• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    米根霉脂肪酶基因pro-ROL和m-ROL在畢赤酵母中的密碼子優(yōu)化、表達(dá)和酶學(xué)性質(zhì)的比較分析

    2011-02-26 13:21:04楊江科嚴(yán)翔翔黃日波張搏
    生物工程學(xué)報(bào) 2011年12期

    楊江科,嚴(yán)翔翔,黃日波,張搏

    1 武漢工業(yè)學(xué)院生物與制藥工程學(xué)院,武漢 430023

    2 廣西科學(xué)院國家非糧生物質(zhì)能源工程技術(shù)研究中心,南寧 530070

    Introduction

    Rhizopus orgzae lipases (EC 3.1.1.3) have been widely utilized in hydrolysis of triglycerides, synthesis of aromatic esters and biofuel, and kinetic resolutions of prochiral compounds[1-3]. Typically, Rhizopus orgzae lipase (ROL) consists of three parts that includes a signaling peptide responsible for the translocation and secretion of ROL, pre-sequence, and mature lipase (m-ROL) domain[4]. The pre-sequence is an intramolecular chaperone involved in the correct folding and efficient secretion of m-ROL. Although intramolecular chaperones have been found in several protein families[5-6], to our knowledge, Rhizopus lipase is the only member of the lipase family to possess intramolecular chaperone-like pre-sequences. It remains unknown how the pre-sequence contributes to folding, post-translational processing and maturation of Rhizopus lipase.

    Currently, Rhizopus lipase has been successfully expressed in Escherichia coli, Saccharomyces cerevisiae and Pichia pastoris. In E. coli, pro-ROL and m-ROL exists as insoluble inclusion bodies. To obtain their active forms, a complex refolding process was needed[4,7]. m-ROL exhibited no enzymatic activity when expressed in S. cerevisiae, suggesting the pre-sequence is necessary for correct protein folding of m-ROL[8-9]. However, m-ROL displayed enzymatic activity when expressed in Pichia[10-11]. It means that without the help of pre-sequence the mature domain of ROL can form the active conformation in P. pastoris by itself. But questions such as whether pro-ROL would actively express in P. pastoris and whether pro-ROL and m-ROL were enzymatically identical characteristics still need to be clarified.

    P. pastoris expression system is an easy and efficient system suitable for high-density fermentation, and now broadly used to produce recombinant heterologous proteins[12-14]. Like most organisms, Pichia displays a non-random pattern of synonymous codon usage and showed general bias towards a subset of codons. This bias can affect the heterogenous expression efficiency of genes in Pichia. Codon optimization by substituting rare codons with frequently used ones has been established as an efficient measure to enhance the expression level[15-17].

    In this study, we cloned and expressed R. orzyae lipase genes, pro-ROL and m-ROL, in P. pastoris. To improve its expression levels, we conducted overlap extension PCR to optimize the codons of m-ROL gene. We further compared the enzymatic activity of pro-ROL and m-ROL to assess the function of the pre-sequence on the maturation of ROL, and to acquire parameters for potential biotechnological applications.

    1 Materials and methods

    1.1 Reagents, media and strains

    All molecular biological reagents were purchased from TaKaRa, Dalian. p-Nitrophenyl acetate (pNPA, C2), p-Nitrophenyl butyrate (pNPB, C4), p-Nitrophenyl caprate (pNPC, C10), p-Nitrophenyl laurate (pNPL, C12), and p-Nitrophenyl palmitate (pNPP, C16) were purchased from Sigma.

    R. oryzae strains HU3005 was obtained from the China Centre of Industrial Culture Collection (CICC) with deposition number CICC3005. E. coli strain DH10B was cultured at 37 °C in Luria-Bertani (LB) medium unless otherwise noted. Ampicillin (100 mg/L) and kanamycin (50 mg/L) were added when necessary.

    1.2 Lipase genes cloning

    R. oryzae pre-mature lipase gene pro-ROL was amplified using the primer pairs ROL1 (5¢-CTGAATTCGTTCCTGTTTCTGGTAAATC-3¢, EcoR I site) and ROLA1 (5¢-CTGCGGCCGCTTA CAAACAGCTTCCTCGT-3¢, Not I site), and mature lipase gene m-ROL was amplified with the primer pairs MROL2 (5¢-CTGAATTCTCTGAT GGTGGTAAGGTTG-3¢, EcoR I site) and MROLA2 (5¢-CTGCGGCCGCTTACAAACAGC TTCCTTCGT-3¢, Not I site) (Fig. 1).

    1.3 RNA extraction

    Total RNA from R. oryzae was extracted by Trizol reagent (Gibcol) according to the manufacturer’s protocol. The first strand cDNA was synthesis by using the RevertAid First Strand cDNA Synthesis Kit (Fermentas). PCR was carried out in a 50 μL reaction containing 200 mmol/L dNTPs, 0.1 mmol/L primers, 1.5 mmol/L MgCl2, and 1 U of pfu DNA polymerase (TaKaRa). The PCR conditions is as followed: denaturation at 94 °C for 4 min, 28 cycles of 94 °C for 30 s, 56 °C for 50 s and 72 °C for 1 min, and final elongation at 72 °C for 6 min. The PCR product was cloned into the pMD18-T simple vector (TaKaRa), and then sequenced by Sangon Ltd., Shanghai. The sequence of R. oryzae lipase gene was deposited into GenBank with the accession number GQ502721.

    1.4 Codon optimization

    Overlap extension PCR amplifications were conducted to substitute eight less-frequently used codons with the frequently used codons (Table 1). Three fragments which overlap each other were amplified with the primers containing the mutant nucleotides (Table 2), and then assembled into the full-length m-ROL gene by a second PCR using 5¢- and 3¢-end primers (Fig. 2).

    Fig. 1 Primary structure of R. oryzae lipase ROL.

    Table 1 The optimized codons of R. oryzae lipase gene m-ROL and their usage in Pichia

    Table 2 The primers used for codon optimization of ROL and the size of PCR products.

    Fig. 2 Phylogeny tree of R. oryzae lipase (ROL) and the related species. Bracketed are the GenBank accession numbers. P. nodorum: Phaeosphaeria nodorum; P. tritici: Pyrenophora tritici.

    1.5 Plasmid construction, transformation, and recombinants selection

    PCR product of m-ROL and pro-ROL were digested with EcoR I and Not I, and then inserted into vector pPIC9K (Invitrogen) to obtain plasmids pPIC9K-m-ROL and pPIC-pro-ROL, with a fusion expression of α-factor. Sac I was used to linearize the plasmid pPIC9K-m-ROL and pPIC-pro-ROL for the single crossover with P. pastoris genome to generate the methanol-utilized phenotype (Mut+). About 6 μg of linearized DNA was mixed with 80 μL of yeast competent cells, and transformed into P. pastoris GS115 cells by electroporation conducted on Gene Pulser (Bio-rad) according to the manufacturer’s suggestion for S. cerevisiae. Positive clones were initially selected by MD medium (1.34% yeast nitrogen base, 4×10?5% biotin, 2% dextrose) plates and then checked by colony PCR.

    The lipase activity of the recombinants was initially checked by BMMY agar plate containing olive oil and rhodamine B. Positive clones displayed orange fluorescent halos visible upon UV irradiation[18].

    1.6 Fermentation

    A single colony of recombinant bacteria was selected and inoculated into 50 mL BMGY (1% yeast extract, 2% peptone, 100 mmol/L potassium phosphate buffer with pH 6.0, 1.34% yeast nitrogen base, 4×10?5% biotin, 1% glycerol) medium, and grown at 28 °C in a shaking incubator (250 r/min) until the culture reached an OD600of 3.0. The cells were harvested, and a portion was transferred into 50 mL BMMY (1% yeast extract, 2% peptone, 100 mmol/L potassium phosphate buffer pH 6.0, 1.34% yeast nitrogen base, 4×10?5% biotin, and 0.5% methanol) medium to obtain a cell suspension with OD600=1.0. The cells were grown for another 5 d and expression of lipase was induced by methanol at a final concentration of 0.5%. Lipase activity of the supernatant of fermentation broth was checked at intervals. For every type of recombinant, three colonies were randomly selected for fermentation.

    1.7 Lipase activity and characterization

    Lipase activity was quantified at pH 7.5 by free fatty acid titration with 50 mmol/L NaOH after incubation in a thermostated vessel for 10 min. The assay mixture consisted of 5 mL 50 mmol/L Tris-HCl buffer, 50 mmol/L NaCl, 4 mL emulsified olive oil and 1 mL enzyme solution. One unit (U) of the activity was defined as the amount of enzyme liberating 1 micromole of fatty acid per min at 40 °C. Properties of lipase such as its thermal stability and optimal pH were determined as previously reported[13-14]. All experiments were carried out in triplicate. Protein content of the fermentation broth was determined by the Bradford method[25].

    1.8 Phylogenic analysis

    Phylogenetic analysis was performed by molecular evolutionary genetics analysis (MEGA3.1) software, which was also used to produce a phylogenetic dendrogram reflecting the evolutionary relationship between the cloned genes and other reference strains by the neighbor-joining method according to the Kimura 2-parameter model[19].

    2 Results

    2.1 Cloning of R. oryzae lipase genes

    R. oryzae premature lipase gene pro-ROL and mature lipase gene m-ROL were amplified by RT-PCR. The ORFs of pro-ROL and m-ROL genes were 1 101 bp and 810 bp, respectively. Phylogenetic analysis based on the similarity of amino acid sequences between R. oryzae and the related reference lipases revealed three distinct clades (I to III). Clade I consisted of lipases from Rhizopus and Rhozomucor. Cloned R. oryzae lipase exhibited a 95% amino acid similarity with R. stolonifer (Fig. 2).

    2.2 Codon optimization and expression in P. pastoris

    Bias codon usages between different microorganisms are one of the main factors that restrict gene expression in heterogeneous host. To achieve a high level expression of m-ROL in Pichia, the less frequently used codons consisting of eight amino acids were substituted with the frequently used ones by overlap extension PCR (Fig. 3). After transformation, yeast recombinants carrying codon-optimized m-ROL, pro-ROL and original m-ROL were acquired. Both m-ROL and pro-ROL showed lipase activity on plates. However, the enzymatic activity of the recombinants carrying codon-optimized m-ROL (optimized-ROL) is significantly higher than the non-optimized m-ROL and pro-ROL (Fig. 4A). After methanol-inducible expression in Pichia, the molecular weight of the enzymes m-ROL and pro-ROL determined by PAGE were 30 kDa and 35 kDa, respectively (Fig. 4B). The expression level of codon-optimized m-ROL is higher than the original m-ROL and pro-ROL. After 72 h of fermentation, the enzymatic activity (Fig. 5A) and protein content (Fig. 5B) of the codon-optimized m-ROL reached 132.7 U/mL and 50.4 mg/L, while the activity of the parental m-ROL and pro-ROL are 28.7 U/mL and 14.4 mg/L, 29.6 U/mL and 14.1 mg/L, respectively.

    2.3 Characterization of pro-ROL and m-ROL

    We determined the optimal substrate, pH and temperature of pro-ROL and m-ROL (Fig. 6). pNP esters with different carbon chain lengths were selected as substrates. pro-ROL and m-ROL showed differential preferences to these substrates. pro-ROL preferred short- and middle-chain substrates (C4and C10), while m-ROL preferred middle-chain substrates with optimal activity observed using C10substrates (Fig. 6A).

    Fig. 3 Flow chart of codon optimization of m-ROL by overlap extension PCR (A), and the gel picture of the three fragments (B), F1 (500 bp), F2 (270 bp ) and F3 (71 bp). M: DNA marker (2 000, 1 000, 750, 500, 250, 100 bp)

    Fig. 4 Expression of codon-optimized ROL (optimized ROL), pro-ROL and original m-ROL in P. pastoris. (A) The morphology of different recombinants on the plate under the UV light. (B) SDS-PAGE of supernatant product of recombinant lipase.

    Fig. 5 Time course of the production of lipases by recombinants carrying pro-ROL, m-ROL and the codon-optimized m-ROL (optimized-ROL). (A) and (B) directed out lipase activity and protein content of the fermentation broth, respectively.

    Fig. 6 Enzymatic characterization of pro-ROL and m-ROL. (A) Substrate specificity of pro-ROL and m-ROL towards ester of nitrophenol. (B) and (C) Effects of temperature and pH on lipase activity.

    The optimal pH was determined by incubating lipases in reaction buffer with different pH values. As shown in Fig. 6B, both pro-ROL and m-ROL preferred alkaline environments. Unlike pro-ROL, which has an optimal pH value 8.0, the optimal pH value of m-ROL was 9.0. The suitable pH range, determined as having>60% remaining activity, of m-ROL is 8.5?9.5, while the suitable pH range of pro-ROL is from 7.5 to 8.5. Enzymatic activity significantly decreased when the lipases were not maintained at their optimal pH.

    To determine the optimal reaction temperature and thermal stability, lipase activities were assessed under different temperatures (20 °C?60 °C) and calculated as percentages of the maximal activity. As shown in Fig. 6C, the optimal temperatures for both pro-ROL and m-ROL were 30 °C. At 50 °C, enzymatic activity was not detected for m-ROL, whereas pro-ROL had 51% activity. Additionally, pro-ROL was more thermally stable than m-ROL.

    3 Discussion

    Pre-sequence plays an important role on the folding, post-translational processing and secretion of R. oryzae lipase[4,7,9]. Previous reports showed lack of enzymatic activity when m-ROL was expressed in S. cerevisiae[8]. This suggested that the lack of the pre-sequence in m-ROL may have inhibited formation of its active conformation. In our study, we actively expressed pro-ROL and m-ROL in P. pastoris. The enzymatic characteristics of pro-ROL in Pichia are different than those in S. cerevisiae. In Pichia, pro-ROL prefers short and middle-length carbon chains (C4-C10), while in S. cerevisiae, pro-ROL favors middle-chain substrates[8]. It is possible that in P. pastoris, post-translational modification may modulate the function of the pre-sequence and facilitate correct protein folding of m-ROL. Moreover, intramolecular chaperones may also affect enzymatic properties by mediating the folding and conformational changes of the mature protein domain[20]. In this study, pro-ROL was more thermally stable than m-ROL. Similar phenomenon was observed by Beer and his colleague. In their study, they found that in contrast to m-ROL, pro-ROL and prepro-ROL had considerably higher thermostability[7]. This suggests that the pre-sequence domain may also protect the m-ROL region from dramatic conformational change when exposed to high temperatures.

    A special characteristic of lipase is the interfacial activation. Generally, the active site (catalytic triad) is completely buried beneath a short amphiphilic helical segment, which prevents substrate access. When the enzyme contact with the hydrophobic substrates, it will go through a series structural rearrangement, and the enzyme changes from a closed to a open conformation that make the substrates entre into the activity site[21]. Although there were no report on the effect of pre-sequence on the substrate selectivity of lipase before, but it is possible that this pre-sequence of pro-ROL can spatially retard the conformational change of mature ROL domain. When the long-chain substrates contacted with enzymes, although the enzymes have conformational change, the open size of enzyme is still not enough to permit the long-chain substrates entre into the active site. On the contrary, this half-open conformation will be more accessible to the shorter chain substrate (C4). As observed in this study, the favorable substrate of pro-ROL and m-ROL are C4, while for m-ROL is C10 (Fig. 6A).

    Codon-usage frequency is a major impediment to the efficient expression of foreign gene in heterologous host. In ROL gene, four codons 155Leu (CTC), 171Ser (AGC), 254Leu (CTC) and 267Ser (AGC), which have the lowest usage frequency, are the bottleneck of gene expression in P. pastoris. Our study shows that codon optimization by overlap extension PCR to substitute less frequently used codons with frequently used ones could significantly improve the expression level of ROL. Compared to other methods such as chemical gene synthesis, overlap extension PCR is simple and effective. The initial enzymatic activity achieved based on the flask fermentation method could reach 132.7 U/mL. Although our product yield is not as high as a previous study[22]using a large-scale bioreactor (644.0 U/mL), it is still significantly better than other reported results[23-24]. We believe that lipase production and enzymatic activity from recombinants carrying optimized ROL gene may be improved under a batch-induced mode with further optimization in pH, methanol concentration and aeration during the fermentation process.

    In this study, we actively expressed pre-mature (pro-ROL) and mature lipase gene (m-ROL) of R. oryzae in P. pastoris. The differences in enzymatic characteristics between these two forms of lipase may be caused by the intramolecular chaperone-like pre-sequence in pro-ROL, which could affect the conformation of m-ROL domain. Codon optimization by overlap extension PCR has effectively improved the expression level by 4.6-fold. This newly codonoptimized ROL gene may be useful for future large-scale production of R. oryzae lipase. Further characterization of pro-ROL and m-ROL may offer a valuable tool in industrial applications.

    [1] Gotor-Fernández V, Brieva R, Gotor V. Lipases: useful biocatalysts for the preparation of pharmaceuticals. J Mol Catal B: Enzym, 2006, 40(3/4): 111?120.

    [2] Fukuda H, Hama S, Tamalampudi S, et al. Whole-cell biocatalysts for biodiesel fuel production. Trends Biotechnol, 2008, 26(12): 668?673.

    [3] Tamalampudi S, Talukder MR, Hama S, et al. Enzymatic production of biodiesel from Jatropha oil: a comparative study of immobilized-whole cell and commercial lipases as a biocatalyst. Biochem Eng J, 2008, 39(1): 185?189.

    [4] Beer HD, Wohlfahrt G, Schmid RD, et al. The folding and activity of the extracellular lipase of Rhizopus oryzae are modulated by a prosequence. Biochem J, 1996, 319(Pt 2): 351?359.

    [5] Shinde U, Inouye M. Folding mediated by an intramolecular chaperone: autoprocessing pathway of the precursor resolved via a substrate assisted catalysis mechanism. J Mol Biol, 1995, 247(3): 390?395.

    [6] Chen YJ, Inouye M. The intramolecular chaperonemediated protein folding. Curr Opin Stru Biol, 2008, 18(6): 765?770.

    [7] Beer HD, McCarthy JEG, Bornscheuer UT, et al. Cloning, expression, characterization and role of the leader sequence of a lipase from Rhizopus oryzae. Gene Struct Expr, 1998, 1399(2/3): 173?180.

    [8] Takahashi S, Ueda M, Tanaka A. Function of the prosequence for the in vivo folding and secretion of active Rhizopus oryzae lipase in Saccharomyces cerevisiae. Appl Microbiol Biotechnol, 2001, 55(4): 454?462.

    [9] Ueda M, Takahashi S, Washida M, et al. Expression of Rhizopus oryzae lipase gene in Saccharomyces cerevisiae. J Mol Catal B: Enzym, 2002, 17(3/5): 113?124.

    [10] Minning S, Schmidt-Dannert C, Schmid RD. Functional expression of Rhizopus oryzae lipase in Pichia pastoris: high-level production and some properties. J Biotechnol, 1998, 66(2/3): 147?156.

    [11] Cos O, Resina D, Ferrer P, et al. Heterologous production of Rhizopus oryzae lipase in Pichia pastoris using the alcohol oxidase and formaldehyde dehydrogenase promoters in batch and fed-batch cultures. Biochem Engin J, 2005, 26(2/3): 86?94.

    [12] Fernández L, Pérez-Victoria I, Zafra A, et al. High-level expression and characterization of Galactomyces geotrichum (BT107) lipase I in Pichia pastoris. Protein Expr Purif, 2006, 49(2): 256?264.

    [13] Shu ZY, Duan MJ, Yang JK, et al. Aspergillus niger lipase: heterologous expression in Pichia pastoris, molecular modeling prediction and the importance of the hinge domains at both sides of the lid domain to interfacial activation. Biotechnol Prog, 2009, 25(2): 409?416.

    [14] Yang JK, Zhang B, Yan YJ. Cloning and expression of Pseudomonas fluorescens 26-2 lipase gene in Pichia pastoris and characterizing for transesterification. Appl Biochem Biotechnol, 2009, 159(2): 355?365.

    [15] Müller M. Codon optimization of papillomavirus genes. Methods Mol Med, 2005, 119: 433?444.

    [16] Tokuoka M, Tanaka M, Ono K, et al. Codon optimization increases steady-state mRNA levels in Aspergillus oryzae heterologous gene expression. Appl Environ Microbiol, 2008, 74(21): 6538?6546.

    [17] Daniell H, Ruiz G, Denes B, et al. Optimization of codon composition and regulatory elements for expression of human insulin like growth factor-1 in transgenic chloroplasts and evaluation of structural identity and function. BMC Biotechnol, 2009, 9(1): 33.

    [18] Kouker G, Jaeger KE. Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol, 1987, 53(1): 211?213.

    [19] Kumar S, Tamura K, Nei M. MEGA3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform, 2004, 5(2): 150?163.

    [20] Ma BY, Tsai CJ, Nussinov R. Binding and folding: in search of intramolecular chaperone-like building block fragments. Protein Eng Des Sel, 2000, 13(9): 617?627.

    [21] Chapus C, Semeriva M, Bovier-Lapierre C, et al. Mechanism of pancreatic lipase action. 1. Interfacial activation of pancreatic lipase. Biochemistry, 1976, 15(23): 4980?4987.

    [22] Surribas A, Stahn R, Montesinos JL, et al. Production of a Rhizopus oryzae lipase from Pichia pastoris using alternative operational strategies. J Biotechnol, 2007, 130(3): 291?299.

    [23] Ramchuran SO, Vargas VA, Hatti-Kaul R, et al. Production of a lipolytic enzyme originating from Bacillus halodurans LBB2 in the methylotrophic yeast Pichia pastoris. Appl Microbial Biotechnol, 2006, 71(4): 463?472.

    [24] Yao HY, Yu SW, Zhang LD, et al. Isolation of a novel lipase gene from Serratia liquefaciens S33 DB-1, functional expression in Pichia pastoris and its properties. Mol Biotechnol, 2008, 38(2): 99?107.

    [25] Zor T, Selinger Z. Linearization of the Bradford protein assay increases its sensitivity: theoretical and experimental studies. Anal Biochem, 1996, 236: 302?308.

    在线观看免费高清a一片| 曰老女人黄片| 欧美日韩成人在线一区二区| 国产又爽黄色视频| 欧美亚洲日本最大视频资源| 波多野结衣一区麻豆| 国产精品国产三级国产专区5o| 99九九在线精品视频| 精品一区在线观看国产| 久久久久久伊人网av| 日韩不卡一区二区三区视频在线| 久久久欧美国产精品| 国产又色又爽无遮挡免| 巨乳人妻的诱惑在线观看| 青春草视频在线免费观看| 亚洲欧美日韩另类电影网站| 亚洲 欧美一区二区三区| 亚洲一级一片aⅴ在线观看| 欧美日韩一区二区视频在线观看视频在线| 国产野战对白在线观看| 99久久人妻综合| 久久久久久人人人人人| 秋霞在线观看毛片| 建设人人有责人人尽责人人享有的| 人妻少妇偷人精品九色| 国产片特级美女逼逼视频| 亚洲国产欧美网| 免费观看性生交大片5| 国产视频首页在线观看| 亚洲成国产人片在线观看| av免费观看日本| 亚洲精品,欧美精品| 亚洲国产精品一区二区三区在线| 大陆偷拍与自拍| 女性生殖器流出的白浆| 中文字幕人妻丝袜一区二区 | 777久久人妻少妇嫩草av网站| 亚洲四区av| 亚洲国产最新在线播放| 91精品国产国语对白视频| 中文字幕最新亚洲高清| 精品久久蜜臀av无| av片东京热男人的天堂| 日本午夜av视频| 国产熟女午夜一区二区三区| av免费观看日本| 成人国产麻豆网| 五月伊人婷婷丁香| 国产av码专区亚洲av| 免费观看无遮挡的男女| 精品午夜福利在线看| 少妇的丰满在线观看| 大片电影免费在线观看免费| 中文字幕色久视频| 亚洲一级一片aⅴ在线观看| 亚洲精品国产av成人精品| 日韩制服骚丝袜av| 菩萨蛮人人尽说江南好唐韦庄| 国产亚洲欧美精品永久| 国产成人精品无人区| 丝袜美腿诱惑在线| 永久网站在线| 你懂的网址亚洲精品在线观看| 久久国产精品大桥未久av| av有码第一页| 久久精品人人爽人人爽视色| 国产av码专区亚洲av| 大话2 男鬼变身卡| 国产熟女欧美一区二区| 国产一区二区激情短视频 | 国产成人一区二区在线| 欧美变态另类bdsm刘玥| 亚洲在久久综合| 亚洲,欧美,日韩| 亚洲男人天堂网一区| 久久鲁丝午夜福利片| 亚洲经典国产精华液单| 国产精品一区二区在线观看99| 国产成人精品福利久久| 成人亚洲欧美一区二区av| 久久国产精品大桥未久av| 亚洲成人av在线免费| 五月开心婷婷网| 香蕉丝袜av| 日本-黄色视频高清免费观看| 天堂中文最新版在线下载| 国产女主播在线喷水免费视频网站| 寂寞人妻少妇视频99o| 伊人亚洲综合成人网| 在线观看免费日韩欧美大片| 1024视频免费在线观看| 电影成人av| 亚洲一区二区三区欧美精品| 亚洲人成电影观看| 18在线观看网站| 日韩精品有码人妻一区| 少妇人妻久久综合中文| 成人国语在线视频| 亚洲av.av天堂| 99久久中文字幕三级久久日本| 亚洲国产欧美在线一区| 亚洲精品国产一区二区精华液| 激情五月婷婷亚洲| av一本久久久久| 色哟哟·www| 国产高清国产精品国产三级| 久久ye,这里只有精品| 黑人猛操日本美女一级片| 久久午夜综合久久蜜桃| 青春草亚洲视频在线观看| 午夜免费鲁丝| 久久热在线av| 国产免费视频播放在线视频| 99久久综合免费| 不卡av一区二区三区| 国产精品久久久久久精品电影小说| 久久久久国产精品人妻一区二区| 黄色视频在线播放观看不卡| 妹子高潮喷水视频| 欧美成人午夜免费资源| 国产日韩欧美在线精品| 美女中出高潮动态图| 18+在线观看网站| 十八禁网站网址无遮挡| 国产高清不卡午夜福利| 欧美精品人与动牲交sv欧美| 大香蕉久久成人网| 欧美日韩一级在线毛片| 亚洲欧美成人综合另类久久久| 日韩大片免费观看网站| 国产亚洲午夜精品一区二区久久| av一本久久久久| 国产精品女同一区二区软件| 日日摸夜夜添夜夜爱| 性色avwww在线观看| 最近2019中文字幕mv第一页| 另类精品久久| 丁香六月天网| 日本欧美视频一区| 日韩欧美一区视频在线观看| 久久亚洲国产成人精品v| 美女高潮到喷水免费观看| 久久人妻熟女aⅴ| 日韩av在线免费看完整版不卡| 午夜av观看不卡| 99热网站在线观看| 国产激情久久老熟女| 国产综合精华液| 高清欧美精品videossex| 国产亚洲一区二区精品| 亚洲av在线观看美女高潮| 18+在线观看网站| 色网站视频免费| 亚洲激情五月婷婷啪啪| 婷婷色综合大香蕉| 少妇人妻久久综合中文| 国产亚洲欧美精品永久| 亚洲精品av麻豆狂野| 精品午夜福利在线看| 可以免费在线观看a视频的电影网站 | 在现免费观看毛片| 亚洲精品日本国产第一区| 久久精品久久久久久久性| 伊人久久国产一区二区| 成年动漫av网址| 亚洲精品美女久久久久99蜜臀 | 国产成人a∨麻豆精品| 久久精品夜色国产| 乱人伦中国视频| 久久精品aⅴ一区二区三区四区 | 日韩av在线免费看完整版不卡| 久久久久精品久久久久真实原创| 精品午夜福利在线看| 日日摸夜夜添夜夜爱| 亚洲国产色片| 国产一级毛片在线| 国产xxxxx性猛交| 久久精品国产亚洲av涩爱| 午夜福利在线观看免费完整高清在| 亚洲av中文av极速乱| 免费播放大片免费观看视频在线观看| 国产精品 欧美亚洲| 国产免费视频播放在线视频| 最近2019中文字幕mv第一页| 久久精品国产亚洲av天美| 亚洲精品久久成人aⅴ小说| 国产精品.久久久| a级毛片在线看网站| 桃花免费在线播放| 日本爱情动作片www.在线观看| 在现免费观看毛片| 性色av一级| 精品亚洲成a人片在线观看| 在线精品无人区一区二区三| 日本-黄色视频高清免费观看| 国产黄频视频在线观看| 国产精品人妻久久久影院| 91在线精品国自产拍蜜月| 五月天丁香电影| 九九爱精品视频在线观看| 熟女av电影| 精品国产露脸久久av麻豆| 久久精品亚洲av国产电影网| 2018国产大陆天天弄谢| 免费观看无遮挡的男女| 97精品久久久久久久久久精品| 亚洲伊人色综图| 亚洲第一青青草原| 免费女性裸体啪啪无遮挡网站| 欧美人与性动交α欧美精品济南到 | 麻豆av在线久日| 少妇人妻 视频| 国产精品女同一区二区软件| 超碰成人久久| 免费看av在线观看网站| 一级爰片在线观看| 看免费成人av毛片| 国产成人精品无人区| 精品一区二区三区四区五区乱码 | 久久国内精品自在自线图片| 在线观看www视频免费| 91成人精品电影| 精品人妻熟女毛片av久久网站| 男女免费视频国产| 哪个播放器可以免费观看大片| 午夜久久久在线观看| 精品少妇内射三级| 999精品在线视频| 精品视频人人做人人爽| 色网站视频免费| 国产熟女午夜一区二区三区| 欧美国产精品一级二级三级| av卡一久久| 国产黄色视频一区二区在线观看| 丁香六月天网| 黄色一级大片看看| 两性夫妻黄色片| 免费av中文字幕在线| 一本大道久久a久久精品| 欧美成人精品欧美一级黄| 国产不卡av网站在线观看| 精品国产一区二区三区久久久樱花| 欧美日韩一级在线毛片| 国产精品一区二区在线不卡| 亚洲av免费高清在线观看| 欧美成人精品欧美一级黄| 久久久精品免费免费高清| 国产av精品麻豆| 精品久久久久久电影网| 亚洲色图综合在线观看| 亚洲五月色婷婷综合| 少妇精品久久久久久久| 黑丝袜美女国产一区| 日韩精品有码人妻一区| 在线观看美女被高潮喷水网站| 亚洲一区中文字幕在线| 亚洲三级黄色毛片| 国产有黄有色有爽视频| 日韩制服骚丝袜av| 久久国产亚洲av麻豆专区| 亚洲成人一二三区av| 在线观看免费视频网站a站| 制服丝袜香蕉在线| 美女国产视频在线观看| 免费观看无遮挡的男女| 蜜桃国产av成人99| 国产又色又爽无遮挡免| 1024视频免费在线观看| 午夜免费男女啪啪视频观看| 国产欧美亚洲国产| 亚洲人成电影观看| 黑人欧美特级aaaaaa片| 激情视频va一区二区三区| 在线观看免费视频网站a站| 免费观看av网站的网址| 欧美bdsm另类| 久久影院123| 女性被躁到高潮视频| 波多野结衣av一区二区av| 精品国产露脸久久av麻豆| 精品一区二区三区四区五区乱码 | 考比视频在线观看| 国产伦理片在线播放av一区| 大话2 男鬼变身卡| 亚洲国产av新网站| 青青草视频在线视频观看| 日韩欧美精品免费久久| 一区二区av电影网| 国产精品女同一区二区软件| 国产精品久久久av美女十八| 国产成人精品在线电影| 美女高潮到喷水免费观看| 日韩一本色道免费dvd| 亚洲欧洲日产国产| 欧美精品亚洲一区二区| av在线老鸭窝| 黄频高清免费视频| 爱豆传媒免费全集在线观看| 亚洲四区av| 精品一区二区三卡| 高清黄色对白视频在线免费看| av片东京热男人的天堂| 久久韩国三级中文字幕| 香蕉精品网在线| 五月开心婷婷网| 日韩不卡一区二区三区视频在线| 日本爱情动作片www.在线观看| 国产精品国产三级国产专区5o| 国产不卡av网站在线观看| 日韩人妻精品一区2区三区| 久久久久视频综合| 午夜日韩欧美国产| 丝瓜视频免费看黄片| 亚洲成人av在线免费| av又黄又爽大尺度在线免费看| 国产精品熟女久久久久浪| 精品人妻一区二区三区麻豆| 亚洲,欧美,日韩| 制服诱惑二区| 国产精品女同一区二区软件| 欧美成人午夜精品| 日韩精品免费视频一区二区三区| 交换朋友夫妻互换小说| 亚洲国产欧美在线一区| 美国免费a级毛片| 日本91视频免费播放| 欧美激情高清一区二区三区 | 人成视频在线观看免费观看| 啦啦啦在线观看免费高清www| 成年人午夜在线观看视频| 青春草视频在线免费观看| 久久99一区二区三区| 午夜激情久久久久久久| 最近手机中文字幕大全| 久久久国产欧美日韩av| 电影成人av| 国产片内射在线| 韩国av在线不卡| 亚洲人成网站在线观看播放| 婷婷色麻豆天堂久久| 日本av手机在线免费观看| 亚洲国产欧美日韩在线播放| 亚洲成av片中文字幕在线观看 | 熟女少妇亚洲综合色aaa.| 欧美 亚洲 国产 日韩一| av在线老鸭窝| 色网站视频免费| 精品人妻熟女毛片av久久网站| 亚洲av免费高清在线观看| 妹子高潮喷水视频| 日本黄色日本黄色录像| av福利片在线| 日日爽夜夜爽网站| 天天躁狠狠躁夜夜躁狠狠躁| 寂寞人妻少妇视频99o| 一本色道久久久久久精品综合| 五月天丁香电影| 80岁老熟妇乱子伦牲交| 1024视频免费在线观看| 一边亲一边摸免费视频| 在线免费观看不下载黄p国产| 久久亚洲国产成人精品v| 如日韩欧美国产精品一区二区三区| 美女xxoo啪啪120秒动态图| 久久久久久人人人人人| 叶爱在线成人免费视频播放| 国产精品亚洲av一区麻豆 | 亚洲国产最新在线播放| 国产日韩欧美亚洲二区| 交换朋友夫妻互换小说| 国产视频首页在线观看| 一级黄片播放器| 精品亚洲乱码少妇综合久久| 肉色欧美久久久久久久蜜桃| 1024视频免费在线观看| 男女边吃奶边做爰视频| 国产精品久久久久久精品电影小说| 久久狼人影院| 一级片免费观看大全| 免费久久久久久久精品成人欧美视频| 在现免费观看毛片| 老女人水多毛片| av不卡在线播放| 亚洲国产看品久久| 两性夫妻黄色片| av卡一久久| 极品少妇高潮喷水抽搐| 国产av精品麻豆| 亚洲精品乱久久久久久| 亚洲欧美清纯卡通| 久久久a久久爽久久v久久| 亚洲精品aⅴ在线观看| 亚洲内射少妇av| 妹子高潮喷水视频| 中文字幕另类日韩欧美亚洲嫩草| 国产激情久久老熟女| a级毛片黄视频| 精品一品国产午夜福利视频| 波多野结衣一区麻豆| 国产在视频线精品| 精品人妻在线不人妻| 制服诱惑二区| 国产精品久久久久成人av| 亚洲欧美色中文字幕在线| 伊人亚洲综合成人网| 久久ye,这里只有精品| 久久久久久人人人人人| 国产男女超爽视频在线观看| 久久久久国产一级毛片高清牌| 亚洲欧美日韩另类电影网站| www.av在线官网国产| 日韩中文字幕视频在线看片| 久久精品夜色国产| 女人久久www免费人成看片| 久久久久久伊人网av| 国产精品嫩草影院av在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 婷婷色综合大香蕉| 毛片一级片免费看久久久久| 亚洲精品久久成人aⅴ小说| 五月伊人婷婷丁香| 夜夜骑夜夜射夜夜干| 黄片小视频在线播放| 日韩制服骚丝袜av| 人妻少妇偷人精品九色| 不卡视频在线观看欧美| av片东京热男人的天堂| 日韩 亚洲 欧美在线| 在线天堂中文资源库| 日韩av免费高清视频| 久久久久久久国产电影| 精品福利永久在线观看| 久久99热这里只频精品6学生| 国产免费又黄又爽又色| 91国产中文字幕| 亚洲精品国产av成人精品| 18+在线观看网站| 波多野结衣一区麻豆| 欧美日韩国产mv在线观看视频| 两个人免费观看高清视频| 日韩制服骚丝袜av| 欧美 亚洲 国产 日韩一| 中文字幕人妻丝袜一区二区 | 国产精品偷伦视频观看了| 咕卡用的链子| 午夜免费观看性视频| 看非洲黑人一级黄片| a级毛片黄视频| 老汉色av国产亚洲站长工具| 在线观看三级黄色| 久久精品久久久久久久性| 亚洲精品在线美女| 国产日韩欧美在线精品| 母亲3免费完整高清在线观看 | 欧美成人精品欧美一级黄| 日本-黄色视频高清免费观看| 黄色怎么调成土黄色| 欧美在线黄色| 日韩精品有码人妻一区| 少妇人妻精品综合一区二区| 亚洲成人av在线免费| 黄色怎么调成土黄色| 秋霞伦理黄片| 日日撸夜夜添| 女的被弄到高潮叫床怎么办| 高清黄色对白视频在线免费看| 美女福利国产在线| 人妻 亚洲 视频| 亚洲精品乱久久久久久| 久久精品久久久久久久性| 中文天堂在线官网| 午夜日韩欧美国产| 欧美人与善性xxx| 国产亚洲午夜精品一区二区久久| 99久久人妻综合| 一区二区三区精品91| 一区二区三区乱码不卡18| 午夜福利,免费看| 欧美日韩亚洲国产一区二区在线观看 | 亚洲人成电影观看| 国语对白做爰xxxⅹ性视频网站| 亚洲成av片中文字幕在线观看 | 亚洲精品日本国产第一区| 欧美+日韩+精品| www.精华液| 国产野战对白在线观看| 中文欧美无线码| 我要看黄色一级片免费的| 亚洲精品美女久久av网站| 久久午夜综合久久蜜桃| 国产免费又黄又爽又色| 七月丁香在线播放| 成人二区视频| 日韩一本色道免费dvd| 婷婷色综合www| 90打野战视频偷拍视频| 青青草视频在线视频观看| 国产不卡av网站在线观看| 欧美日韩亚洲国产一区二区在线观看 | 国产亚洲最大av| 国产又爽黄色视频| 日日撸夜夜添| 久久久久久久国产电影| 国产老妇伦熟女老妇高清| 欧美日本中文国产一区发布| 国产片内射在线| 一区福利在线观看| av免费在线看不卡| 亚洲欧美日韩另类电影网站| 亚洲精品aⅴ在线观看| 大片免费播放器 马上看| 久久久久国产网址| 中文字幕最新亚洲高清| 精品一品国产午夜福利视频| 大码成人一级视频| 日本91视频免费播放| 亚洲欧美成人综合另类久久久| 欧美亚洲日本最大视频资源| 免费人妻精品一区二区三区视频| 日本欧美国产在线视频| 久久久久久久久久人人人人人人| 啦啦啦在线免费观看视频4| a级片在线免费高清观看视频| 99久久中文字幕三级久久日本| 熟妇人妻不卡中文字幕| 街头女战士在线观看网站| 97精品久久久久久久久久精品| 一级片免费观看大全| 成年人午夜在线观看视频| 国产免费现黄频在线看| 天堂8中文在线网| 亚洲精品一二三| 欧美少妇被猛烈插入视频| 男女无遮挡免费网站观看| 99热网站在线观看| 亚洲伊人色综图| 极品人妻少妇av视频| 日日啪夜夜爽| 精品一区二区免费观看| 成年av动漫网址| 一区二区av电影网| 三上悠亚av全集在线观看| 少妇被粗大猛烈的视频| 欧美 日韩 精品 国产| 哪个播放器可以免费观看大片| 免费看av在线观看网站| 国产精品偷伦视频观看了| 一边摸一边做爽爽视频免费| 亚洲精品日韩在线中文字幕| 亚洲欧美精品综合一区二区三区 | 美女国产视频在线观看| 老熟女久久久| 日韩不卡一区二区三区视频在线| 成年av动漫网址| 国产精品秋霞免费鲁丝片| 熟妇人妻不卡中文字幕| 日韩不卡一区二区三区视频在线| 九九爱精品视频在线观看| 视频区图区小说| 丝瓜视频免费看黄片| 精品一区二区免费观看| 99久久人妻综合| 少妇人妻 视频| 久久精品国产鲁丝片午夜精品| 七月丁香在线播放| 熟妇人妻不卡中文字幕| 精品一区二区免费观看| 91成人精品电影| 性少妇av在线| 纯流量卡能插随身wifi吗| 美女主播在线视频| 天天躁夜夜躁狠狠躁躁| 搡女人真爽免费视频火全软件| 18禁观看日本| 国产极品粉嫩免费观看在线| 亚洲精品国产av蜜桃| 精品一区二区三区四区五区乱码 | 人成视频在线观看免费观看| 狂野欧美激情性bbbbbb| 国产黄色免费在线视频| 99热全是精品| 国产熟女午夜一区二区三区| 狠狠精品人妻久久久久久综合| 精品一区二区三区四区五区乱码 | 最新的欧美精品一区二区| 在线免费观看不下载黄p国产| 婷婷色麻豆天堂久久| 丰满饥渴人妻一区二区三| 国产一区二区三区av在线| 晚上一个人看的免费电影| 久久精品国产自在天天线| 丝瓜视频免费看黄片| 国产97色在线日韩免费| 亚洲第一av免费看| 97在线视频观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | av国产久精品久网站免费入址| 你懂的网址亚洲精品在线观看| av女优亚洲男人天堂| 丝袜人妻中文字幕| 另类精品久久| 日本wwww免费看| 国产xxxxx性猛交| 黑人猛操日本美女一级片| 人妻一区二区av| 丰满迷人的少妇在线观看| 久久久久国产网址| 大片免费播放器 马上看| 性高湖久久久久久久久免费观看| 亚洲婷婷狠狠爱综合网| 欧美xxⅹ黑人| 久久人人爽人人片av| 国产精品无大码| 欧美成人午夜免费资源| 一本色道久久久久久精品综合|