• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    米根霉脂肪酶基因pro-ROL和m-ROL在畢赤酵母中的密碼子優(yōu)化、表達(dá)和酶學(xué)性質(zhì)的比較分析

    2011-02-26 13:21:04楊江科嚴(yán)翔翔黃日波張搏
    生物工程學(xué)報 2011年12期

    楊江科,嚴(yán)翔翔,黃日波,張搏

    1 武漢工業(yè)學(xué)院生物與制藥工程學(xué)院,武漢 430023

    2 廣西科學(xué)院國家非糧生物質(zhì)能源工程技術(shù)研究中心,南寧 530070

    Introduction

    Rhizopus orgzae lipases (EC 3.1.1.3) have been widely utilized in hydrolysis of triglycerides, synthesis of aromatic esters and biofuel, and kinetic resolutions of prochiral compounds[1-3]. Typically, Rhizopus orgzae lipase (ROL) consists of three parts that includes a signaling peptide responsible for the translocation and secretion of ROL, pre-sequence, and mature lipase (m-ROL) domain[4]. The pre-sequence is an intramolecular chaperone involved in the correct folding and efficient secretion of m-ROL. Although intramolecular chaperones have been found in several protein families[5-6], to our knowledge, Rhizopus lipase is the only member of the lipase family to possess intramolecular chaperone-like pre-sequences. It remains unknown how the pre-sequence contributes to folding, post-translational processing and maturation of Rhizopus lipase.

    Currently, Rhizopus lipase has been successfully expressed in Escherichia coli, Saccharomyces cerevisiae and Pichia pastoris. In E. coli, pro-ROL and m-ROL exists as insoluble inclusion bodies. To obtain their active forms, a complex refolding process was needed[4,7]. m-ROL exhibited no enzymatic activity when expressed in S. cerevisiae, suggesting the pre-sequence is necessary for correct protein folding of m-ROL[8-9]. However, m-ROL displayed enzymatic activity when expressed in Pichia[10-11]. It means that without the help of pre-sequence the mature domain of ROL can form the active conformation in P. pastoris by itself. But questions such as whether pro-ROL would actively express in P. pastoris and whether pro-ROL and m-ROL were enzymatically identical characteristics still need to be clarified.

    P. pastoris expression system is an easy and efficient system suitable for high-density fermentation, and now broadly used to produce recombinant heterologous proteins[12-14]. Like most organisms, Pichia displays a non-random pattern of synonymous codon usage and showed general bias towards a subset of codons. This bias can affect the heterogenous expression efficiency of genes in Pichia. Codon optimization by substituting rare codons with frequently used ones has been established as an efficient measure to enhance the expression level[15-17].

    In this study, we cloned and expressed R. orzyae lipase genes, pro-ROL and m-ROL, in P. pastoris. To improve its expression levels, we conducted overlap extension PCR to optimize the codons of m-ROL gene. We further compared the enzymatic activity of pro-ROL and m-ROL to assess the function of the pre-sequence on the maturation of ROL, and to acquire parameters for potential biotechnological applications.

    1 Materials and methods

    1.1 Reagents, media and strains

    All molecular biological reagents were purchased from TaKaRa, Dalian. p-Nitrophenyl acetate (pNPA, C2), p-Nitrophenyl butyrate (pNPB, C4), p-Nitrophenyl caprate (pNPC, C10), p-Nitrophenyl laurate (pNPL, C12), and p-Nitrophenyl palmitate (pNPP, C16) were purchased from Sigma.

    R. oryzae strains HU3005 was obtained from the China Centre of Industrial Culture Collection (CICC) with deposition number CICC3005. E. coli strain DH10B was cultured at 37 °C in Luria-Bertani (LB) medium unless otherwise noted. Ampicillin (100 mg/L) and kanamycin (50 mg/L) were added when necessary.

    1.2 Lipase genes cloning

    R. oryzae pre-mature lipase gene pro-ROL was amplified using the primer pairs ROL1 (5¢-CTGAATTCGTTCCTGTTTCTGGTAAATC-3¢, EcoR I site) and ROLA1 (5¢-CTGCGGCCGCTTA CAAACAGCTTCCTCGT-3¢, Not I site), and mature lipase gene m-ROL was amplified with the primer pairs MROL2 (5¢-CTGAATTCTCTGAT GGTGGTAAGGTTG-3¢, EcoR I site) and MROLA2 (5¢-CTGCGGCCGCTTACAAACAGC TTCCTTCGT-3¢, Not I site) (Fig. 1).

    1.3 RNA extraction

    Total RNA from R. oryzae was extracted by Trizol reagent (Gibcol) according to the manufacturer’s protocol. The first strand cDNA was synthesis by using the RevertAid First Strand cDNA Synthesis Kit (Fermentas). PCR was carried out in a 50 μL reaction containing 200 mmol/L dNTPs, 0.1 mmol/L primers, 1.5 mmol/L MgCl2, and 1 U of pfu DNA polymerase (TaKaRa). The PCR conditions is as followed: denaturation at 94 °C for 4 min, 28 cycles of 94 °C for 30 s, 56 °C for 50 s and 72 °C for 1 min, and final elongation at 72 °C for 6 min. The PCR product was cloned into the pMD18-T simple vector (TaKaRa), and then sequenced by Sangon Ltd., Shanghai. The sequence of R. oryzae lipase gene was deposited into GenBank with the accession number GQ502721.

    1.4 Codon optimization

    Overlap extension PCR amplifications were conducted to substitute eight less-frequently used codons with the frequently used codons (Table 1). Three fragments which overlap each other were amplified with the primers containing the mutant nucleotides (Table 2), and then assembled into the full-length m-ROL gene by a second PCR using 5¢- and 3¢-end primers (Fig. 2).

    Fig. 1 Primary structure of R. oryzae lipase ROL.

    Table 1 The optimized codons of R. oryzae lipase gene m-ROL and their usage in Pichia

    Table 2 The primers used for codon optimization of ROL and the size of PCR products.

    Fig. 2 Phylogeny tree of R. oryzae lipase (ROL) and the related species. Bracketed are the GenBank accession numbers. P. nodorum: Phaeosphaeria nodorum; P. tritici: Pyrenophora tritici.

    1.5 Plasmid construction, transformation, and recombinants selection

    PCR product of m-ROL and pro-ROL were digested with EcoR I and Not I, and then inserted into vector pPIC9K (Invitrogen) to obtain plasmids pPIC9K-m-ROL and pPIC-pro-ROL, with a fusion expression of α-factor. Sac I was used to linearize the plasmid pPIC9K-m-ROL and pPIC-pro-ROL for the single crossover with P. pastoris genome to generate the methanol-utilized phenotype (Mut+). About 6 μg of linearized DNA was mixed with 80 μL of yeast competent cells, and transformed into P. pastoris GS115 cells by electroporation conducted on Gene Pulser (Bio-rad) according to the manufacturer’s suggestion for S. cerevisiae. Positive clones were initially selected by MD medium (1.34% yeast nitrogen base, 4×10?5% biotin, 2% dextrose) plates and then checked by colony PCR.

    The lipase activity of the recombinants was initially checked by BMMY agar plate containing olive oil and rhodamine B. Positive clones displayed orange fluorescent halos visible upon UV irradiation[18].

    1.6 Fermentation

    A single colony of recombinant bacteria was selected and inoculated into 50 mL BMGY (1% yeast extract, 2% peptone, 100 mmol/L potassium phosphate buffer with pH 6.0, 1.34% yeast nitrogen base, 4×10?5% biotin, 1% glycerol) medium, and grown at 28 °C in a shaking incubator (250 r/min) until the culture reached an OD600of 3.0. The cells were harvested, and a portion was transferred into 50 mL BMMY (1% yeast extract, 2% peptone, 100 mmol/L potassium phosphate buffer pH 6.0, 1.34% yeast nitrogen base, 4×10?5% biotin, and 0.5% methanol) medium to obtain a cell suspension with OD600=1.0. The cells were grown for another 5 d and expression of lipase was induced by methanol at a final concentration of 0.5%. Lipase activity of the supernatant of fermentation broth was checked at intervals. For every type of recombinant, three colonies were randomly selected for fermentation.

    1.7 Lipase activity and characterization

    Lipase activity was quantified at pH 7.5 by free fatty acid titration with 50 mmol/L NaOH after incubation in a thermostated vessel for 10 min. The assay mixture consisted of 5 mL 50 mmol/L Tris-HCl buffer, 50 mmol/L NaCl, 4 mL emulsified olive oil and 1 mL enzyme solution. One unit (U) of the activity was defined as the amount of enzyme liberating 1 micromole of fatty acid per min at 40 °C. Properties of lipase such as its thermal stability and optimal pH were determined as previously reported[13-14]. All experiments were carried out in triplicate. Protein content of the fermentation broth was determined by the Bradford method[25].

    1.8 Phylogenic analysis

    Phylogenetic analysis was performed by molecular evolutionary genetics analysis (MEGA3.1) software, which was also used to produce a phylogenetic dendrogram reflecting the evolutionary relationship between the cloned genes and other reference strains by the neighbor-joining method according to the Kimura 2-parameter model[19].

    2 Results

    2.1 Cloning of R. oryzae lipase genes

    R. oryzae premature lipase gene pro-ROL and mature lipase gene m-ROL were amplified by RT-PCR. The ORFs of pro-ROL and m-ROL genes were 1 101 bp and 810 bp, respectively. Phylogenetic analysis based on the similarity of amino acid sequences between R. oryzae and the related reference lipases revealed three distinct clades (I to III). Clade I consisted of lipases from Rhizopus and Rhozomucor. Cloned R. oryzae lipase exhibited a 95% amino acid similarity with R. stolonifer (Fig. 2).

    2.2 Codon optimization and expression in P. pastoris

    Bias codon usages between different microorganisms are one of the main factors that restrict gene expression in heterogeneous host. To achieve a high level expression of m-ROL in Pichia, the less frequently used codons consisting of eight amino acids were substituted with the frequently used ones by overlap extension PCR (Fig. 3). After transformation, yeast recombinants carrying codon-optimized m-ROL, pro-ROL and original m-ROL were acquired. Both m-ROL and pro-ROL showed lipase activity on plates. However, the enzymatic activity of the recombinants carrying codon-optimized m-ROL (optimized-ROL) is significantly higher than the non-optimized m-ROL and pro-ROL (Fig. 4A). After methanol-inducible expression in Pichia, the molecular weight of the enzymes m-ROL and pro-ROL determined by PAGE were 30 kDa and 35 kDa, respectively (Fig. 4B). The expression level of codon-optimized m-ROL is higher than the original m-ROL and pro-ROL. After 72 h of fermentation, the enzymatic activity (Fig. 5A) and protein content (Fig. 5B) of the codon-optimized m-ROL reached 132.7 U/mL and 50.4 mg/L, while the activity of the parental m-ROL and pro-ROL are 28.7 U/mL and 14.4 mg/L, 29.6 U/mL and 14.1 mg/L, respectively.

    2.3 Characterization of pro-ROL and m-ROL

    We determined the optimal substrate, pH and temperature of pro-ROL and m-ROL (Fig. 6). pNP esters with different carbon chain lengths were selected as substrates. pro-ROL and m-ROL showed differential preferences to these substrates. pro-ROL preferred short- and middle-chain substrates (C4and C10), while m-ROL preferred middle-chain substrates with optimal activity observed using C10substrates (Fig. 6A).

    Fig. 3 Flow chart of codon optimization of m-ROL by overlap extension PCR (A), and the gel picture of the three fragments (B), F1 (500 bp), F2 (270 bp ) and F3 (71 bp). M: DNA marker (2 000, 1 000, 750, 500, 250, 100 bp)

    Fig. 4 Expression of codon-optimized ROL (optimized ROL), pro-ROL and original m-ROL in P. pastoris. (A) The morphology of different recombinants on the plate under the UV light. (B) SDS-PAGE of supernatant product of recombinant lipase.

    Fig. 5 Time course of the production of lipases by recombinants carrying pro-ROL, m-ROL and the codon-optimized m-ROL (optimized-ROL). (A) and (B) directed out lipase activity and protein content of the fermentation broth, respectively.

    Fig. 6 Enzymatic characterization of pro-ROL and m-ROL. (A) Substrate specificity of pro-ROL and m-ROL towards ester of nitrophenol. (B) and (C) Effects of temperature and pH on lipase activity.

    The optimal pH was determined by incubating lipases in reaction buffer with different pH values. As shown in Fig. 6B, both pro-ROL and m-ROL preferred alkaline environments. Unlike pro-ROL, which has an optimal pH value 8.0, the optimal pH value of m-ROL was 9.0. The suitable pH range, determined as having>60% remaining activity, of m-ROL is 8.5?9.5, while the suitable pH range of pro-ROL is from 7.5 to 8.5. Enzymatic activity significantly decreased when the lipases were not maintained at their optimal pH.

    To determine the optimal reaction temperature and thermal stability, lipase activities were assessed under different temperatures (20 °C?60 °C) and calculated as percentages of the maximal activity. As shown in Fig. 6C, the optimal temperatures for both pro-ROL and m-ROL were 30 °C. At 50 °C, enzymatic activity was not detected for m-ROL, whereas pro-ROL had 51% activity. Additionally, pro-ROL was more thermally stable than m-ROL.

    3 Discussion

    Pre-sequence plays an important role on the folding, post-translational processing and secretion of R. oryzae lipase[4,7,9]. Previous reports showed lack of enzymatic activity when m-ROL was expressed in S. cerevisiae[8]. This suggested that the lack of the pre-sequence in m-ROL may have inhibited formation of its active conformation. In our study, we actively expressed pro-ROL and m-ROL in P. pastoris. The enzymatic characteristics of pro-ROL in Pichia are different than those in S. cerevisiae. In Pichia, pro-ROL prefers short and middle-length carbon chains (C4-C10), while in S. cerevisiae, pro-ROL favors middle-chain substrates[8]. It is possible that in P. pastoris, post-translational modification may modulate the function of the pre-sequence and facilitate correct protein folding of m-ROL. Moreover, intramolecular chaperones may also affect enzymatic properties by mediating the folding and conformational changes of the mature protein domain[20]. In this study, pro-ROL was more thermally stable than m-ROL. Similar phenomenon was observed by Beer and his colleague. In their study, they found that in contrast to m-ROL, pro-ROL and prepro-ROL had considerably higher thermostability[7]. This suggests that the pre-sequence domain may also protect the m-ROL region from dramatic conformational change when exposed to high temperatures.

    A special characteristic of lipase is the interfacial activation. Generally, the active site (catalytic triad) is completely buried beneath a short amphiphilic helical segment, which prevents substrate access. When the enzyme contact with the hydrophobic substrates, it will go through a series structural rearrangement, and the enzyme changes from a closed to a open conformation that make the substrates entre into the activity site[21]. Although there were no report on the effect of pre-sequence on the substrate selectivity of lipase before, but it is possible that this pre-sequence of pro-ROL can spatially retard the conformational change of mature ROL domain. When the long-chain substrates contacted with enzymes, although the enzymes have conformational change, the open size of enzyme is still not enough to permit the long-chain substrates entre into the active site. On the contrary, this half-open conformation will be more accessible to the shorter chain substrate (C4). As observed in this study, the favorable substrate of pro-ROL and m-ROL are C4, while for m-ROL is C10 (Fig. 6A).

    Codon-usage frequency is a major impediment to the efficient expression of foreign gene in heterologous host. In ROL gene, four codons 155Leu (CTC), 171Ser (AGC), 254Leu (CTC) and 267Ser (AGC), which have the lowest usage frequency, are the bottleneck of gene expression in P. pastoris. Our study shows that codon optimization by overlap extension PCR to substitute less frequently used codons with frequently used ones could significantly improve the expression level of ROL. Compared to other methods such as chemical gene synthesis, overlap extension PCR is simple and effective. The initial enzymatic activity achieved based on the flask fermentation method could reach 132.7 U/mL. Although our product yield is not as high as a previous study[22]using a large-scale bioreactor (644.0 U/mL), it is still significantly better than other reported results[23-24]. We believe that lipase production and enzymatic activity from recombinants carrying optimized ROL gene may be improved under a batch-induced mode with further optimization in pH, methanol concentration and aeration during the fermentation process.

    In this study, we actively expressed pre-mature (pro-ROL) and mature lipase gene (m-ROL) of R. oryzae in P. pastoris. The differences in enzymatic characteristics between these two forms of lipase may be caused by the intramolecular chaperone-like pre-sequence in pro-ROL, which could affect the conformation of m-ROL domain. Codon optimization by overlap extension PCR has effectively improved the expression level by 4.6-fold. This newly codonoptimized ROL gene may be useful for future large-scale production of R. oryzae lipase. Further characterization of pro-ROL and m-ROL may offer a valuable tool in industrial applications.

    [1] Gotor-Fernández V, Brieva R, Gotor V. Lipases: useful biocatalysts for the preparation of pharmaceuticals. J Mol Catal B: Enzym, 2006, 40(3/4): 111?120.

    [2] Fukuda H, Hama S, Tamalampudi S, et al. Whole-cell biocatalysts for biodiesel fuel production. Trends Biotechnol, 2008, 26(12): 668?673.

    [3] Tamalampudi S, Talukder MR, Hama S, et al. Enzymatic production of biodiesel from Jatropha oil: a comparative study of immobilized-whole cell and commercial lipases as a biocatalyst. Biochem Eng J, 2008, 39(1): 185?189.

    [4] Beer HD, Wohlfahrt G, Schmid RD, et al. The folding and activity of the extracellular lipase of Rhizopus oryzae are modulated by a prosequence. Biochem J, 1996, 319(Pt 2): 351?359.

    [5] Shinde U, Inouye M. Folding mediated by an intramolecular chaperone: autoprocessing pathway of the precursor resolved via a substrate assisted catalysis mechanism. J Mol Biol, 1995, 247(3): 390?395.

    [6] Chen YJ, Inouye M. The intramolecular chaperonemediated protein folding. Curr Opin Stru Biol, 2008, 18(6): 765?770.

    [7] Beer HD, McCarthy JEG, Bornscheuer UT, et al. Cloning, expression, characterization and role of the leader sequence of a lipase from Rhizopus oryzae. Gene Struct Expr, 1998, 1399(2/3): 173?180.

    [8] Takahashi S, Ueda M, Tanaka A. Function of the prosequence for the in vivo folding and secretion of active Rhizopus oryzae lipase in Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 2001, 55(4): 454?462.

    [9] Ueda M, Takahashi S, Washida M, et al. Expression of Rhizopus oryzae lipase gene in Saccharomyces cerevisiae. J Mol Catal B: Enzym, 2002, 17(3/5): 113?124.

    [10] Minning S, Schmidt-Dannert C, Schmid RD. Functional expression of Rhizopus oryzae lipase in Pichia pastoris: high-level production and some properties. J Biotechnol, 1998, 66(2/3): 147?156.

    [11] Cos O, Resina D, Ferrer P, et al. Heterologous production of Rhizopus oryzae lipase in Pichia pastoris using the alcohol oxidase and formaldehyde dehydrogenase promoters in batch and fed-batch cultures. Biochem Engin J, 2005, 26(2/3): 86?94.

    [12] Fernández L, Pérez-Victoria I, Zafra A, et al. High-level expression and characterization of Galactomyces geotrichum (BT107) lipase I in Pichia pastoris. Protein Expr Purif, 2006, 49(2): 256?264.

    [13] Shu ZY, Duan MJ, Yang JK, et al. Aspergillus niger lipase: heterologous expression in Pichia pastoris, molecular modeling prediction and the importance of the hinge domains at both sides of the lid domain to interfacial activation. Biotechnol Prog, 2009, 25(2): 409?416.

    [14] Yang JK, Zhang B, Yan YJ. Cloning and expression of Pseudomonas fluorescens 26-2 lipase gene in Pichia pastoris and characterizing for transesterification. Appl Biochem Biotechnol, 2009, 159(2): 355?365.

    [15] Müller M. Codon optimization of papillomavirus genes. Methods Mol Med, 2005, 119: 433?444.

    [16] Tokuoka M, Tanaka M, Ono K, et al. Codon optimization increases steady-state mRNA levels in Aspergillus oryzae heterologous gene expression. Appl Environ Microbiol, 2008, 74(21): 6538?6546.

    [17] Daniell H, Ruiz G, Denes B, et al. Optimization of codon composition and regulatory elements for expression of human insulin like growth factor-1 in transgenic chloroplasts and evaluation of structural identity and function. BMC Biotechnol, 2009, 9(1): 33.

    [18] Kouker G, Jaeger KE. Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol, 1987, 53(1): 211?213.

    [19] Kumar S, Tamura K, Nei M. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform, 2004, 5(2): 150?163.

    [20] Ma BY, Tsai CJ, Nussinov R. Binding and folding: in search of intramolecular chaperone-like building block fragments. Protein Eng Des Sel, 2000, 13(9): 617?627.

    [21] Chapus C, Semeriva M, Bovier-Lapierre C, et al. Mechanism of pancreatic lipase action. 1. Interfacial activation of pancreatic lipase. Biochemistry, 1976, 15(23): 4980?4987.

    [22] Surribas A, Stahn R, Montesinos JL, et al. Production of a Rhizopus oryzae lipase from Pichia pastoris using alternative operational strategies. J Biotechnol, 2007, 130(3): 291?299.

    [23] Ramchuran SO, Vargas VA, Hatti-Kaul R, et al. Production of a lipolytic enzyme originating from Bacillus halodurans LBB2 in the methylotrophic yeast Pichia pastoris. Appl Microbial Biotechnol, 2006, 71(4): 463?472.

    [24] Yao HY, Yu SW, Zhang LD, et al. Isolation of a novel lipase gene from Serratia liquefaciens S33 DB-1, functional expression in Pichia pastoris and its properties. Mol Biotechnol, 2008, 38(2): 99?107.

    [25] Zor T, Selinger Z. Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal Biochem, 1996, 236: 302?308.

    黄色一级大片看看| 国产黄色视频一区二区在线观看| 国产精品成人在线| 久久久欧美国产精品| 国产精品熟女久久久久浪| www.色视频.com| 国产精品.久久久| 亚洲av不卡在线观看| 久久 成人 亚洲| 精品久久久久久久久亚洲| 色5月婷婷丁香| 国产69精品久久久久777片| 成人无遮挡网站| 日韩精品有码人妻一区| 欧美精品人与动牲交sv欧美| 女人久久www免费人成看片| 18+在线观看网站| 曰老女人黄片| 日韩av免费高清视频| 十八禁网站网址无遮挡 | 麻豆成人av视频| 啦啦啦啦在线视频资源| 中文字幕精品免费在线观看视频 | 欧美一级a爱片免费观看看| 老司机影院成人| 成人影院久久| 国产伦精品一区二区三区视频9| 亚洲经典国产精华液单| 精品一区二区三区视频在线| 少妇的逼好多水| 丰满人妻一区二区三区视频av| 少妇被粗大猛烈的视频| 日本免费在线观看一区| 亚洲三级黄色毛片| 日日啪夜夜爽| 下体分泌物呈黄色| av在线播放精品| 一级二级三级毛片免费看| 国产成人精品婷婷| 亚洲国产精品专区欧美| 免费观看av网站的网址| 中文字幕制服av| 亚洲欧美一区二区三区国产| 插阴视频在线观看视频| 日韩强制内射视频| 国产精品偷伦视频观看了| 色94色欧美一区二区| 免费人成在线观看视频色| 久热久热在线精品观看| 能在线免费看毛片的网站| 成人特级av手机在线观看| 久久99一区二区三区| 亚洲av二区三区四区| 国产精品麻豆人妻色哟哟久久| 国产精品嫩草影院av在线观看| 国产精品欧美亚洲77777| 国产午夜精品久久久久久一区二区三区| 麻豆成人av视频| 99久久人妻综合| 国产亚洲精品久久久com| 激情五月婷婷亚洲| 69精品国产乱码久久久| 插逼视频在线观看| 久久精品熟女亚洲av麻豆精品| 亚洲精品第二区| 啦啦啦视频在线资源免费观看| 国产一区二区在线观看av| 国产熟女欧美一区二区| 一级毛片aaaaaa免费看小| 91精品国产九色| 天美传媒精品一区二区| 有码 亚洲区| 国产精品人妻久久久影院| 夫妻性生交免费视频一级片| 日本91视频免费播放| 亚洲综合精品二区| 久久青草综合色| 国产综合精华液| 黄片无遮挡物在线观看| 久久久久久久久久久久大奶| 寂寞人妻少妇视频99o| 亚洲欧美清纯卡通| 国产亚洲最大av| 久久久久久久久久久久大奶| 日本黄色日本黄色录像| 日本欧美视频一区| 精品亚洲成国产av| 久久久国产欧美日韩av| 午夜精品国产一区二区电影| a级毛色黄片| 熟女人妻精品中文字幕| 视频中文字幕在线观看| 狂野欧美激情性xxxx在线观看| 又粗又硬又长又爽又黄的视频| 我的女老师完整版在线观看| 人人妻人人澡人人看| 在线天堂最新版资源| 99热这里只有是精品50| 欧美 日韩 精品 国产| 女的被弄到高潮叫床怎么办| 国产精品一二三区在线看| 国产av国产精品国产| 国产高清国产精品国产三级| 18禁裸乳无遮挡动漫免费视频| 日本色播在线视频| 制服丝袜香蕉在线| 在线精品无人区一区二区三| 99热这里只有是精品50| 久久精品夜色国产| 亚洲精品成人av观看孕妇| 最后的刺客免费高清国语| 国产精品三级大全| 又粗又硬又长又爽又黄的视频| 日韩三级伦理在线观看| 午夜激情久久久久久久| 免费观看a级毛片全部| 亚洲国产精品一区二区三区在线| 伊人久久精品亚洲午夜| 久热这里只有精品99| 97在线人人人人妻| 免费看av在线观看网站| 国产老妇伦熟女老妇高清| 青春草亚洲视频在线观看| av免费在线看不卡| freevideosex欧美| 插逼视频在线观看| 久久精品国产亚洲av涩爱| 久久国产精品男人的天堂亚洲 | 久久av网站| 免费少妇av软件| 国产深夜福利视频在线观看| 麻豆乱淫一区二区| 51国产日韩欧美| 一区二区三区免费毛片| 黄色毛片三级朝国网站 | 午夜免费观看性视频| 成年av动漫网址| 国产淫片久久久久久久久| 国产日韩一区二区三区精品不卡 | 国产av精品麻豆| 久久99一区二区三区| 欧美三级亚洲精品| 男女免费视频国产| 亚洲欧美精品自产自拍| 在线观看av片永久免费下载| 汤姆久久久久久久影院中文字幕| 女性生殖器流出的白浆| 丝袜在线中文字幕| 亚洲精品日本国产第一区| av国产久精品久网站免费入址| 毛片一级片免费看久久久久| 国产精品久久久久久av不卡| 成人影院久久| 国产综合精华液| 爱豆传媒免费全集在线观看| 亚洲伊人久久精品综合| 亚洲av福利一区| 精品一区在线观看国产| 我要看日韩黄色一级片| 18禁在线播放成人免费| 99热网站在线观看| 午夜福利网站1000一区二区三区| 国内少妇人妻偷人精品xxx网站| 日本色播在线视频| 少妇高潮的动态图| 国产又色又爽无遮挡免| 国产淫语在线视频| 日韩电影二区| 人妻 亚洲 视频| 国产在线男女| 免费av不卡在线播放| 国产黄片美女视频| 国产在线视频一区二区| 插逼视频在线观看| 国产永久视频网站| 国产成人精品无人区| 亚洲成色77777| 九草在线视频观看| 一个人看视频在线观看www免费| 亚洲欧美成人精品一区二区| 久热这里只有精品99| h视频一区二区三区| 欧美97在线视频| 伊人久久国产一区二区| 久久精品国产鲁丝片午夜精品| 中文字幕亚洲精品专区| 婷婷色av中文字幕| 国产精品久久久久久精品古装| 国产视频内射| 建设人人有责人人尽责人人享有的| 国产 精品1| 高清欧美精品videossex| 国产在视频线精品| 亚洲精品国产av成人精品| 精品卡一卡二卡四卡免费| 18禁在线无遮挡免费观看视频| 毛片一级片免费看久久久久| 亚洲欧美清纯卡通| 久久精品久久久久久久性| 国产乱人偷精品视频| 青春草视频在线免费观看| 观看免费一级毛片| 欧美成人精品欧美一级黄| 亚洲人成网站在线播| a级一级毛片免费在线观看| 18+在线观看网站| 蜜桃在线观看..| 午夜福利,免费看| 亚洲欧美一区二区三区黑人 | 女性被躁到高潮视频| 国产亚洲一区二区精品| av线在线观看网站| 精品一区二区三卡| 亚洲美女搞黄在线观看| 纯流量卡能插随身wifi吗| 乱人伦中国视频| 国产伦精品一区二区三区四那| 亚洲不卡免费看| 欧美一级a爱片免费观看看| 久久久精品免费免费高清| 精品少妇黑人巨大在线播放| 男女无遮挡免费网站观看| 国产一区有黄有色的免费视频| 亚洲四区av| 韩国av在线不卡| 十八禁高潮呻吟视频 | 亚洲一区二区三区欧美精品| 亚洲精品乱码久久久久久按摩| 国产黄色免费在线视频| 久久精品久久久久久噜噜老黄| 一级a做视频免费观看| 国产成人免费无遮挡视频| 亚洲综合精品二区| 99热全是精品| 在线亚洲精品国产二区图片欧美 | 麻豆精品久久久久久蜜桃| 欧美 日韩 精品 国产| 国产在线一区二区三区精| 成人美女网站在线观看视频| av视频免费观看在线观看| 九草在线视频观看| 人体艺术视频欧美日本| 亚洲欧美一区二区三区黑人 | 国产精品人妻久久久久久| 国产伦在线观看视频一区| 十八禁网站网址无遮挡 | 久久ye,这里只有精品| 少妇猛男粗大的猛烈进出视频| 婷婷色综合www| 青春草国产在线视频| 免费少妇av软件| 黄色一级大片看看| 亚洲精品日韩在线中文字幕| 国产精品无大码| 搡女人真爽免费视频火全软件| 各种免费的搞黄视频| 日韩强制内射视频| 久久国内精品自在自线图片| 极品教师在线视频| 夜夜爽夜夜爽视频| 日韩欧美一区视频在线观看 | 七月丁香在线播放| 视频中文字幕在线观看| 亚洲欧美一区二区三区国产| 成年av动漫网址| 日本欧美视频一区| 我的老师免费观看完整版| 亚洲国产日韩一区二区| 亚洲经典国产精华液单| 日韩人妻高清精品专区| 十分钟在线观看高清视频www | 亚洲婷婷狠狠爱综合网| 亚洲精品成人av观看孕妇| av在线老鸭窝| 一个人看视频在线观看www免费| 波野结衣二区三区在线| 国产午夜精品久久久久久一区二区三区| 2018国产大陆天天弄谢| 亚洲综合精品二区| 亚洲精品乱码久久久v下载方式| 午夜视频国产福利| 老司机影院毛片| 亚洲成色77777| 免费人妻精品一区二区三区视频| 亚州av有码| av卡一久久| 亚洲不卡免费看| 国产伦理片在线播放av一区| 插逼视频在线观看| 日本与韩国留学比较| 七月丁香在线播放| 噜噜噜噜噜久久久久久91| 久久韩国三级中文字幕| 狂野欧美白嫩少妇大欣赏| 亚洲不卡免费看| 少妇被粗大的猛进出69影院 | 美女脱内裤让男人舔精品视频| 汤姆久久久久久久影院中文字幕| 成人国产麻豆网| 欧美国产精品一级二级三级 | 欧美一级a爱片免费观看看| 亚洲性久久影院| 亚洲精品亚洲一区二区| 3wmmmm亚洲av在线观看| 日韩大片免费观看网站| 一级二级三级毛片免费看| 精品久久久精品久久久| 久久久久国产精品人妻一区二区| 午夜精品国产一区二区电影| 久久精品熟女亚洲av麻豆精品| 人妻制服诱惑在线中文字幕| 永久网站在线| 69精品国产乱码久久久| xxx大片免费视频| av国产精品久久久久影院| 麻豆成人午夜福利视频| 精品99又大又爽又粗少妇毛片| 亚洲三级黄色毛片| 大香蕉久久网| 亚洲精品日韩在线中文字幕| 五月玫瑰六月丁香| 高清不卡的av网站| 国产91av在线免费观看| 国产成人精品福利久久| 精品国产乱码久久久久久小说| 免费大片18禁| 麻豆乱淫一区二区| 97在线人人人人妻| 十八禁网站网址无遮挡 | 丰满迷人的少妇在线观看| 少妇 在线观看| 成年女人在线观看亚洲视频| 永久网站在线| 18禁裸乳无遮挡动漫免费视频| 男男h啪啪无遮挡| 成人二区视频| 日本黄色日本黄色录像| 成人黄色视频免费在线看| av一本久久久久| 亚洲国产精品成人久久小说| 精品亚洲成国产av| 黄色配什么色好看| 日韩av不卡免费在线播放| 国产极品粉嫩免费观看在线 | 欧美+日韩+精品| 成人黄色视频免费在线看| 91大片在线观看| 一二三四在线观看免费中文在| av视频免费观看在线观看| 日韩人妻精品一区2区三区| 各种免费的搞黄视频| 黑人操中国人逼视频| 精品亚洲乱码少妇综合久久| 精品久久久久久久毛片微露脸 | 50天的宝宝边吃奶边哭怎么回事| 久久久久久免费高清国产稀缺| 在线永久观看黄色视频| 母亲3免费完整高清在线观看| 欧美黄色淫秽网站| 日日夜夜操网爽| 丝袜在线中文字幕| av有码第一页| 极品人妻少妇av视频| 在线十欧美十亚洲十日本专区| 丝瓜视频免费看黄片| 国产三级黄色录像| 成年人黄色毛片网站| 欧美精品av麻豆av| 亚洲欧美精品综合一区二区三区| 天天躁狠狠躁夜夜躁狠狠躁| 久久国产精品大桥未久av| 波多野结衣一区麻豆| 淫妇啪啪啪对白视频 | 99国产极品粉嫩在线观看| 人人妻人人爽人人添夜夜欢视频| 中文字幕人妻熟女乱码| 日日摸夜夜添夜夜添小说| 超碰97精品在线观看| 99久久精品国产亚洲精品| www.熟女人妻精品国产| 亚洲一区中文字幕在线| 涩涩av久久男人的天堂| 性高湖久久久久久久久免费观看| 青草久久国产| 久久国产精品人妻蜜桃| 男人舔女人的私密视频| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲欧美成人综合另类久久久| 精品国内亚洲2022精品成人 | 国产日韩欧美在线精品| 欧美日韩亚洲综合一区二区三区_| 在线观看免费午夜福利视频| xxxhd国产人妻xxx| 久久久久久久大尺度免费视频| 老汉色av国产亚洲站长工具| 黄片大片在线免费观看| av在线播放精品| 午夜免费成人在线视频| 满18在线观看网站| 黑人猛操日本美女一级片| 美女视频免费永久观看网站| 日韩视频在线欧美| 亚洲av日韩在线播放| 中文精品一卡2卡3卡4更新| 色老头精品视频在线观看| 在线永久观看黄色视频| 汤姆久久久久久久影院中文字幕| 50天的宝宝边吃奶边哭怎么回事| 成年av动漫网址| 免费高清在线观看日韩| 女人精品久久久久毛片| 我要看黄色一级片免费的| 另类亚洲欧美激情| 在线观看免费日韩欧美大片| 窝窝影院91人妻| 99国产极品粉嫩在线观看| 国产亚洲精品久久久久5区| 国产亚洲午夜精品一区二区久久| 丰满饥渴人妻一区二区三| 人成视频在线观看免费观看| www.熟女人妻精品国产| 99久久人妻综合| 欧美在线一区亚洲| 十分钟在线观看高清视频www| 99久久99久久久精品蜜桃| 又紧又爽又黄一区二区| 男女床上黄色一级片免费看| 日本vs欧美在线观看视频| 午夜激情av网站| 捣出白浆h1v1| 首页视频小说图片口味搜索| 老熟妇乱子伦视频在线观看 | 国产欧美日韩精品亚洲av| 日韩制服骚丝袜av| 欧美 亚洲 国产 日韩一| 亚洲第一av免费看| 黄片大片在线免费观看| 午夜91福利影院| 欧美午夜高清在线| 久久久精品国产亚洲av高清涩受| 亚洲一区中文字幕在线| 啦啦啦 在线观看视频| 1024视频免费在线观看| 日本一区二区免费在线视频| 狂野欧美激情性xxxx| 99久久99久久久精品蜜桃| 久久精品国产综合久久久| 国产无遮挡羞羞视频在线观看| 久久精品熟女亚洲av麻豆精品| 国产免费现黄频在线看| 久久99一区二区三区| 久9热在线精品视频| 2018国产大陆天天弄谢| 好男人电影高清在线观看| 婷婷色av中文字幕| 亚洲国产毛片av蜜桃av| 中文字幕人妻丝袜一区二区| 18禁黄网站禁片午夜丰满| 咕卡用的链子| 久久狼人影院| 汤姆久久久久久久影院中文字幕| 淫妇啪啪啪对白视频 | av在线老鸭窝| 亚洲一码二码三码区别大吗| 高清在线国产一区| 每晚都被弄得嗷嗷叫到高潮| 国产三级黄色录像| 日韩大片免费观看网站| 水蜜桃什么品种好| 少妇被粗大的猛进出69影院| 麻豆国产av国片精品| 99九九在线精品视频| 美女中出高潮动态图| 免费高清在线观看视频在线观看| 久久久久久久精品精品| av在线app专区| 母亲3免费完整高清在线观看| av国产精品久久久久影院| 免费黄频网站在线观看国产| av网站免费在线观看视频| 一级毛片精品| 80岁老熟妇乱子伦牲交| 精品一区二区三区四区五区乱码| 亚洲一区中文字幕在线| www.av在线官网国产| 可以免费在线观看a视频的电影网站| 国产av又大| 黑人操中国人逼视频| 少妇被粗大的猛进出69影院| 国产国语露脸激情在线看| 一二三四在线观看免费中文在| 日韩视频一区二区在线观看| 精品第一国产精品| 日本91视频免费播放| 亚洲色图 男人天堂 中文字幕| 老司机深夜福利视频在线观看 | av片东京热男人的天堂| 亚洲欧美精品综合一区二区三区| 人人妻人人澡人人爽人人夜夜| 欧美精品av麻豆av| 无遮挡黄片免费观看| 亚洲熟女精品中文字幕| 超碰成人久久| 岛国毛片在线播放| 法律面前人人平等表现在哪些方面 | 天堂俺去俺来也www色官网| 免费观看av网站的网址| av国产精品久久久久影院| 久久精品aⅴ一区二区三区四区| 午夜老司机福利片| 天堂俺去俺来也www色官网| 黄频高清免费视频| 亚洲色图综合在线观看| 男人添女人高潮全过程视频| 别揉我奶头~嗯~啊~动态视频 | 成在线人永久免费视频| 久久影院123| 国产亚洲精品第一综合不卡| 成人手机av| 成年人午夜在线观看视频| 90打野战视频偷拍视频| 久久国产精品人妻蜜桃| 久久狼人影院| 性少妇av在线| 悠悠久久av| 国产黄色免费在线视频| 老司机深夜福利视频在线观看 | 国产精品亚洲av一区麻豆| 不卡一级毛片| 久久天躁狠狠躁夜夜2o2o| 亚洲自偷自拍图片 自拍| 女性生殖器流出的白浆| 久久午夜综合久久蜜桃| 国产真人三级小视频在线观看| 日韩大码丰满熟妇| 不卡av一区二区三区| 女人久久www免费人成看片| 制服人妻中文乱码| 久久国产精品男人的天堂亚洲| 精品一区二区三区四区五区乱码| 午夜视频精品福利| 色精品久久人妻99蜜桃| 欧美精品啪啪一区二区三区 | 黄色视频不卡| 老司机午夜十八禁免费视频| 搡老熟女国产l中国老女人| 午夜影院在线不卡| 亚洲精华国产精华精| 青春草亚洲视频在线观看| 免费在线观看影片大全网站| 久久久国产精品麻豆| 久久久久久亚洲精品国产蜜桃av| 色婷婷久久久亚洲欧美| 久久毛片免费看一区二区三区| 午夜精品久久久久久毛片777| 啦啦啦在线免费观看视频4| 嫩草影视91久久| 欧美激情高清一区二区三区| 成人三级做爰电影| 国产亚洲av高清不卡| 亚洲男人天堂网一区| 在线观看免费午夜福利视频| 咕卡用的链子| 精品一品国产午夜福利视频| 黄片大片在线免费观看| 中文字幕av电影在线播放| 国产日韩欧美亚洲二区| a级毛片在线看网站| 黄色a级毛片大全视频| 久久精品国产a三级三级三级| 狠狠婷婷综合久久久久久88av| 99久久99久久久精品蜜桃| 女性生殖器流出的白浆| 久久 成人 亚洲| 日本黄色日本黄色录像| 色视频在线一区二区三区| 精品人妻熟女毛片av久久网站| 一级片'在线观看视频| 91成人精品电影| 国产极品粉嫩免费观看在线| 蜜桃国产av成人99| 免费高清在线观看视频在线观看| 少妇 在线观看| 午夜福利在线观看吧| 亚洲欧美日韩另类电影网站| 中亚洲国语对白在线视频| 久久久久国产精品人妻一区二区| 久久久久久久久久久久大奶| 男人爽女人下面视频在线观看| 久久人妻熟女aⅴ| 一区二区三区乱码不卡18| 91成年电影在线观看| 亚洲国产欧美网| 久久国产精品大桥未久av| 午夜91福利影院| 欧美日韩亚洲综合一区二区三区_| 咕卡用的链子| 国内毛片毛片毛片毛片毛片| 啦啦啦在线免费观看视频4| 91精品三级在线观看| 国产成人av激情在线播放| 热99久久久久精品小说推荐| 欧美日韩亚洲国产一区二区在线观看 | 亚洲精品一卡2卡三卡4卡5卡 | 大码成人一级视频| 国产日韩欧美在线精品| 国产男人的电影天堂91| 日韩视频在线欧美| 成年女人毛片免费观看观看9 | 黄色视频不卡| 国产av国产精品国产| 岛国毛片在线播放| 精品少妇内射三级| 国产一区二区三区在线臀色熟女 | 亚洲欧洲日产国产|