors”,Sep.Purif.Technol,41 (2), 109-122 (2005).

    12 Gibson, J., Schallehn, D., Zheng, Q., Chen, J., “Carbon dioxide capture from coal-fired power plants in China”, Summary Report for NZEC Work Package 3,2009 [2010-10-13], http://www.nzec.info/en/assets/Reports/Techno-Economic-Comparison-WP3-Final-English.pdf.

    13 Oexmann, J., Kather, A., “Post-combustion CO2capture in coal-fired power plants: Comparison of integrated chemical absorption processes with piperazine promoted potassium carbonate and MEA”,Energy Procedia, 1 (1), 799-806 (2009).

    14 Hamilton, M.R., Herzog, H.J., Parsons, J.E., “Cost and U.S. public policy for new coal power plants with carbon capture and sequestration”,Energy Procedia, 1 (1), 4487-4494 (2009).

    15 Yan, S.P., Fang, M.X., Zhang, W.F., Zhong, W.L., Luo, Z.Y., Cen,K.F., “Comparative analysis of CO2separation from flue gas by membrane gas absorption technology and chemical absorption technology in China”,Energy Convers.Manage., 49 (11), 3188-3197(2008).

    16 Zhong, W.L., “Study on CO2chemical absorption technology”,Master Thesis, Zhejiang University, China (2008). (in Chinese).

    17 Romeo, L.M., Bolea, I., Escosa, J.M., “Integration of power plant and amine scrubbing to reduce CO2capture costs ”,Appl.Therm.Eng., 28 (8-9), 1039-1046 (2008).

    18 Fang, M.X., Zhang, W.F., Yan, S.P., Luo, Z.Y., Cen, K.F., “Economic analysis on separation of CO2from coal-fired power plant”,J.Zhejiang University(Eng.Sci.), 41 (12), 2077-2081 (2007). (in Chinese)

    19 Yan, S.P., Fang, M.X., Zhang, W.F., Luo, Z.Y., Cen, K.F., “Engineering design and economic analysis of CO2sequestration from flue gas by using membrane absorption techniques”,J.Power Eng.,27 (3), 415-421 (2007). (in Chinese).

    20 Abu-Zahra, M.R.M., Niederer, J.P.M., Feron, P.H.M., Feron, P.H.M.,Versteeg, G.F., “CO2capture from power plants Part II. A parametric study of the economical performance based on mono-ethanolamine”,Int.J.Greenhouse Gas Control, 1 (2), 135-142 (2007).

    21 Peeters, A.N.M., Faaij, A.P.C., Turkenburg, W.C., “Techno-economic analysis of natural gas combined cycles with post-combustion CO2absorption, including a detailed evaluation of the development potential”,Greenhouse Gas Control, 1 (4), 396-417 (2007).

    22 Ho, M.T., Allinson, G.W., Wiley, D.E., “Comparison of CO2separation options for geo-sequestration: Are membranes competitive?”,Desalination, 192 (1-3), 288-295 (2006).

    23 Ho, M.T., Leamon, G., Alinson, G.W., Wiley, D.E., “Economics of CO2and mixed gas geosequestration of flue gas using gas separation membranes”,Ind.Eng.Chem.Res., 45 (8), 2546-2552 (2006).

    24 Ho, M.T., Wiley, D.E., Allinson, G.W., “Reducing the cost of post-combustion CO2capture”, In: Proceedings of the Eighth International Conference on Greenhouse Gas Technologies (GHGT-8),Tronheim, Norway (2006).

    25 Rubin, E.S., Rao, A.B., Chen, C., “Comparative assessments of fossil fuel power plants with CO2capture and storage”, 2005[2010-02-05], http://uregina.ca/ghgt7/PDF/papers/peer/475.pdf.

    26 Ciferno, J.P., DiPietro, P., Tarka, T., “An economic scoping study for CO2capture using aqueous ammonia”, 2005 [2010-10-13], http://www.transactionsmagazine.com/ArgonneLabCommonSense.pdf.

    27 Simmondsl, M., Hurst, P., “Post combustion technologies for CO2capture: A techno-economic overview of selected options”, 2005[2010-10-13], http://uregina.ca/ghgt7/PDF/papers/nonpeer/471.pdf .28 Jaud, P., Gros-Bonnivard, R., Kanniche, M., “Technico-economic feasibility study of CO2capture, transport and geo-sequestration: a case study for France”, 2005[2010-10-13], http://uregina.ca/ghgt7/PDF/papers/peer/033.pdf.

    29 Morrison, G.F., “Summary of Canadian clean power coalition work on CO2capture and storage”, 2004 [2010-10-13]http://www.iea-coal.org.uk/publishor/system/component_view.asp?P hyDocId=5602&LogDocId=81216.

    30 Rao, A.B., Rubin, E.S., Berkenpas, M.B., “An integrated modeling framework for carbon management technologies”, 2004 [2010-10-13],http://www.iecm-online.com/documentation/tech_04.pdf.

    31 Singh, D., Croiset, E., Douglas, P.L., Douglas, M.A., “techno-economic study of CO2capture from an existing coal-fired power plant: MEA scrubbingvs. O2/CO2recycle combustion”,Energy Convers.Manage., 44 (19), 3073-309 (2003).

    32 Chen, C., Rao, A.B., Rubin, E.S., “Comparative assessment of CO2capture options for Existing coal-fired power plants”, The Second National Conference on Carbon Sequestration, Alexandria, VA, USA(2003).

    33 Rao, A. B., Rubine, S. A., “Technical, Economic, and environmental assessment of amine-based CO2capture technology for power plant greenhouse gas control”,Environ.Sci.Technol., 36 (20), 4467-4475(2002).

    34 Parsons Infrastructure & Technology Group, Inc. “Updated cost and performance estimates for fossil fuel power plants with CO2removal”, 2002 [2010-10-13], http://www.netl.doe.gov/technologies/carbon_seq/Resources/Analysis/pubs/UpdatedCosts.pdf.

    35 Simbeck, D.R., “CO2mitigation economics for existing coal-fired power plants”, Pittsburgh Coal Conference, Newcastle, NSW, Australia, 2001 [2010-10-13], http://www.netl.doe.gov/publications/proceedings/01/carbon_seq/7c2.pdf.

    36 Alstom Power Inc., ABB Lummus Global Inc., “Engineering feasibility and economics of CO2capture on an existing coal-fired power plant”, US Department of Energy/NETL, Pittsburgh, PA,2001 [2010-10-13], http://www.netl.doe.gov/technologies/carbon_seq/Resources/Analysis/pubs/AlstomReport.pdf.

    37 Yang, D.X., Wang, Z., Wang, J.X, Wang, S.C., “Potential of two-stage membrane system with recycle stream for CO2capture from post-combustion gas”,Energy Fuels, 23, 4755-4762 (2009).

    38 Zhao, L., Menzer, R., Riensche, E.,Blum, L., Stolten, D., “Concepts and investment cost analyses of muti-stage membrane systems used in post-combustion processes”,Energy Procedia, 1 (1), 269-278(2009).

    39 He, X.Z., Lie, J.A., Sheridan, E., Hagg, M.B., “CO2Capture by Hollow Fibre Carbon Membranes: Experiments and Process Simulations”,Energy Procedia, 1 (1), 261-268 (2009).

    40 Merkel, T.C., Lin, H.Q., Wei, X.T., Baker, R.,“Power plant post-combustion carbon dioxide capture: an opportunity for membranes”,J.Membr.Sci., 359 (1-2), 126 - 139 (2010).

    41 Shim, H.M., Lee, J.S., Wang, H.Y., Choi, S.H., Kim, J.H., Kim, H.T.,“Modeling and economic analysis of CO2separation process with hollow fiber membrane module”,Korean J.Chem.Eng., 24 (3),537-541 (2007).

    42 Ho, M.T., Allinson, G.W., Wiley, D.E., “Reducing the cost of CO2capture from flue gases using membrane technology”,Ind.Eng.Chem.Res., 47 (5), 1562-1568 (2008).

    43 Ho, M.T., Allinson, G.W., Wiley, D.E., “Reducing the cost of CO2capture from flue gases using pressure swing adsorption”,Ind.Eng.Chem.Res., 47 (14), 4883-4890 (2008).

    44 Zhang, J., Webley, P.A., Xiao, P., “Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2capture from flue gas”,Energy Convers.Manage., 49 (2), 346-356(2008).

    45 European Commission, “CO2capture and storage projects”, 2007[2010-10-13], http://ec.europa.eu/research/energy/pdf/synopses_co2_en.pdf.46 Woods, M.C., Capicotto, P.J., Haslbeck, J.L., Kuehn, N.J.,Matuszewski, M.., Pinkerton, L.L., Rutkowski, M.D. Schoff, R.L.,Vaysman, V., “Cost and Performance Baseline For Fossil Energy Plants”, National Energy Technology Laboratory, 2007 [2011-2-22],http://www.netl.doe.gov/energy-analyses/pubs/Bituminous%20Basel ine_Final%20Report.pdf.

    猜你喜歡
    江華
    Role of excited states in helium-like ions on high-order harmonic generation
    江華:清正廉潔傳家風(fēng)
    Clinical observation of pediatric Tuina plus oral Chinese medication for pediatric anorexia due to spleen failing in transportation
    新商業(yè)模式下新商科通識(shí)課建設(shè)的思考和探索
    Transport property of inhomogeneous strained graphene?
    “鳥(niǎo)”與“烏”
    陳江華 藏石欣賞
    寶藏(2018年12期)2019-01-29 01:51:20
    A 4-layer method of developing integrated sensor systems with LabVIEW
    巧記多音字(十四)
    巧記多音字(十五)
    精品国产美女av久久久久小说| av视频在线观看入口| 好男人在线观看高清免费视频 | 国产成+人综合+亚洲专区| 国产精品综合久久久久久久免费 | 桃色一区二区三区在线观看| 99精品在免费线老司机午夜| 777久久人妻少妇嫩草av网站| 国产精品久久久久久亚洲av鲁大| 亚洲精品粉嫩美女一区| 欧美日韩一级在线毛片| 欧美久久黑人一区二区| 999久久久精品免费观看国产| 在线永久观看黄色视频| 嫁个100分男人电影在线观看| 午夜久久久在线观看| 亚洲自偷自拍图片 自拍| 精品国产亚洲在线| 亚洲成人国产一区在线观看| 给我免费播放毛片高清在线观看| 中文字幕最新亚洲高清| 精品国产亚洲在线| 国产一区二区在线av高清观看| 青草久久国产| 怎么达到女性高潮| 亚洲专区中文字幕在线| or卡值多少钱| av片东京热男人的天堂| 精品卡一卡二卡四卡免费| 午夜视频精品福利| or卡值多少钱| 在线av久久热| 久久精品亚洲熟妇少妇任你| 中文字幕人成人乱码亚洲影| 色精品久久人妻99蜜桃| 最新美女视频免费是黄的| 久久久久久久久免费视频了| 国产精品电影一区二区三区| 亚洲欧洲精品一区二区精品久久久| 国产人伦9x9x在线观看| 高潮久久久久久久久久久不卡| 亚洲国产欧美网| 久久久久久久久中文| 亚洲av五月六月丁香网| 欧美亚洲日本最大视频资源| 国产野战对白在线观看| 一区二区日韩欧美中文字幕| 国产一区二区在线av高清观看| 亚洲av美国av| 波多野结衣一区麻豆| 久久久久久久久免费视频了| 97碰自拍视频| 欧美日韩乱码在线| 精品午夜福利视频在线观看一区| 亚洲欧美精品综合一区二区三区| 午夜福利,免费看| 高清毛片免费观看视频网站| 日韩大尺度精品在线看网址 | 夜夜夜夜夜久久久久| 看黄色毛片网站| 亚洲av成人不卡在线观看播放网| 香蕉丝袜av| 女人精品久久久久毛片| 日韩精品中文字幕看吧| 午夜a级毛片| 男女下面插进去视频免费观看| 大码成人一级视频| 亚洲欧美日韩另类电影网站| 色综合亚洲欧美另类图片| av网站免费在线观看视频| 成熟少妇高潮喷水视频| 国产精品99久久99久久久不卡| 亚洲中文字幕日韩| 丝袜在线中文字幕| 久热爱精品视频在线9| 12—13女人毛片做爰片一| 一a级毛片在线观看| 日韩欧美一区二区三区在线观看| 老汉色av国产亚洲站长工具| 制服丝袜大香蕉在线| 又大又爽又粗| 97超级碰碰碰精品色视频在线观看| 国产精品一区二区免费欧美| 久久精品亚洲熟妇少妇任你| 99久久久亚洲精品蜜臀av| 久久狼人影院| 好看av亚洲va欧美ⅴa在| 国产亚洲精品一区二区www| 欧美不卡视频在线免费观看 | 亚洲成国产人片在线观看| 亚洲在线自拍视频| 曰老女人黄片| 久久国产乱子伦精品免费另类| 免费女性裸体啪啪无遮挡网站| 老司机午夜福利在线观看视频| 天天一区二区日本电影三级 | 人妻丰满熟妇av一区二区三区| 国产一区二区三区视频了| 国产精品,欧美在线| 成人手机av| 窝窝影院91人妻| 好男人电影高清在线观看| 露出奶头的视频| 国产精品秋霞免费鲁丝片| 精品久久久精品久久久| 国产av一区二区精品久久| 久久精品成人免费网站| 色综合婷婷激情| 成人三级黄色视频| 亚洲国产精品成人综合色| 欧洲精品卡2卡3卡4卡5卡区| 亚洲 欧美 日韩 在线 免费| or卡值多少钱| 久久久久精品国产欧美久久久| 亚洲欧美激情在线| 天天添夜夜摸| 欧美成人免费av一区二区三区| 国语自产精品视频在线第100页| 国产精品香港三级国产av潘金莲| 一级,二级,三级黄色视频| 久久午夜综合久久蜜桃| 日韩精品青青久久久久久| 久久中文字幕人妻熟女| 国产片内射在线| 亚洲av五月六月丁香网| 久久久久久国产a免费观看| 国产97色在线日韩免费| 亚洲熟女毛片儿| 久久久久久国产a免费观看| 十分钟在线观看高清视频www| 在线十欧美十亚洲十日本专区| 日本 av在线| www.www免费av| 日韩大尺度精品在线看网址 | 国产精品久久电影中文字幕| 91字幕亚洲| 国产精品av久久久久免费| 99久久综合精品五月天人人| 777久久人妻少妇嫩草av网站| 中文字幕人妻丝袜一区二区| 午夜福利在线观看吧| 在线观看免费午夜福利视频| 日韩欧美在线二视频| 久99久视频精品免费| 91麻豆av在线| 啦啦啦观看免费观看视频高清 | 国产伦人伦偷精品视频| 久久午夜亚洲精品久久| 亚洲欧洲精品一区二区精品久久久| 欧美日韩瑟瑟在线播放| 韩国精品一区二区三区| 美女高潮喷水抽搐中文字幕| 日本a在线网址| 非洲黑人性xxxx精品又粗又长| 九色国产91popny在线| 亚洲精品一卡2卡三卡4卡5卡| 99国产极品粉嫩在线观看| 国产一卡二卡三卡精品| 一个人观看的视频www高清免费观看 | 国产aⅴ精品一区二区三区波| 老汉色∧v一级毛片| 成人国产综合亚洲| 男女做爰动态图高潮gif福利片 | 手机成人av网站| 亚洲,欧美精品.| 亚洲人成伊人成综合网2020| 97人妻天天添夜夜摸| 国产成年人精品一区二区| 亚洲色图 男人天堂 中文字幕| 欧美一级a爱片免费观看看 | 少妇粗大呻吟视频| 电影成人av| 可以在线观看毛片的网站| 国产亚洲精品第一综合不卡| 琪琪午夜伦伦电影理论片6080| 一进一出抽搐动态| 亚洲欧美日韩高清在线视频| 欧美激情久久久久久爽电影 | 亚洲精品久久国产高清桃花| 日韩av在线大香蕉| 91麻豆av在线| 亚洲国产日韩欧美精品在线观看 | 成在线人永久免费视频| 三级毛片av免费| 窝窝影院91人妻| 午夜精品国产一区二区电影| 在线天堂中文资源库| 操出白浆在线播放| 免费在线观看日本一区| 精品一区二区三区视频在线观看免费| 国产xxxxx性猛交| 国内毛片毛片毛片毛片毛片| 中亚洲国语对白在线视频| 在线观看免费午夜福利视频| 中文字幕最新亚洲高清| 侵犯人妻中文字幕一二三四区| 精品人妻在线不人妻| 免费搜索国产男女视频| 97超级碰碰碰精品色视频在线观看| 一区二区三区国产精品乱码| 悠悠久久av| 久久欧美精品欧美久久欧美| 国产又爽黄色视频| 满18在线观看网站| 亚洲成a人片在线一区二区| 午夜免费鲁丝| 天天躁夜夜躁狠狠躁躁| 露出奶头的视频| 97超级碰碰碰精品色视频在线观看| 在线观看66精品国产| 99在线人妻在线中文字幕| 成人三级做爰电影| 国产精品影院久久| tocl精华| 国产亚洲av高清不卡| 一个人免费在线观看的高清视频| 午夜免费鲁丝| 亚洲视频免费观看视频| 成熟少妇高潮喷水视频| 涩涩av久久男人的天堂| 在线观看免费午夜福利视频| 亚洲欧美精品综合一区二区三区| 搡老妇女老女人老熟妇| 男男h啪啪无遮挡| 国产免费av片在线观看野外av| 国产麻豆69| 欧美成人午夜精品| 亚洲aⅴ乱码一区二区在线播放 | 久久久久久久久免费视频了| 日韩欧美一区视频在线观看| 欧美丝袜亚洲另类 | 免费观看人在逋| 日韩欧美国产在线观看| 在线观看免费视频日本深夜| 久久久水蜜桃国产精品网| 成人亚洲精品av一区二区| 99久久久亚洲精品蜜臀av| 啪啪无遮挡十八禁网站| 女人爽到高潮嗷嗷叫在线视频| 宅男免费午夜| 美女扒开内裤让男人捅视频| 国产亚洲精品第一综合不卡| 无人区码免费观看不卡| 成人特级黄色片久久久久久久| 男女之事视频高清在线观看| 欧美日本视频| videosex国产| 亚洲天堂国产精品一区在线| 国产不卡一卡二| 三级毛片av免费| 亚洲三区欧美一区| 人成视频在线观看免费观看| 欧美 亚洲 国产 日韩一| 精品乱码久久久久久99久播| 亚洲国产中文字幕在线视频| 无遮挡黄片免费观看| 亚洲色图 男人天堂 中文字幕| 亚洲色图av天堂| 极品教师在线免费播放| 国产成人免费无遮挡视频| 在线永久观看黄色视频| www.精华液| 伊人久久大香线蕉亚洲五| 国产成人影院久久av| 国产免费男女视频| 亚洲狠狠婷婷综合久久图片| 亚洲色图综合在线观看| 无遮挡黄片免费观看| 日韩有码中文字幕| 亚洲国产欧美日韩在线播放| 久久九九热精品免费| 亚洲午夜精品一区,二区,三区| 啦啦啦 在线观看视频| 亚洲精品国产色婷婷电影| 成人三级黄色视频| 首页视频小说图片口味搜索| 免费看a级黄色片| 欧美人与性动交α欧美精品济南到| 黄色成人免费大全| 99国产精品一区二区蜜桃av| 亚洲最大成人中文| 制服丝袜大香蕉在线| 91精品国产国语对白视频| 亚洲成人国产一区在线观看| 在线播放国产精品三级| 欧美黑人精品巨大| 亚洲国产中文字幕在线视频| 男女下面进入的视频免费午夜 | 级片在线观看| 日本 av在线| 国产精品亚洲av一区麻豆| 天天躁夜夜躁狠狠躁躁| 亚洲人成电影免费在线| 亚洲精品国产区一区二| 如日韩欧美国产精品一区二区三区| 国产精品免费视频内射| 人成视频在线观看免费观看| 曰老女人黄片| 亚洲国产精品成人综合色| 午夜福利影视在线免费观看| 亚洲av日韩精品久久久久久密| 国产日韩一区二区三区精品不卡| 少妇被粗大的猛进出69影院| 黄色丝袜av网址大全| 美女午夜性视频免费| 日本撒尿小便嘘嘘汇集6| 两个人看的免费小视频| 亚洲,欧美精品.| 日本在线视频免费播放| 午夜福利一区二区在线看| 老司机福利观看| 男女午夜视频在线观看| 亚洲免费av在线视频| 纯流量卡能插随身wifi吗| 黄片大片在线免费观看| 精品少妇一区二区三区视频日本电影| 久久天躁狠狠躁夜夜2o2o| 韩国av一区二区三区四区| 国产亚洲欧美在线一区二区| 黄片播放在线免费| 欧美激情 高清一区二区三区| 午夜成年电影在线免费观看| 午夜a级毛片| 欧美一级毛片孕妇| 成人三级黄色视频| 欧美成人免费av一区二区三区| 最好的美女福利视频网| 国产97色在线日韩免费| 亚洲国产精品sss在线观看| 精品无人区乱码1区二区| 国产成人欧美| 久9热在线精品视频| 亚洲精品在线美女| 后天国语完整版免费观看| 亚洲三区欧美一区| 国产色视频综合| 黄网站色视频无遮挡免费观看| 久久亚洲真实| 一二三四在线观看免费中文在| 日韩av在线大香蕉| 国产精品1区2区在线观看.| 狠狠狠狠99中文字幕| 精品久久久精品久久久| 大陆偷拍与自拍| 亚洲中文日韩欧美视频| 成在线人永久免费视频| 中文字幕精品免费在线观看视频| 欧美日韩乱码在线| 色婷婷久久久亚洲欧美| 啪啪无遮挡十八禁网站| 麻豆成人av在线观看| 久久天躁狠狠躁夜夜2o2o| 午夜激情av网站| 亚洲黑人精品在线| 一级a爱视频在线免费观看| 亚洲国产精品成人综合色| 亚洲国产精品合色在线| 亚洲国产欧美一区二区综合| 麻豆成人av在线观看| 欧美成人一区二区免费高清观看 | 日韩有码中文字幕| 日韩欧美国产一区二区入口| 最新在线观看一区二区三区| 久久国产乱子伦精品免费另类| 欧美丝袜亚洲另类 | 久久人妻av系列| 丰满的人妻完整版| 久久热在线av| 天天躁狠狠躁夜夜躁狠狠躁| a级毛片在线看网站| 久久青草综合色| 国产真人三级小视频在线观看| 两性夫妻黄色片| 欧美性长视频在线观看| 国产欧美日韩精品亚洲av| 婷婷丁香在线五月| 一进一出抽搐gif免费好疼| 大型av网站在线播放| 99精品在免费线老司机午夜| 国产主播在线观看一区二区| 国产精品秋霞免费鲁丝片| 国产精品亚洲一级av第二区| 少妇裸体淫交视频免费看高清 | 精品人妻在线不人妻| 99久久国产精品久久久| 亚洲中文字幕日韩| 亚洲aⅴ乱码一区二区在线播放 | 美女扒开内裤让男人捅视频| 一进一出好大好爽视频| 黑人欧美特级aaaaaa片| 变态另类丝袜制服| 9191精品国产免费久久| 亚洲七黄色美女视频| 又黄又爽又免费观看的视频| 夜夜爽天天搞| 日本黄色视频三级网站网址| 欧美日韩福利视频一区二区| 亚洲av成人不卡在线观看播放网| 久久这里只有精品19| 涩涩av久久男人的天堂| 中文字幕色久视频| 午夜福利一区二区在线看| 日韩欧美国产在线观看| 天堂√8在线中文| 真人做人爱边吃奶动态| 欧美激情高清一区二区三区| 欧美精品啪啪一区二区三区| 视频在线观看一区二区三区| 精品国产超薄肉色丝袜足j| 好男人在线观看高清免费视频 | 一个人免费在线观看的高清视频| 亚洲自偷自拍图片 自拍| 国产成人精品无人区| 亚洲av五月六月丁香网| 在线观看免费日韩欧美大片| 精品电影一区二区在线| 国产97色在线日韩免费| 国产高清激情床上av| 丰满人妻熟妇乱又伦精品不卡| 亚洲视频免费观看视频| 亚洲色图综合在线观看| 俄罗斯特黄特色一大片| 亚洲av五月六月丁香网| 成人手机av| 日韩免费av在线播放| x7x7x7水蜜桃| 中文字幕人成人乱码亚洲影| 欧美大码av| 老汉色av国产亚洲站长工具| 在线观看舔阴道视频| 黄频高清免费视频| 一级黄色大片毛片| 欧美人与性动交α欧美精品济南到| 嫩草影视91久久| 欧美黄色淫秽网站| 国产av一区二区精品久久| 国产在线精品亚洲第一网站| 女性生殖器流出的白浆| 两性午夜刺激爽爽歪歪视频在线观看 | 免费少妇av软件| 校园春色视频在线观看| 岛国视频午夜一区免费看| 一级毛片精品| 一夜夜www| av免费在线观看网站| 十八禁人妻一区二区| 99久久久亚洲精品蜜臀av| 日韩一卡2卡3卡4卡2021年| 不卡一级毛片| 日韩有码中文字幕| 亚洲美女黄片视频| www.精华液| 男女床上黄色一级片免费看| 黄色毛片三级朝国网站| 99国产综合亚洲精品| 色婷婷久久久亚洲欧美| 18禁裸乳无遮挡免费网站照片 | 亚洲精品一区av在线观看| 人妻久久中文字幕网| 国产私拍福利视频在线观看| 亚洲 欧美一区二区三区| av在线天堂中文字幕| 美女国产高潮福利片在线看| 在线观看免费日韩欧美大片| 97碰自拍视频| e午夜精品久久久久久久| 亚洲av成人不卡在线观看播放网| 中文字幕人妻熟女乱码| 国产一区二区三区视频了| 禁无遮挡网站| 中文亚洲av片在线观看爽| 黄频高清免费视频| 91精品国产国语对白视频| 亚洲av美国av| 人妻久久中文字幕网| 国产精品久久久av美女十八| 极品人妻少妇av视频| 日本免费一区二区三区高清不卡 | 欧美亚洲日本最大视频资源| 久久久久国内视频| 欧美不卡视频在线免费观看 | 精品电影一区二区在线| 香蕉国产在线看| 亚洲专区国产一区二区| 男女下面插进去视频免费观看| 99国产精品一区二区三区| 国内毛片毛片毛片毛片毛片| 亚洲av成人一区二区三| 日韩三级视频一区二区三区| 国内精品久久久久精免费| 亚洲男人天堂网一区| 级片在线观看| 在线观看免费视频网站a站| 精品久久久久久成人av| 88av欧美| 午夜福利影视在线免费观看| 日韩大码丰满熟妇| 午夜福利高清视频| 最新在线观看一区二区三区| 亚洲激情在线av| 看黄色毛片网站| 国产精品久久久久久人妻精品电影| 亚洲一区二区三区色噜噜| 国产亚洲欧美98| 久久亚洲精品不卡| 脱女人内裤的视频| 国产高清有码在线观看视频 | 啦啦啦韩国在线观看视频| 大陆偷拍与自拍| 麻豆成人av在线观看| bbb黄色大片| 中文字幕人成人乱码亚洲影| 免费观看精品视频网站| 制服丝袜大香蕉在线| 夜夜看夜夜爽夜夜摸| 人人妻人人澡人人看| 午夜a级毛片| 可以在线观看毛片的网站| 欧美成人性av电影在线观看| 丝袜在线中文字幕| 亚洲欧美精品综合久久99| 国产精品二区激情视频| 午夜福利影视在线免费观看| 午夜福利视频1000在线观看 | 色尼玛亚洲综合影院| 国产黄a三级三级三级人| 亚洲一区二区三区不卡视频| 久久精品成人免费网站| 国产av在哪里看| 国产精品永久免费网站| 欧美日韩中文字幕国产精品一区二区三区 | 美女大奶头视频| 91老司机精品| 欧美激情高清一区二区三区| 妹子高潮喷水视频| 可以免费在线观看a视频的电影网站| 欧美黄色片欧美黄色片| 美国免费a级毛片| 99riav亚洲国产免费| 涩涩av久久男人的天堂| 久久人妻av系列| 中文字幕另类日韩欧美亚洲嫩草| 一边摸一边做爽爽视频免费| 十分钟在线观看高清视频www| 亚洲av美国av| 亚洲va日本ⅴa欧美va伊人久久| 给我免费播放毛片高清在线观看| 美女大奶头视频| 免费观看精品视频网站| 亚洲国产精品成人综合色| 91字幕亚洲| 国内久久婷婷六月综合欲色啪| 久久久久久久午夜电影| 国产精品免费视频内射| 欧美色欧美亚洲另类二区 | 9191精品国产免费久久| 亚洲人成电影观看| 亚洲国产精品sss在线观看| 国内精品久久久久精免费| 亚洲一码二码三码区别大吗| 男人舔女人的私密视频| 日韩欧美在线二视频| 亚洲av电影在线进入| 亚洲成人免费电影在线观看| 狂野欧美激情性xxxx| 欧美日本中文国产一区发布| 老熟妇乱子伦视频在线观看| 国产成人av教育| 国产一卡二卡三卡精品| 欧美 亚洲 国产 日韩一| 中文字幕人妻熟女乱码| av视频免费观看在线观看| 色播在线永久视频| www.www免费av| 在线视频色国产色| 窝窝影院91人妻| 国产精品久久视频播放| 午夜福利18| 欧美最黄视频在线播放免费| 久久人妻福利社区极品人妻图片| 又黄又爽又免费观看的视频| 18美女黄网站色大片免费观看| 精品国产超薄肉色丝袜足j| av福利片在线| 久久久久亚洲av毛片大全| 十分钟在线观看高清视频www| 一区福利在线观看| 国产精品一区二区在线不卡| 一二三四社区在线视频社区8| 亚洲中文日韩欧美视频| 亚洲av第一区精品v没综合| 亚洲欧美日韩另类电影网站| 午夜精品久久久久久毛片777| 女人高潮潮喷娇喘18禁视频| 亚洲avbb在线观看| 美女高潮喷水抽搐中文字幕| 成人精品一区二区免费| 亚洲精品中文字幕一二三四区| 国产视频一区二区在线看| 中文字幕人妻熟女乱码| 午夜福利18| 亚洲精品国产色婷婷电影| 日韩三级视频一区二区三区| 国产成+人综合+亚洲专区| 中国美女看黄片| 亚洲专区中文字幕在线| 91麻豆av在线| 岛国视频午夜一区免费看| 亚洲av片天天在线观看| 免费人成视频x8x8入口观看| 777久久人妻少妇嫩草av网站| 18禁美女被吸乳视频| 夜夜看夜夜爽夜夜摸| 一卡2卡三卡四卡精品乱码亚洲| 国产精品爽爽va在线观看网站 |