• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    葡萄懸浮細(xì)胞長期培養(yǎng)過程中不同繼代條件下花青素生產(chǎn)的不穩(wěn)定性

    2011-02-26 13:20:48曲均革張衛(wèi)虞星炬
    生物工程學(xué)報 2011年11期
    關(guān)鍵詞:張衛(wèi)工程學(xué)花青素

    曲均革,張衛(wèi),虞星炬

    1 中國科學(xué)院大連化學(xué)物理研究所,大連 116023

    2 浙江醫(yī)藥高等??茖W(xué)校,寧波 315100

    3 澳大利亞弗林德斯大學(xué)醫(yī)學(xué)院,阿德雷德 SA5042

    Introduction

    Higher plants are a valuable source of numerous secondary metabolites which are used as pharmaceuticals, agrochemicals, flavors, fragrances, colors, pesticides and food additives[1-3]. As a promising technology for the production of these bioactive chemicals, plant cell culture has many prominent advantages over extraction from whole plants and chemical synthesis[4-7]. However, the commercialization of plant cell culture has rarely been realized[4,8]. One of the impediments to the scale-up is the metabolic variability in plant cell culture, resulting in highly unstable production of secondary metabolites of interest[5]. The instability of plant cell cultures is a ubiquitous problem that has been widely observed during long-term successive subcultures[9-16]. But the understanding of the mechanisms is very limited. A number of mechanisms have been proposed, including inherent heterogeneity of the source explant material, genetic and epigenetic instability, environmental stress, lack of tissue differentiation, involvement of chemical signal[13,15-18]. However, lack of experimental validation prevents a unified understanding of mechanisms causing instability.

    Anthocyanins are a group of water-soluble pigments visible to the human eye that belong to the widespread class of phenolic compounds collectively named flavonoids[19]. They are widely applied to food, cosmetics, nutriceutical and potential pharmaceutical components for treatment of cancer and heart disease[5]. They are glycosides of polyhydroxy and polymethoxy derivatives of 2-phenylbenzopyrylium or flavylium salts. The differences among individual anthocyanins relate to the quantity of hydroxyl groups, the nature and quantity of sugars attached to the molecule, the position of this attachment, and the nature and quantity of aliphatic or aromatic acids attached to sugars in the molecule[5,19-20]. Because of anthocyanins are visible to the human eye, it makes the screening of cell lines with different anthocyanin-producing capabilities simple. At the same time, the extraction and analysis of anthocyanins are easy. So a systematic investigation of anthocyanins accumulation in suspension cultures of Vitis vinifera, as a model system, has been initiated in our laboratory to understand the production instability of secondary metabolites in plant cell culture. Here we used the model system to examine the instability of anthocyanins accumulation and to test whether the instability was driven by the fluctuations and variations in culture conditions such as subculture cycle and inoculum size. The investigation was launched with the purpose of understanding the causes of the metabolic instability and researching the optimal culture conditions to keep the stable anthocyanins biosynthesis in suspension cultures of Vitis vinifera.

    1 Materials and methods

    1.1 Suspension cell line and subculture conditions

    The cell line used in this study was developed by Cormier et al[21], originating from callus established in 1978 from Vitis vinifera L. cv. Gamay Fréaux var. teinturier berry pulp. This cell line, capable of anthocyanins accumulation in the dark, was a gift from Dr. Francois Cormier’s group (Quebec, Canada). It has been subcultured in our laboratory for nine years[16]. In this experiment, the suspension cultures were cultured in 100-mL Erlenmeyer flasks containing 20 mL B5 medium[22], supplemented with 30 g/L sucrose, 250 mg/L casein hydrolysate, 0.1 mg/L α-naphthaleneacetic acid (NAA) and 0.2 mg/L kinetin (K), the pH adjusted to 5.7?5.8 before autoclaving. Here two factors, subculture cycles and inoculum sizes were respectively studied during 10 successive subcultures. In the sub-experiment of subculture cycles, suspension cells were subcultured at the intervals of 6.5 d, 7 d, 7.5 d, respectively, and with the same inoculation size of 2.00 g wet cells prepared by filtering with a 50-μm mesh. In another sub-experiment of inoculum sizes study, the inoculum size was respectively 1.60 g, 2.00 g and 2.40 g wet cells prepared as above and subcultured every 7 days. Every time when subcultured, 6 flasks suspension cells were inoculated, among these 3 flasks were used for subcultured next time and another 3 flasks were used for analysis after this subculture cycle. All the subcultures were maintained in dark on a reciprocating shaker at 100 r/min and (25±1) °C.

    1.2 Biomass analysis

    At the end of every subculture cycle, 3 flasks were sampled for biomass and anthocyanins accumulation analysis. Firstly, the cultures were harvested by vacuum filtration through filter paper, washed with MilliQ water and weighed to obtain the fresh cell weight (FCW). Then some cell aggregate was kept for anthocyanins analysis and the other cells were put into the 80 °C-oven overnight to gain the dry cell weight (DCW).

    1.3 Mixed anthocyanins content by spectrophotometer

    To analyze the total anthocyanins content, 0.2 g fresh cells were sampled after vacuum filtration and extracted with 50% acetic acid solution, with a volume equivalent to 20 times the fresh cell weight, for 1-h period at room temperature[16]. After filtering through a 0.22-μm filter, 3 mL of the filtrate was mixed with 9 mL of McIIvaine’s buffer (14.7 g/L Na2HPO4·12H2O and 16.7 g/L anhydrous citric acid) and the pH adjusted to 3.0. The absorbance of the resulting solution was measured at 535 nm with 50% acetic acid: McIIvaine’s buffer (1∶3) was used as the blank control. The color value (CV) of the pigment extract, a commercial indicator of anthocyanins, was calculated by the following formula:

    In the above-described procedure, the dilution factor was 80. The CV allows for the accurate and comparative quantification of anthocyanins produced from a mixture of different pigments, as is the case for many cell cultures.

    1.4 Anthocyanins composition analysis by HPLC

    High Performance Liquid Chromatography was undertaken to examine anthocyanins composition, using the Agilent 1 100 series system and HPCore Chemstation. 10 μL of 50% acetic acid extracts that have been syringe-filtered through 0.22 μm membranes was injected onto a Hypersil ODS column (4.6 mm×250 mm, dp=5 μm). Anthocyanins were eluted according to the method of Yoshinaga[23], utilizing Buffer A (1.5% H3PO4in H2O) and Solvent B (1.5% H3PO4, 20% acetic acid, 25% acetonitrile in H2O). A linear gradient of 25 to 85% Solvent B in Buffer A was run for 40 minutes at 1.0 mL/min, followed by an equilibration period of 10 minutes at 25% Solvent B in Buffer A. Detection was at 520 nm using a photo-diode array detector.

    1.5 Data processing

    Microsoft Excel 2000 and SPSS 13.0 were used for data processing.

    2 Results and discussion

    2.1 Anthocyanins measured by spectrophotometer and HPLC

    The majority of researches about Anthocyanins are quantified by spectrophotometer[24-30]and High Performance Liquid Chromatography[12,31-34]. Fig. 1 shows the HPLC profiles of anthocyanins in our suspension cultures of Vitis vinifera. Fourteen kinds of anthocyanins were separate and quantified from the extract.

    Fig. 1 HPLC profiles of anthocyanins in suspension cultures of Vitis vinifera at wavelength of 520 nm. Peaks with labels represent P1: Delphinidin 3-glucoside (D3G); P2: Cyanidin 3-glucoside (C3G); P3: Petunidin 3-glucoside (Pet3G); P4: Peonidin 3-glucoside (Peo3G); P5: Malvidin 3-glucoside (M3G); P6: Delphinidin 3-acetylglucosid (D3AcG); P7: Cyanidin 3-acetylglucosid (C3AcG); P8: Petunidin 3-acetylglucosid (Pet3AcG); P9: Peonidin 3-acetylglucosid (Peo3AcG); P10: Delphinidin 3-coumaroylglucoside (D3CoumG); P11: Cyanidin 3-coumaroylglucoside (C3CoumG); P12: Petunidin 3-coumaroylglucoside (Pet3CoumG); P13: Peonidin 3-coumaroylglucoside (Peo3CoumG); P14: Malvidin 3-coumaroylglucoside (M3CoumG).

    Table 1 Differences of anthocyanins contents measured by spectrophotometer (CV/g-FCW) with by HPLC (Area) in suspension cultures of Vitis vinifera

    Table 1 shows some extract that presented the same anthocyanins content measured by spectrophotometer but different contents for each anthocyanin composition measured by HPLC. For example, (7 d, 2.00 g)-S1-1 and (7 d, 2.00 g)-S1-3 were two of the three repeated samples which have the same anthocyanins content of 2.6 CV/g-FCW in terms of spectrophotometer. But when examined by HPLC, none of the corresponding contents of the fourteen anthocyanins composition were equal to each other. (7 d, 2.00 g)-S1-1 had lower contents for delphinidin 3-glucoside (P1), cyanidin 3-glucoside (P2), delphinidin 3-acetylglucosid (P6), cyanidin 3-acetylglucosid (P7), petunidin 3-acetylglucosid (P8), cyanidin 3-coumaroylglucoside (P11) and higher contents for the other anthocyanins composition than (7 d, 2.00 g)-S1-3. As for the example of (7 d, 2.40 g)-S5-1 and (7 d, 2.40 g)-S6-2 which had the same anthocyanins content of 4.6 CV/g-FCW by means of spectrophotometer, there were obvious differences among the contents of anthocyanins composition measured by HPLC. Firstly, HPLC profiles were absent from delphinidin 3-acetylglucosid (P6) in (7 d, 2.40 g)-S6-2, whereas present in (7 d, 2.40 g)-S5-1. Secondly, (7 d, 2.40 g)-S5-1 had lower contents for peonidin 3-glucoside (P4), malvidin 3-glucoside (P5), cyanidin 3-acetylglucosid (P7), petunidin 3-acetylglucosid (P8), peonidin 3-acetylglucosid (P9), delphinidin 3-coumaroylglucoside (P10), peonidin 3-coumaroylglucoside (P13), malvidin 3-coumaroylglucoside (P14) and higher contents for the other anthocyanins composition than (7 d, 2.40 g)-S6-2. In addition, the differences of HPLC profiles between the two samples are remarkable. For instance, the peak area of delphinidin 3-glucoside (P1) was 16.9 in (7 d, 2.40 g)-S5-1 and 5.7 in (7 d, 2.40 g)-S6-2 and the former was 3-fold of the latter. However, the HPLC area of cyanidin 3-acetylglucosid (P7) was 6.1 in (7 d, 2.40 g)-S5-1 and 18 in (7 d, 2.40 g)-S6-2 and the former was one third of the latter. Since the absorbance by spectrophotometer represents the mixture of all anthocyanins and HPLC separate each of the anthocyanins before quantification, the HPLC profiles can give a more accurate and more comprehensive characterization about anthocyanins.

    2.2 Instability of anthocyanins accumulation in successive subcultures of Vitis vinifera

    Instability of secondary metabolite production is a common phenomenon in plant cell culture. In order to understand the production instability of secondary metabolites in plant cell culture, a systematic investigation of anthocyanins accumulation in suspension cultures of Vitis vinifera, as a model system, had been initiated in our laboratory. In our previous study, the unstable accumulation of anthocyanins had been observed[16]. There the anthocyanins content was measured by spectrophotometer and expressed by Color Value. Here High Performance Liquid Chromatography was applied to separate and quantify the anthocyanins. To illustrate the anthocyanins composition in ten successive subcultures in suspension cultures of Vitis vinifera, the HPLC profiles of suspension cultures under condition of (7.5 d, 2.00 g), that meant 7.5 d-subculture cycle together with 2.00 g-inoculum size was given as an example (Table 2). On the one hand, the instability of a specific anthocyanin biosynthesis during long-term subcultuers could be seen. For example, the HPLC areas of delphinidin 3-glucoside (P1) in the successive subcultures changed from 13.5 to 6.5, 3.5, 5.0, and so on. Besides this, the accumulation of other anthocyanin component fluctuated obviously during long-term subcultures. On the other hand, variability of anthocyanins composition between subcultures could be seen in Table 2. For example, in the 1st subculture, the contents of malvidin 3-glucoside (P5), cyanidin 3-acetylglucosid (P7), petunidin 3-acetylglucosid (P8), peonidin 3-acetylglucosid (P9) and delphinidin 3-coumaroylglucoside (P10) were lower and the other anthocyanins contents were higher than those in the 2nd subculture. The HPLC profiles of successive subcultures showed that the anthocyanin contents fluctuated both within and between subcultures.

    2.3 Effects of different subculture cycles and different inoculum sizes on instability of anthocyanins accumulation in suspension cultures of Vitis vinifera

    The instability of secondary metabolites production in plant cell culture is a bottleneck to the scale-up. For the complexity of the causations that result in the instability of secondary metabolites, studying the mechanisms of the instability is difficult in plant cell culture. The instability problem has been widely acknowledged, but the understanding of its mechanisms or causes is still poor. Here we investigated the factors that could bring the instability of anthocyanins production and then finding the best culture conditions for the stable production in suspension cultures of Vitis vinifera.

    Fig. 2 showed the instability of anthocyanins accumulation in suspension cultures of Vitis vinifera in different subculture conditions measured by spectrophotometer. The results were consistent with our previous researches and this had been proved to be due to plant cell cultures are heterogeneous with various cell subpopulations that have differentialgrowth potential and biosynthetic capacity[16]. In order to compare the effects of different subculture conditions on anthocyanins biosynthesis, we introduce instability coefficient which is defined as:

    Table 2 Anthocyanins composition in ten successive subcultures in the condition of 7.5 d-subculture cycle together with 2.00 g-inoculum size in suspension cultures of Vitis vinifera

    Here δ means instability coefficient; xnand xn+1mean anthocyanins accumulation in subculture n and subculture (n+1), respectively.means the average of anthocyanins contents in ten successive subcultures of Vitis vinifera.

    Fig. 2 Instability of anthocyanins accumulation in suspension cultures of Vitis vinifera in different subculture conditions measured by spectrophotometer. Data presented as deviation of three replicate samples.

    In our previous research, variation coefficient was used as a quantitative indicator of the instability of anthocyanin accumulation between subcultures which is defined as standard deviation divided by the mean of anthocyanins content[16]. We can conclude from both definitions that instability coefficient is a much more reasonable indicator in describing the instability of secondary metabolite production in plant cultures than variation coefficient for it not only reflects the whole information of the samples but also takes the sample order into consideration. The bigger instability coefficient is, the more instable the anthocyanins accumulation is. The instability coefficients of anthocyanins accumulation under conditions of different subculture cycles and different inoculum sizes could be seen in Table 3. When inoculum size was fixed to 2.00 g, the instability coefficients of 10 successive subcultures for different subculture cycles were almost unchangeable. It was 0.65, 0.68 and 0.62 for subculture cycle of 6.5 d, 7 d and 7.5 d respectively. However, when subculture cycle was fixed to 7 d, the instability coefficients of 10 successive subcultures for different inoculum sizes changed a lot. Whether the inoculum size was lower or higher than 2.00 g, the instability coefficients of anthocyanins accumulation both depressed. It was 0.68 for inoculum size of 2.00 g, while 0.44 and 0.54 for inoculum size of 1.60 g and 2.40 g, respectively. This showed that inoculum size had a more remarkable effect on instability of anthocyanins biosynthesis than subculture cycle. Among all the subculture conditions examined, 7 d-subculture cycle together with 1.60 g-inoculum size was the best one to keep the stable anthocyanins accumulation in suspension cultures of Vitis vinifera.

    As mentioned above, HPLC method can provide more accurate and more comprehensive information about anthocyanins. But the abundance of the variables makes the data analysis more complicated. As shown in Fig. 3, it is obvious that the instability of anthocyanins composition in 10 successive subcultures of Vitis vinifera. When take the 4th subculture as an example, we can see production of peonidin 3-coumaroylglucoside (P13) was the highest in all ten subcultures, while the other anthocyanins composition were much lower or even the lowest. So it is difficult to make a summary or find the inherent laws of the anthocyanins biosynthesis from the excessive data.Factor analysis is an effective statistic method for dealing with multi-variables. It is used to find latent variables or factors among observed variables by grouping variables with similar characteristics together. With factor analysis a small number of factors can be produced from a large number of variables. The factors extracted are not the actually measured variables, but they represent most information of the original data and can be used for further analysis to explain the nature of the studies much more effectively.

    Table 3 Instability coefficients of anthocyanins contents (CV/g-FCW) in ten successive subcultures of Vitis vinifera under different subculture conditions measured by spectrophotometer

    Fig. 3 Instability of anthocyanins composition in 10 successive subcultures of Vitis vinifera under condition of 7d-subculture cycle together with 2.00 g-inoculum size measured by HPLC. Series number represents 1: Delphinidin 3-glucoside (D3G); 2: Cyanidin 3-glucoside (C3G); 3: Petunidin 3-glucoside (Pet3G); 4: Peonidin 3-glucoside (Peo3G); 5: Malvidin 3-glucoside (M3G); 6: Delphinidin 3-acetylglucosid (D3AcG); 7: Cyanidin 3-acetylglucosid (C3AcG); 8: Petunidin 3-acetylglucosid (Pet3AcG); 9: Peonidin 3-acetylglucosid (Peo3AcG); 10: Delphinidin 3-coumaroylglucoside (D3CoumG); 11: Cyanidin 3-coumaroylglucoside (C3CoumG); 12: Petunidin 3-coumaroylglucoside (Pet3CoumG); 13: Peonidin 3-coumaroylglucoside (Peo3CoumG); 14: Malvidin 3-coumaroylglucoside (M3CoumG).

    Fig. 4 Factor scores of anthocyanins accumulation in suspension cultures of Vitis vinifera in different subculture conditions of (6.5 d, 2.00 g) (A), (7 d, 2.00 g) (B), (7.5 d, 2.00 g) (C), (7 d, 1.60 g) (D) and (7 d, 2.40 g) (E) by factor analysis of SPSS 13.0. The dot represented the anthocyanins composition by high-performance liquid chromatographic analysis in each subculture.

    Fig. 4 shows the factor scores of anthocyanins biosynthesis in ten successive subcultures for each subculture cycle and inoculum size condition. Every dot in the plot can represent all the anthocyanins composition measured by HPLC in corresponding subculture. So the distribution of factor scores in the successive subcultures can indicate the instability of anthocyanins accumulation. The more scattered the distribution is, the more instable the anthocyanins biosynthesis is. Here we express the distribution of the factor scores by sum of distances between the dots representing the adjacent subcultures in the plot of factor scores. By measuring and summing up all the distances between the data points of the adjacent subcultures, the instability of anthocyanins accumulation in ten successive subcultures for each condition can be indicated. By this means, the distances relative to each other for each subculture condition of (6.5 d, 2.00 g), (7 d, 2.00 g), (7.5 d, 2.00 g), (7 d, 1.60 g) and (7 d, 2.40 g) were 19.9, 21.7, 25.7, 16.3 and 17.2, respectively. So among all the subculture conditions that had been investigated, (7 d, 1.60 g) is the best one to keep the stability of anthocyanins biosynthesis in suspension cultures of Vitis vinifera.

    In conclusion, HPLC is a better means to quantification of anthocyanins when compared with spectrophotometer for its profiles can give a more accurate and more comprehensive characterization about anthocyanins composition. Not only the anthocyanins contents but also its composition exhibited instability along with the continuous subculture. Subculture cycle and inoculum size are both environmental cues driving the instability. Among all the conditions investigated in our study, the condition of 7 d-subculture cycle together with 1.60 g-inoculum size was the best one to keep the stable production of anthocyanins. Compared with subculture cycle, inoculum size was more effective in working on the instability of anthocyanins accumulation in suspension cultures of Vitis vinifera. For a given suspension cultures, systemic investigation of the culture conditions such as temperature, light, shear stress, inoculum size and age, gaseous composition, medium components and culture practice will help to find the optimal condition to keep the stable production of secondary metabolites and this is a prerequisite for commercialization of plant cell cultures.

    [1] Verpoorte R, van der Heijden R, Memelink J. Engineering the plant cell factory for secondary metabolite production. Transgen Res, 2000, 9(4/5): 323?343.

    [2] Dai J, Patel JD, Mumper RJ. Characterization of blackberry extract and its antiproliferative and anti-inflammatory properties. J Med Food, 2007, 10(2): 258?265.

    [3] Yue CJ, Zhong JJ. Purification and characterization of UDPG: ginsenoside Rd glucosyltransferase from suspended cells of Panax notoginseng. Process Biochem, 2005, 40(12): 3742?3748.

    [4] Verpoorte R, van der Heijden R, ten Hoopen HJG, et al. Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotechnol Lett, 1999, 21(6): 467?479.

    [5] Zhang W, Furusaki S. Production of anthocyanins by plant cell cultures. Biotechnol Bioprocess Eng, 1999, 4(4): 231?252.

    [6] Rao SR, Ravishankar GA. Plant cell cultures: Chemical factories of secondary metabolites. Biotechnol Adv, 2002, 20(2): 101?153.

    [7] Zhong JJ. Plant cell culture for production of paclitaxel and other taxanes. J Biosci Bioeng, 2002, 94(6): 591?599.

    [8] Roberts SC, Shuler ML. Large-scale plant cell culture. Curr Opin Biotechnol, 1997, 8(2): 154?159.

    [9] Deus-Neumann B, Zenk MH. Instability of indole alkaloid production in Catharanthus roseus cell suspension cultures. Planta Medica, 1984, 50(5): 427?431.

    [10] Vogelien DL, Hrazdina G, Reevers S, et al. Phenotypic differences in anthocyanin accumulation among clonally related cultured cells of carrot. Plant Cell Tiss Org Cult, 1990, 22(3): 213?222.

    [11] Qu JG, Zhang W, Hu QL, et al. Impact of subculture cycles and inoculum sizes on suspension cultures of Vitis vinifera. Chin J Biotech, 2006, 22(6): 984?989.曲均革, 張衛(wèi), 胡全利, 等. 繼代周期和接種量對葡萄細(xì)胞培養(yǎng)的影響. 生物工程學(xué)報, 2006, 22(6): 984?989.

    [12] Callebaut A, Terahara N, de Haan M, et al. Stability of anthocyanin composition in Ajuga reptans callus and cell suspension cultures. Plant Cell Tiss Org Cult, 1997, 50(3): 195?201.

    [13] Qu JG, Zhang W, Jin MF, et al. Effect of Homogeneity on Cell Growth and Anthocyanin Biosynthesis in Suspension Cultures of Vitis vinifera. Chin J Biotech, 2006, 22(5): 805?810.曲均革, 張衛(wèi), 金美芳, 等. 細(xì)胞均一性對葡萄細(xì)胞生長和花青素合成的影響. 生物工程學(xué)報, 2006, 22(5): 805?810.

    [14] Ketchum REB, Gibson DM, Croteau RB, et al. The kinetics of taxoid accumulation in cell suspension cultures of Taxus following elicitation with methyl jasmonate. Biotechnol Bioeng, 1999, 62(1): 97?105.

    [15] Kim BJ, Gibson DM, Shuler ML. Effect of subculture and elicitation on instability of taxol production in Taxus sp. suspension cultures. Biotechnol Prog, 2004, 20(6): 1666?1673.

    [16] Qu JG, Zhang W, Yu XJ, et al. Instability of anthocyanin accumulation in Vitis vinifera L. var. Gamay Fréaux suspension cultures. Biotechnol Bioprocess Eng, 2005, 10(2): 155?161.

    [17] D?rnenburg H, Knorr D. Strategies for the improvement of secondary metabolite production in plant cell cultures. Enzyme Microb Technol, 1995, 17(8): 674?684.

    [18] Naill MC, Roberts SC. Flow cytometric analysis of protein content in Taxus protoplasts and single cells as compared to aggregated suspension cultures. Plant Cell Rep, 2005, 23(8): 528?533.

    [19] Kong JM, Chia LS, Goh NK, et al. Analysis and biological activities of anthocyanins. Phytochem, 2003, 64(5): 923?933.

    [20] Nyman NA, Kumpulainen JT. Determination of anthocyanidins in berries and red wine by High-Performance Liquid Chromatography. J Agric Food Chem, 2001, 49(9): 4183?4187.

    [21] Cormier F, Do CB, Nicolas Y. Anthocyanin production in selected cell lines of grape (Vitis vinifera L.). In Vitro Cell Dev Biol Plant, 1994, 30(3): 171?173.

    [22] Gamborg OL, Miller RA, Ojima K. Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res, 1968, 50(1): 151?156.

    [23] Yoshinaga M, Yamakawa O, Nakatani M. Genotypic diversity of anthocyanin content and composition in purple-fleshed sweet potato (Ipomoea batatas (L.) Lam). Breed Sci, 1999, 49(1): 43?47.

    [24] Sato K, Nakayama M, Shigeta JI. Culturing conditions affecting the production of anthocyanin in suspended cell cultures of strawberry. Plant Sci, 1996, 113(1): 91?98.

    [25] Makunga NP, van Staden J, Cress WA. The effect of light and 2, 4-D on anthocyanin production in Oxalis reclinata callus. Plant Growth Regul, 1997, 23(3):153?158.

    [26] Sakurai M, Ozeki Y, Mori T. Induction of anthocyanin accumulation in rose suspension-cultured cells by conditioned medium of strawberry suspension cultures. Plant Cell Tiss Org Cult, 1997, 50(3): 211?214.

    [27] Zhang W, Seki M, Furusaki S. Effect of temperature and its shift on growth and anthocyanin production in suspension cultures of strawberry cells. Plant Sci, 1997, 127(2): 207?214.

    [28] Dédaldéchamp F, Uhel C. Induction of anthocyanin synthesis in nonpigmented grape cell suspensions by acting on DFR substrate availability or precursors level. Enzyme Microb Technol, 1999, 25(3/5): 316?321.

    [29] Kumar V, Sharma SS. Nutrient deficiency-dependent anthocyanin development in Spirodela polyrhiza L. Schleid. Biol Plant, 1999, 42(4): 621?624.

    [30] Honda H, Hiraoka K, Nagamori E, et al. Enhanced anthocyanin production from grape callus in an air-lift type bioreactor using a viscous additive-supplemented medium. J Biosci Bioeng, 2002, 94(2): 135?139.

    [31] Boss PK, Davies C, Robinson SP. Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation. Plant Physiol, 1996, 111(4): 1059?1066.

    [32] Revilla E, García-Beneytez E, Cabello F, et al. Value of high-performance liquid chromatographic analysis of anthocyanins in the differentiation of red grape cultivars and red wines made from them. J Chromatogr A, 2001, 915(1/2): 53?60.

    [33] Tedesco I, Russo GL, Nazzaro F, et al. Antioxidant effect of red wine anthocyanins in normal and catalase-inactive human erythrocytes. J Nutr Biochem, 2001, 12(9): 505?511.

    [34] Ali A, Strommer J. A simple extraction and chromatographic system for the simultaneous analysis of anthocyanins and stilbenes of Vitis species. J Agric Food Chem, 2003, 51(25): 7246?7251.

    猜你喜歡
    張衛(wèi)工程學(xué)花青素
    封底
    三角洲(2024年15期)2024-12-31 00:00:00
    工程學(xué)和圓柱
    《水利水運工程學(xué)報》征稿簡則
    不只是拼貼的視覺藝術(shù)
    《照明工程學(xué)報》征稿簡則
    原花青素B2通過Akt/FoxO4通路拮抗內(nèi)皮細(xì)胞衰老的實驗研究
    花青素對非小細(xì)胞肺癌組織細(xì)胞GST-π表達(dá)的影響
    中成藥(2017年5期)2017-06-13 13:01:12
    張衛(wèi)作品展
    畫刊(2016年4期)2016-11-01 21:34:18
    張衛(wèi)作品展
    畫刊(2016年3期)2016-11-01 21:33:41
    山楸梅漿果中花青素提取方法的優(yōu)化和測定
    中成藥(2016年8期)2016-05-17 06:08:41
    91字幕亚洲| 狠狠狠狠99中文字幕| 一夜夜www| 亚洲黑人精品在线| 亚洲精品粉嫩美女一区| 国产精品自产拍在线观看55亚洲| av国产精品久久久久影院| 久久午夜综合久久蜜桃| 国产精品一区二区在线不卡| 黄色毛片三级朝国网站| 国产精品久久久久成人av| 午夜两性在线视频| 亚洲 国产 在线| 午夜a级毛片| 国产蜜桃级精品一区二区三区| 亚洲全国av大片| 亚洲美女黄片视频| 亚洲国产看品久久| 一区福利在线观看| 男女下面进入的视频免费午夜 | 国产蜜桃级精品一区二区三区| 在线天堂中文资源库| av网站免费在线观看视频| 久久精品亚洲av国产电影网| 电影成人av| 真人一进一出gif抽搐免费| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲精品一区av在线观看| 午夜激情av网站| 中文字幕av电影在线播放| 成人亚洲精品av一区二区 | 在线十欧美十亚洲十日本专区| 国产成人免费无遮挡视频| 国产精品乱码一区二三区的特点 | 色综合欧美亚洲国产小说| 夜夜爽天天搞| 国产免费现黄频在线看| 1024视频免费在线观看| 一边摸一边抽搐一进一小说| 亚洲精品中文字幕一二三四区| 中国美女看黄片| 免费不卡黄色视频| 欧美大码av| 国产免费男女视频| 免费在线观看影片大全网站| 国产真人三级小视频在线观看| 久久久久亚洲av毛片大全| 另类亚洲欧美激情| 欧美激情极品国产一区二区三区| 久久中文看片网| 日本免费a在线| 91国产中文字幕| 国产单亲对白刺激| 人人澡人人妻人| 色老头精品视频在线观看| 亚洲国产欧美日韩在线播放| 久久久久亚洲av毛片大全| 欧美黑人精品巨大| 亚洲熟妇中文字幕五十中出 | 精品一区二区三区四区五区乱码| 波多野结衣一区麻豆| 精品欧美一区二区三区在线| 欧美久久黑人一区二区| 午夜91福利影院| 成年女人毛片免费观看观看9| 男人操女人黄网站| 国产亚洲欧美精品永久| 国产精品野战在线观看 | 国产三级黄色录像| 在线观看一区二区三区| 一进一出抽搐gif免费好疼 | 丰满的人妻完整版| 精品久久久久久久毛片微露脸| 久久精品91无色码中文字幕| x7x7x7水蜜桃| 美女扒开内裤让男人捅视频| 美女福利国产在线| 一区二区三区激情视频| 老熟妇仑乱视频hdxx| av天堂在线播放| 五月开心婷婷网| 大香蕉久久成人网| 夜夜夜夜夜久久久久| 伦理电影免费视频| 精品卡一卡二卡四卡免费| 美女国产高潮福利片在线看| 麻豆一二三区av精品| 级片在线观看| 精品卡一卡二卡四卡免费| 久热爱精品视频在线9| 波多野结衣av一区二区av| 亚洲熟妇熟女久久| 久久久久久久久久久久大奶| 国产成人av教育| 伦理电影免费视频| 好看av亚洲va欧美ⅴa在| 亚洲熟女毛片儿| 国产不卡一卡二| 老鸭窝网址在线观看| 成人18禁在线播放| 女人被躁到高潮嗷嗷叫费观| 午夜福利在线免费观看网站| 国产成人啪精品午夜网站| 在线观看免费视频日本深夜| 琪琪午夜伦伦电影理论片6080| 亚洲国产精品一区二区三区在线| 欧美日韩亚洲国产一区二区在线观看| 又黄又粗又硬又大视频| 亚洲视频免费观看视频| 69精品国产乱码久久久| 午夜福利影视在线免费观看| 国产欧美日韩一区二区三| 亚洲五月婷婷丁香| 可以在线观看毛片的网站| 成人国产一区最新在线观看| 交换朋友夫妻互换小说| 亚洲欧美日韩高清在线视频| 久久人人精品亚洲av| 18禁美女被吸乳视频| 成人亚洲精品av一区二区 | 叶爱在线成人免费视频播放| 国产精品 欧美亚洲| 国产精品亚洲一级av第二区| 一个人免费在线观看的高清视频| 老司机午夜十八禁免费视频| 水蜜桃什么品种好| 美女高潮到喷水免费观看| 免费在线观看亚洲国产| 一级黄色大片毛片| 欧美日韩中文字幕国产精品一区二区三区 | 视频区欧美日本亚洲| 两人在一起打扑克的视频| 日韩国内少妇激情av| av欧美777| 桃红色精品国产亚洲av| 亚洲午夜理论影院| 亚洲国产看品久久| 青草久久国产| 中文字幕精品免费在线观看视频| 国产主播在线观看一区二区| 欧美人与性动交α欧美精品济南到| 淫妇啪啪啪对白视频| 波多野结衣高清无吗| 国产伦人伦偷精品视频| 成人亚洲精品av一区二区 | 久久性视频一级片| 欧美乱色亚洲激情| av视频免费观看在线观看| 香蕉国产在线看| 看黄色毛片网站| 在线视频色国产色| 一区在线观看完整版| 一级毛片高清免费大全| 久久精品国产亚洲av香蕉五月| 老鸭窝网址在线观看| 美女 人体艺术 gogo| 我的亚洲天堂| 国产免费男女视频| 老熟妇仑乱视频hdxx| 99re在线观看精品视频| 国产免费现黄频在线看| 热99re8久久精品国产| 欧美人与性动交α欧美软件| 国产欧美日韩一区二区三| 性色av乱码一区二区三区2| 多毛熟女@视频| 不卡一级毛片| 免费人成视频x8x8入口观看| 美女福利国产在线| 日韩精品免费视频一区二区三区| 在线观看午夜福利视频| 美国免费a级毛片| 久久精品国产亚洲av香蕉五月| 亚洲人成电影观看| 久久精品亚洲精品国产色婷小说| 国产av一区二区精品久久| 国产av又大| 咕卡用的链子| 亚洲男人天堂网一区| 无人区码免费观看不卡| 侵犯人妻中文字幕一二三四区| 午夜福利,免费看| 精品久久久久久电影网| 亚洲精品在线美女| 男女下面插进去视频免费观看| 国产高清国产精品国产三级| 国产亚洲精品第一综合不卡| 青草久久国产| 手机成人av网站| 99国产精品免费福利视频| 性少妇av在线| 国产亚洲av高清不卡| 亚洲av电影在线进入| www.精华液| 三上悠亚av全集在线观看| 大型av网站在线播放| 淫妇啪啪啪对白视频| 涩涩av久久男人的天堂| 欧美人与性动交α欧美精品济南到| 99久久99久久久精品蜜桃| 男女做爰动态图高潮gif福利片 | 18禁黄网站禁片午夜丰满| 激情在线观看视频在线高清| 日韩三级视频一区二区三区| 黑人猛操日本美女一级片| 欧美日韩亚洲高清精品| 麻豆av在线久日| 国产成人精品久久二区二区免费| 久热这里只有精品99| 国产欧美日韩综合在线一区二区| 亚洲欧美精品综合一区二区三区| 91成年电影在线观看| 色尼玛亚洲综合影院| 大香蕉久久成人网| 老司机亚洲免费影院| 天堂√8在线中文| 成年女人毛片免费观看观看9| 亚洲精品成人av观看孕妇| 久久久精品欧美日韩精品| 天堂影院成人在线观看| 啦啦啦免费观看视频1| 一区在线观看完整版| 色婷婷久久久亚洲欧美| 淫秽高清视频在线观看| 淫妇啪啪啪对白视频| 免费少妇av软件| 后天国语完整版免费观看| 高清欧美精品videossex| 亚洲男人天堂网一区| 中出人妻视频一区二区| 18禁观看日本| 日韩人妻精品一区2区三区| 可以在线观看毛片的网站| 在线观看一区二区三区| 桃色一区二区三区在线观看| 少妇粗大呻吟视频| 一区二区三区精品91| 欧美人与性动交α欧美软件| 淫秽高清视频在线观看| 精品国内亚洲2022精品成人| 国产一卡二卡三卡精品| 亚洲男人的天堂狠狠| 日本免费一区二区三区高清不卡 | 婷婷丁香在线五月| 精品人妻1区二区| 大香蕉久久成人网| 九色亚洲精品在线播放| 一夜夜www| 中文字幕av电影在线播放| 午夜福利一区二区在线看| x7x7x7水蜜桃| 午夜精品国产一区二区电影| 制服诱惑二区| 国产精品98久久久久久宅男小说| 国产有黄有色有爽视频| 在线观看免费高清a一片| 国产精品国产av在线观看| 日本撒尿小便嘘嘘汇集6| 在线观看www视频免费| 18禁美女被吸乳视频| 黄色毛片三级朝国网站| 国产精品久久久人人做人人爽| 母亲3免费完整高清在线观看| 啦啦啦在线免费观看视频4| 精品国产一区二区三区四区第35| 久久久国产成人免费| 一级a爱视频在线免费观看| 99精国产麻豆久久婷婷| 国产精品野战在线观看 | 亚洲色图综合在线观看| 国产免费av片在线观看野外av| 免费在线观看亚洲国产| 欧美成人午夜精品| 亚洲精品国产精品久久久不卡| 亚洲五月婷婷丁香| 麻豆一二三区av精品| 婷婷六月久久综合丁香| 老司机午夜福利在线观看视频| 在线观看www视频免费| 久久99一区二区三区| 看黄色毛片网站| 男女床上黄色一级片免费看| 男女高潮啪啪啪动态图| 啦啦啦免费观看视频1| 国产成人一区二区三区免费视频网站| 动漫黄色视频在线观看| 大型av网站在线播放| 久久精品国产综合久久久| 国产成年人精品一区二区 | 免费在线观看完整版高清| 欧美日韩亚洲国产一区二区在线观看| 午夜免费成人在线视频| 三级毛片av免费| 999久久久精品免费观看国产| 国产亚洲精品久久久久5区| 国产成人免费无遮挡视频| 亚洲成人国产一区在线观看| 级片在线观看| 日韩欧美一区二区三区在线观看| 成年女人毛片免费观看观看9| 国产精品综合久久久久久久免费 | 十八禁人妻一区二区| 老司机亚洲免费影院| 亚洲av电影在线进入| 国产99久久九九免费精品| 91麻豆精品激情在线观看国产 | 亚洲第一青青草原| 黄色片一级片一级黄色片| 99国产精品一区二区三区| 啦啦啦免费观看视频1| 麻豆av在线久日| 欧美久久黑人一区二区| 99久久人妻综合| 视频在线观看一区二区三区| 亚洲 欧美一区二区三区| 亚洲欧美日韩无卡精品| 久久精品成人免费网站| 看片在线看免费视频| 欧美av亚洲av综合av国产av| 丝袜人妻中文字幕| 在线国产一区二区在线| 国产主播在线观看一区二区| 青草久久国产| 午夜日韩欧美国产| 久久狼人影院| 免费在线观看黄色视频的| 久久精品亚洲熟妇少妇任你| 岛国视频午夜一区免费看| 国产成人av教育| 日韩国内少妇激情av| 国产精品二区激情视频| 十分钟在线观看高清视频www| 欧美国产精品va在线观看不卡| 亚洲成人免费av在线播放| av网站免费在线观看视频| 亚洲一区二区三区不卡视频| 中文字幕人妻丝袜制服| 亚洲自偷自拍图片 自拍| 国产av精品麻豆| 一区二区三区国产精品乱码| 亚洲av电影在线进入| 99国产精品99久久久久| 亚洲人成77777在线视频| 麻豆一二三区av精品| 成年人免费黄色播放视频| 高潮久久久久久久久久久不卡| 男人舔女人下体高潮全视频| 亚洲男人的天堂狠狠| 国产成人系列免费观看| av片东京热男人的天堂| 国产野战对白在线观看| 可以免费在线观看a视频的电影网站| 97人妻天天添夜夜摸| 天天添夜夜摸| 女人被狂操c到高潮| 日本三级黄在线观看| 亚洲专区中文字幕在线| 久久精品91无色码中文字幕| 中文字幕av电影在线播放| 国产主播在线观看一区二区| 女人精品久久久久毛片| 久久久久久免费高清国产稀缺| 一二三四社区在线视频社区8| 99热国产这里只有精品6| 亚洲午夜精品一区,二区,三区| 丰满的人妻完整版| 欧美乱妇无乱码| 9191精品国产免费久久| 国产男靠女视频免费网站| 99riav亚洲国产免费| 亚洲专区字幕在线| 88av欧美| 欧美成人免费av一区二区三区| 国产精品美女特级片免费视频播放器 | 韩国精品一区二区三区| 人成视频在线观看免费观看| 看片在线看免费视频| 久久精品国产亚洲av香蕉五月| 色精品久久人妻99蜜桃| 在线观看免费高清a一片| 国产不卡一卡二| 久久久精品国产亚洲av高清涩受| 国产亚洲av高清不卡| 午夜福利在线观看吧| 一级a爱视频在线免费观看| 麻豆av在线久日| 国产精品亚洲一级av第二区| 男人操女人黄网站| 精品少妇一区二区三区视频日本电影| 精品福利永久在线观看| 免费日韩欧美在线观看| a级毛片在线看网站| av免费在线观看网站| 久久天躁狠狠躁夜夜2o2o| 九色亚洲精品在线播放| 国产精品偷伦视频观看了| 国产无遮挡羞羞视频在线观看| 一级片免费观看大全| 国产精品免费视频内射| 成年人黄色毛片网站| 久久婷婷成人综合色麻豆| 日韩有码中文字幕| 亚洲成人免费av在线播放| 大码成人一级视频| 午夜福利一区二区在线看| 制服人妻中文乱码| 长腿黑丝高跟| 亚洲av成人一区二区三| 免费高清在线观看日韩| 窝窝影院91人妻| 黄片小视频在线播放| 热99re8久久精品国产| 精品午夜福利视频在线观看一区| tocl精华| 在线观看www视频免费| 久久久久久久精品吃奶| 精品久久久久久久久久免费视频 | 午夜福利一区二区在线看| 色综合欧美亚洲国产小说| 国产野战对白在线观看| 久久这里只有精品19| 日韩精品青青久久久久久| 在线观看免费午夜福利视频| 身体一侧抽搐| 91国产中文字幕| 国产视频一区二区在线看| 一级,二级,三级黄色视频| 色老头精品视频在线观看| 19禁男女啪啪无遮挡网站| 老司机福利观看| 男女午夜视频在线观看| 国产熟女午夜一区二区三区| 亚洲一区中文字幕在线| 亚洲九九香蕉| av国产精品久久久久影院| 久久精品国产亚洲av香蕉五月| 黄色片一级片一级黄色片| 亚洲 欧美 日韩 在线 免费| 一级片免费观看大全| 超碰成人久久| 成在线人永久免费视频| 夜夜躁狠狠躁天天躁| 男女下面进入的视频免费午夜 | 国产精品一区二区精品视频观看| 国产一区二区激情短视频| 精品一区二区三区av网在线观看| 在线视频色国产色| 国产麻豆69| 欧美亚洲日本最大视频资源| 久久久久国内视频| 一个人观看的视频www高清免费观看 | 久久性视频一级片| 一二三四在线观看免费中文在| 一进一出好大好爽视频| 国产亚洲精品第一综合不卡| 中文字幕人妻熟女乱码| 老司机在亚洲福利影院| 亚洲九九香蕉| 在线观看免费高清a一片| 黄片小视频在线播放| 91大片在线观看| 国产91精品成人一区二区三区| bbb黄色大片| 妹子高潮喷水视频| 又大又爽又粗| 国产精品一区二区精品视频观看| 叶爱在线成人免费视频播放| 热re99久久国产66热| 老汉色av国产亚洲站长工具| 在线播放国产精品三级| 国产不卡一卡二| 久久久国产一区二区| 免费看a级黄色片| 亚洲欧美激情综合另类| 男人舔女人的私密视频| 69精品国产乱码久久久| 老司机靠b影院| 成人黄色视频免费在线看| 妹子高潮喷水视频| 青草久久国产| 在线观看www视频免费| a在线观看视频网站| 欧美日韩瑟瑟在线播放| 国产av精品麻豆| 久久精品国产综合久久久| 大陆偷拍与自拍| 日韩免费高清中文字幕av| 悠悠久久av| 亚洲国产精品sss在线观看 | 欧美日韩福利视频一区二区| 亚洲五月色婷婷综合| 丝袜人妻中文字幕| 手机成人av网站| 国产黄色免费在线视频| 亚洲精品一卡2卡三卡4卡5卡| 日本a在线网址| 两性午夜刺激爽爽歪歪视频在线观看 | 婷婷精品国产亚洲av在线| 日本一区二区免费在线视频| 欧美一区二区精品小视频在线| 在线观看免费日韩欧美大片| 亚洲三区欧美一区| 午夜福利在线观看吧| 亚洲色图av天堂| 亚洲国产欧美一区二区综合| 欧美精品亚洲一区二区| 精品福利永久在线观看| 亚洲国产欧美网| 丰满饥渴人妻一区二区三| 国产有黄有色有爽视频| 欧美国产精品va在线观看不卡| 国产视频一区二区在线看| 亚洲中文av在线| 91在线观看av| 性色av乱码一区二区三区2| 一区二区三区国产精品乱码| 香蕉丝袜av| 女性被躁到高潮视频| 亚洲一区二区三区欧美精品| 欧美日韩黄片免| 精品国产一区二区久久| 99国产极品粉嫩在线观看| 最新在线观看一区二区三区| 亚洲精品在线观看二区| 国产成人一区二区三区免费视频网站| 天堂俺去俺来也www色官网| 国产精华一区二区三区| 九色亚洲精品在线播放| 电影成人av| 侵犯人妻中文字幕一二三四区| 久久亚洲真实| 女同久久另类99精品国产91| 国产成人影院久久av| 在线观看www视频免费| 欧美人与性动交α欧美精品济南到| 国产欧美日韩一区二区三区在线| 99久久国产精品久久久| 亚洲少妇的诱惑av| 桃色一区二区三区在线观看| 欧美av亚洲av综合av国产av| 成人亚洲精品av一区二区 | 久久午夜亚洲精品久久| 亚洲国产欧美日韩在线播放| 日本一区二区免费在线视频| 99久久人妻综合| 少妇的丰满在线观看| 一a级毛片在线观看| 丰满人妻熟妇乱又伦精品不卡| 80岁老熟妇乱子伦牲交| 亚洲欧洲精品一区二区精品久久久| 免费在线观看完整版高清| 一本大道久久a久久精品| 中文欧美无线码| 日本欧美视频一区| 窝窝影院91人妻| 电影成人av| 久久久久亚洲av毛片大全| 欧美大码av| 欧美日韩亚洲综合一区二区三区_| 久久国产精品影院| 97超级碰碰碰精品色视频在线观看| 婷婷六月久久综合丁香| 午夜91福利影院| 久久久久国内视频| 久久国产乱子伦精品免费另类| 天堂影院成人在线观看| 中文字幕人妻丝袜制服| 国产一区二区三区视频了| 一级片'在线观看视频| 五月开心婷婷网| 一级黄色大片毛片| 在线av久久热| 日韩三级视频一区二区三区| 国产精品98久久久久久宅男小说| 女警被强在线播放| 久久天堂一区二区三区四区| 无限看片的www在线观看| 麻豆国产av国片精品| 久久精品aⅴ一区二区三区四区| 亚洲精品av麻豆狂野| 夜夜爽天天搞| 99国产极品粉嫩在线观看| 黑人欧美特级aaaaaa片| 精品免费久久久久久久清纯| 三上悠亚av全集在线观看| 国产精品久久电影中文字幕| 日韩视频一区二区在线观看| 妹子高潮喷水视频| 久久久国产一区二区| 91成年电影在线观看| 久久精品91蜜桃| 99久久综合精品五月天人人| 国产三级黄色录像| 久久国产精品影院| www国产在线视频色| 国产一区二区激情短视频| 精品少妇一区二区三区视频日本电影| 精品久久久久久电影网| 国产成年人精品一区二区 | 久久久久九九精品影院| 亚洲国产精品999在线| av国产精品久久久久影院| 最近最新免费中文字幕在线| av天堂在线播放| 黄色a级毛片大全视频| 电影成人av| 日韩成人在线观看一区二区三区| 国产成人av激情在线播放| 欧美在线一区亚洲| 亚洲少妇的诱惑av| 精品国产乱子伦一区二区三区| 日本a在线网址| 国产深夜福利视频在线观看| 久久久久久久久免费视频了| 久久亚洲真实|