• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    表面活性劑對樹形銀納米結(jié)構(gòu)影響的蒙特-卡洛模擬

    2016-11-22 09:48:58王元元徐群星謝華清吳子華邢姣嬌
    物理化學學報 2016年10期
    關(guān)鍵詞:卡洛蒙特偏壓

    王元元 徐群星 謝華清 吳子華 邢姣嬌

    (上海第二工業(yè)大學環(huán)境與材料工程學院,上海201209)

    表面活性劑對樹形銀納米結(jié)構(gòu)影響的蒙特-卡洛模擬

    王元元徐群星謝華清*吳子華邢姣嬌

    (上海第二工業(yè)大學環(huán)境與材料工程學院,上海201209)

    采用偏壓受限擴散聚集模型研究溶液中銀樹形納米結(jié)構(gòu)的生長。模擬中,在二維正方形格子中引入了等腰直角三角形粒子進行模擬,同時運用不同的粘貼概率來描述表面活性劑的效果。模擬結(jié)果表明樹形納米結(jié)構(gòu)隨著偏壓的增大而變得更密。表面活性劑的加入使得樹形納米結(jié)構(gòu)變得更加對稱和規(guī)則。更進一步,當表面活性劑的效果足夠強且外加偏壓很小的時候,銀納米顆粒聚集成了銀納米片。模擬結(jié)果有利于定性解釋相關(guān)的實驗結(jié)果。

    蒙特-卡洛模擬;樹形銀納米結(jié)構(gòu);表面活性劑

    In this paper,we investigate the growth of the silver dendritic nanostructures with the surfactants by applying the biased diffusion-limited aggregation(DLA)method25,26.To study the influence of the surfactant on the morphology of the dendritic nanostructures,the isosceles right-angled triangle particles are applied in the two-dimensional(2D)square grids and the sticking possibilities of different particle sides are introduced.

    2 Simulation method

    The growth of the dendritic nanostructure is an out-of-equilibrium process.As we know,when a bias voltage is applied,a local space charge and thus a large electric field are formed in the vicinity of the negative electrode12.This space charge area is the diffusion layer and it thickens with the deceasing ion concentration18.At first,Ag+moves freely and performs random Brownian motion and walks to the diffusion layer randomly.When Ag+moves into the diffusion layer,it will be driven to move toward the reaction surface by the electric field in the diffusion layer.When Ag+moves to the reaction surface,it gains an electron and is reduced to a silver atom.Then the reduced silver atom deposits on the reaction surface.We apply the 2D biased DLA model27to simulate the growth of the silver dendritic nanostructures in the silver nitrate solution.When the area of the reaction plane is large enough and the isotropy holds true in the plane,the threedimensional(3D)problem can be simplified to the quasi-2D problem in the plane perpendicular to the reaction plane(see Fig.1 (a)).At this time,the 2D simulation is acceptable.It is also noted that extending the DLA simulation to 3D is relatively straightforward but there are some important differences and options not available in two dimensions28,29.One of the significant improvements of the 3D algorithm is not to form the DLA on a grid of finite resolution but rather on a continuum.A particle adheres to the existing structure if it comes within some minimum distance of any part of the existing structure.In our simulation,a particle denotingAg+is released at a random site on the top horizontal line. This particle performs a bias random walk until it reaches the bottom horizontal line and then deposits.The next particle is then released,and so on.Two velocities are introduced to describe the particle motion:longitudinal velocity vyand the transverse velocity vx,which are perpendicular and parallel to the bottom line,respectively18.The velocity ratio between vyand vxis denoted as p (p=vy/vx).The longitudinal velocity is determined by the electric field in the diffusion layer,which is affected by the bias voltage. The transverse velocity is determined by the Brownian motion, which is only related to the solution temperature.In the simulation,we need to consider the effect of the surfactant.Since the capping agents change the free energies for different crystallographic planes and thus their relative growth rates24,we apply the square and isosceles right-angled triangle particles(see Fig.1(b)) instead of the round particles applied in the literature18,so that we can distinguish different sides of the particles.It should be noticed that there are four types of triangle particles(see Fig.1(b))in the 2D square grids when the rotation of the particles is neglected.In order to simulate different growth rates of different sides,the sticking rates26,30of different sides are introduced:The sticking rates for the two arms of the right angle and the hypotenuse of the triangle particles are paand phrespectively,while for the sides for the square particles,the sticking rates are all pe.When a particle walks to the neighbor position of one side with the sticking rate pi(i=a,h,e),it has a pipossibility to be stuck and 1-pipossibility to continue walking.Introducing the sticking possibility is actually adding an inhomogeneous perturbation,which weakens the screening effect3and makes the grown nanostructures become much regular and compacter.

    3 Results and discussion

    We now study how the morphology of the dendritic nanostructures changes with the bias voltage and the surfactant.Biased DLA Monte-Carlo method27is applied to obtain the simulation images.To compare the results simulated in different conditions, the image sizes are all 100×300 grids.

    3.1Effect of bias voltage on growth

    Fig.1 Schematic diagram of biased DLAmodel

    We first study the influence of the voltage on the growth.The results with square and triangle particles applied are shown in Fig.2 and Fig.3,respectively.The results of(a),(b)and(c)in Fig.2 and Fig.3 are obtained with p=0.25,1,4,which means that the longitudinal velocity increases induced by the increasing bias voltage.It is seen that when the bias voltage is small,the fractal trees are separate without overlapping each other(see Fig.2(a)and Fig.3(a)),no matter that the square or the triangle particles are applied.Then the dendritic nanostructures become denser with the increasing voltage.When the bias voltage is large enough(see Fig.2(c)and Fig.3(c)),the fractal trees connect together and jointinto a whole shape in which single trees cannot be separated out. At the same time,the sizes of branches decrease with the increasing voltage.This can be understood as follows.When p is small,which means that vxis larger than vy,each particle tends to be captured by the tip of the branches,instead to aggregate on the hollow sites.However,when p is large,which means that vyis larger than vx,the particle has much larger possibility to walk into the hollow position of the branches.Therefore,the bias voltage affects the walk property in the diffusion layers and thus modifies the whole morphology of the dendrites.It is also noticed that, although the simulation results with both square and triangle particles have similar features,the simulation images with the square particles are very rough in comparison with those with the triangle particles.This is because the area of the square particle is larger than that of the triangle particle.Considering that the size of the 2D grids is keeping the same,the larger the particles are,the rougher the simulation images are.

    Fig.2 Simulation images with the square particles applied

    Fig.3 Simulation images with the triangle particles applied

    Fig.4 Simulation images with the square particles applied

    Fig.5 Simulation images with the triangle particles applied for the equivalent sticking possibilities of the right-angle sides and the hypotenuse

    3.2Effect of surfactant on the growth

    We now turn to investigate the effect of the surfactant to the morphology of the silver dendritic nanostructures.The results with the square particles applied are shown in Fig.4.In the simulation, p=vy/vx=1.The sticking possibilities decrease gradually(pe=0.8, 0.6,0.4,0.2)for Fig.4(a)to(d),which implies that the growth rate becomes smaller and the effect of the surfactant becomes stronger. The simulation results in the four images do not have large dif-ference,except that the concentration of the branches increases a little.This comes from the fact that the four sides of the square are equivalent.The decrease of the growth rates of the four sides simultaneously can only lengthen the walking of the particles, which makes the particles prefer to walk toward the hollow of the branches.Therefore,changing the sticking possibilities of the four equivalent sides do not affect the whole morphology of the dendritic nanostructures strongly.This modification of the DLA model is similar to the multiple hits method.Therefore,it is not satisfying to explain the effect of the surfactant by applying the square particles in the modified DLAmodel.

    In the following,we introduce the triangle particles in the DLA model.The sticking possibilities of the right-angle sides and the hypotenuse are set to be the same(pa=ph)and the results are shown in Fig.5,where Fig.5(a-d)are corresponding to pa=ph= 0.8,0.6,0.4,0.2,respectively,which means that the effect of the surfactant increases.It is seen that the morphology of the deposit changes strongly with the decrease of the sticking possibility due to the inequality of the three sides,although the sticking possibilities of all the sides are the same.When the effect of the surfactant is weak(Fig.5(a)),the grown structures is still fractal dendrites,which is consistent with the observation in almost every experimental attempt for silver dendrites31-34.When the effect of the surfactant increases,the morphology becomes regular and ordered.When the effect of the surfactant is strong enough(Fig.5 (d)),the fractal trees are joint into some pieces.This result can also be seen in the experimental work35,where 1.1 mmol CTAB in 15 mL water is used as the surfactant.This is because when the sticking possibilities decrease due to the effect of the surfactant, every particle has large possibility to escape from the site where it touches the deposit at the first time and continue walking. Therefore,the possibility it walks into the hollow of the branches increases,which makes the nanostructures become much denser.

    We then continue to present the results when the sticking possibilities of the right-angle sides and the hypotenuse are different,which is in accordance with the effect of the surfactant in experiments.In Fig.6,the results when the surfactant only affects the hypotenuse of the triangle are shown,where ph=0.8,0.6,0.4, 0.2 for Fig.6(a),(b),(c),and(d),which implies that the effect of the surfactant increases gradually.At the same time,pa=1 and p= 1.It is seen that although phdecreases gradually,the dendritic structures do not have large difference.This implies that the surfactant that affects the growth rate of the hypotenuse does not influence the morphology strongly.Furthermore,we consider the cases when the surfactant only affects the right angle sides and the results are shown in Fig.7.In the simulation ph=1 and padecreases gradually.It is interesting that the fractal trees gradually joint together and become plates.It is also noticed that the results in Fig.7 are similar to those in Fig.5.It indicates that the surfactant that affects the growth rate of the right angle sides is in the leading role to modify the morphology of the dendrites.This can be understood as follows.There are two arms of the right angle,whereas only one hypotenuse in one triangle particles.When a particle touches the deposit,the possibility that the interface is the right-angle side is larger.Therefore,it is more efficient to change the sticking possibilities of the right angle sides than the hypotenuse.Our simulation results imply that different surfactants which influence different crystal faces have different effects on the morphology of the dendrites.

    Fig.6 Simulation images with the triangle particles applied when the surfactant only affects the hypotenuse of the triangle

    Fig.7 Simulation images with the triangle particles applied when the surfactant only affects the right angle sides

    4 Conclusions

    Inconclusion,wehaveinvestigatedthegrowthofthedendritic nanostructures.By introducing the isosceles right-angled triangle particles in the 2D square grids and the sticking possibilities of differentsidesoftheparticle,amodifiedbiasedDLAmodelisset up and applied to study the effect of the bias voltage and the surfactant to the morphology of the fractal trees.It is found that the dendriticnanostructuresbecomedenserandthesizesofthesingle branches decrease with the increasing bias voltage.What is interestingisthatthefractaltreesjointtogetherandbecomeplatesdue to the surfactant,which implies that the surfactant can make the structuresinthewholebecomemuchmoreregularandsymmetrical.

    References

    (1) Tarascon,J.M.;Armand,M.Nature 2001,414,359. doi:10.1038/35104644

    (2) Shi,F.;Song,Y.;Niu,J.;Xia,X.;Wang,Z.;Zhang,X.Chem. Mater.2006,18,1365.doi:10.1021/cm052502n

    (3) Vicsek,T.Fractal Growth Phenomena;World Scientific: Singapore,1992.

    (4) Fang,J.X.;Ding,B.J.;Song,X.P.;Han,Y.Appl.Phys.Lett. 2008,92,173120.doi:10.1063/1.2888770

    (5) Xiao,J.P.;Xie,Y.;Tang,R.;Chen,M.;Tian,X.B.Adv.Mater. 2001,13,1887.doi:10.1002/1521-4095(200112)13:24<1887:: AID-ADMA1887>3.0.CO;2-2

    (6)Zheng,X.J.;Jiang,Z.Y.;Xie,Z.X.;Zhang,S.H.;Mao,B.W.; Zheng,L.S.Electrochem.Commun.2007,9,629.doi:10.1016/ j.elecom.2006.10.039

    (7) Gutés,A.;Carraro,C.;Maboudian,R.J.Am.Chem.Soc.2010, 132,1476.doi:10.1021/ja909806t

    (8)Wang,M.;Zhong,S.;Yin,X.B.;Zhu,J.M.;Peng,R.W.; Wang,Y.;Zhang,K.Q.;Ming,N.B.Phys.Rev.Lett.2001,86, 3827.doi:10.1103/PhysRevLett.86.3827

    (9) Sun,B.;Zou,X.W.;Jin,Z.Z.Phys.Rev.E 2004,69,067202. doi:10.1103/PhysRevE.69.067202

    (10) Cronemberger,C.M.;Sampaio,L.C.Phys.Rev.E 2006,73, 041403.doi:10.1103/PhysRevE.73.041403

    (11)Wu,X.Z.;Pei,M.S.;Wang,L.Y.;Li,X.N.;Tao,X.T.Acta Phys.-Chim.Sin.2010,26,3095.[吳馨洲,裴梅山,王廬巖,李肖男,陶緒堂.物理化學學報,2010,26,3095.]doi:10.3866/ PKU.WHXB20101132

    (13) Elezgaray,J.;Léger,C.;Argoul,F.J.Electrochem.Soc.1998, 145,2016.doi:10.1149/1.1838592

    (14) Monroe,C.;Newman,J.J.Electrochem.Soc.2003,150, A1377.doi:10.1149/1.1606686

    (15) Léger,C.;Elezgaray,J.;Argoul,F.J.Electroanal.Chem.2000, 486,204.doi:10.1016/S0022-0728(00)00143-1

    (16)Wang,M.;van Enckevort,W.J.P.;Ming,N.B.;Bennema,P. Nature 1994,367,438.doi:10.1038/367438a0

    (17) Nahal,A.;Mostafavi-Amjad,J.;Ghods,A.;Khajehpour,M.R. H.;Reihani,S.N.S.;Kolahchi,M.R.J.Appl.Phys.2006,100, 053503.doi:10.1063/1.2336493

    (18)You,H.J.;Fang,J.X.;Chen,F.;Shi,M.;Song,X.P.;Ding,B. J.J.Phys.Chem.C 2008,112,16301.doi:10.1021/jp8042126

    (19) Sawada,Y.;Dougherty,A.;Gollub,J.P.Phys.Rev.Lett.1986, 56,1260.doi:10.1103/PhysRevLett.56.1260

    (20) Lee,G.J.;Shin,S.I.;Oh,S.G.Chem.Lett.2004,33,118. doi:10.1246/cl.2004.118

    (21) Rashid,M.H.;Mandal,T.K.J.Phys.Chem.C 2007,111, 16750.doi:10.1021/jp074963x

    (23) Zhou,Y.;Yu,S.H.;Wang,C.Y.;Li,X.G.;Zhu,Y.R.;Chen,Z. Y.Adv.Mater.1999,11,850.doi:10.1002/(SICI)1521-4095 (199907)11:10<850::AID-ADMA850>3.0.CO;2-Z

    (24) Kang,Z.;Wang,E.;Lian,S.;Mao,B.;Chen,L.;Xu,L.Mater. Lett.2005,59,2289.doi:10.1016/j.matlet.2005.03.005

    (25) Witten,T.A.;Sander,L.M.Phys.Rev.Lett.1981,47,1400. doi:10.1103/PhysRevLett.47.1400

    (26) Witten,T.A.;Sander,L.M.Phys.Rev.B 1983,27,5686. doi:10.1103/PhysRevB.27.5686

    (27) Nagatani,T.;Sagués,F.Phys.Rev.A 1991,43,2970. doi:10.1103/PhysRevA.43.2970

    (28) Sander,L.M.;Cheng,Z.M.;Richter,R.Phys.Rev.B 1983,28, 6394.doi:10.1103/PhysRevB.28.6394

    (29) Xiong,H.L.;Yang,Z.M.;Li,H.Acta Phys.-Chim.Sin.2014, 30,413.[熊海靈,楊志敏,李航.物理化學學報,2014,30, 413.]doi:10.3866/PKU.WHXB201401203

    (31) Qin,Y.;Song,Y.;Sun,N.;Zhao,N.;Li,M.;Qi,L.Chem. Mater.2008,20,3965.doi:10.1021/cm8002386

    (32)Hong,X.;Wang,G.Z.;Wang,Y.;Zhu,W.;Shen,X.S.Chin.J. Chem.Phys.2010,23,596.doi:10.1088/1674-0068/23/05/596-602

    (33) Ye,W.;Shen,C.;Tian,J.;Wang,C.;Bao,L.;Gao,H. Electrochem.Commun.2008,10,625.doi:10.1016/j. elecom.2008.01.040

    (34) Liao,F.;Wang,Z.F.;Hu,X.Q.Colloid J.2011,73,504. doi:10.1134/s1061933x11040053

    (35) Zhang,L.;Ai,Z.;Jia,F.;Liu,L.;Hu,X.;Yu,J.C.Chemistry 2006,12,4185.doi:10.1002/chem.200501404

    Monte-Carlo Simulations of the Effect of Surfactant on the Growth of Silver Dendritic Nanostructures

    WANG Yuan-YuanXU Qun-XingXIE Hua-Qing*WU Zi-HuaXING Jiao-Jiao
    (School of Environmental and Materials Engineering,Shanghai Second Polytechnic University,Shanghai 201209,P.R.China)

    The bias diffusion-limited aggregation model is used to study the growth of silver dendritic nanostructures in solution.In the simulation,right-angled isosceles triangle particles are introduced in twodimensional square grids and the sticking possibilities of different particle sides are introduced to describe the effect of the surfactant.Our simulation results show that the dendritic nanostructures become denser with increasing bias voltage.It is also found that the dendritic nanostructures become much more symmetrical and regular when the surfactant is applied.Furthermore,if the effect of the surfactant is strong enough and the bias voltage is small,the branches of the nanostructures are assembled into silver plates.Our simulation results are helpful to explain the experimental results qualitatively.

    Monte-Carlo simulation;Silver dendritic nanostructure;Surfactant

    1 Introduction

    Electrodeposition of metals and alloys,which has been performed for more than a century,is very flexible to manufacture a large number of metallic objects with very different morphologies such as pulverulent deposits,dendrites,needles,rough or porous deposits by changing,sometimes slightly,the experimental conditions.Among different morphologies,dendritic nanostructures have attracted much more attention recently.First,the dendritic growth is sometimes harmful in the electrochemical industry,for example,a serious problem in battery technology1.Secondly,the dendritic nanostructures have potential applications due to its special properties,such as catalysis and superhydrophobicity2. Moreover,dendritic growth in electrodeposition has also been considered as one of the typical out-of-equilibrium phenomena, in which several basic physics can be investigated3.So far,many experimental4-11and theoretical works12-14have been reported.These works mainly focused on different factors which affect the fractal dendritic shape15,such as convection16,ion concentration17,18,voltage18,19,surfactant20-23,and so on.Among these factors, one special factor is the surfactant.The presence of such capping agents can change the free energies for different crystallographic planes and thus their relative growth rates24.However,there still lacks convincing theoretical works to investigate the effect of the surfactant so far.

    March 30,2016;Revised:May 26,2016;Published online:May 27,2016.

    .Email:hqxie@sspu.edu.cn;Tel:+86-21-50214461.

    O647.1

    10.3866/PKU.WHXB201605272

    The project was supported by the National Natural Science Foundation of China(51406111),Shanghai Natural Science Foundation,China

    (14ZR1417000),Scientific Innovation Project of Shanghai Education Committee,China(15ZZ100),and Young Eastern Scholar of Shanghai,China (QD2015052).

    國家自然科學基金(51406111),上海市自然科學基金(14ZR1417000),上海教委科研創(chuàng)新項目(15ZZ100)和上海市青年東方學者(QD2015052)資助項目?Editorial office ofActa Physico-Chimica Sinica

    (12) Chazalviel,J.N.Phys.Rev.A 1990,42,7355.10.1103/ PhysRevA.42.7355

    (22) Sun,X.;Hagner,M.Langmuir 2007,23,9147.10.1021/ la701519x

    (30) Meakin,P.Phy.Rev.A 1983,27,1495.10.1103/ PhysRevA.27.1495

    猜你喜歡
    卡洛蒙特偏壓
    隱匿于黑白線條中的現(xiàn)實寓意
    預留土法對高鐵隧道口淺埋偏壓段的影響
    卡洛莊園里的故事(1) 花仙子
    讀寫算(中)(2016年5期)2016-11-07 07:26:21
    淺埋偏壓富水隧道掘進支護工藝分析
    河南科技(2015年4期)2015-02-27 14:21:05
    灰色理論在偏壓連拱隧道中的應用
    基于TPS40210的APD偏壓溫補電路設(shè)計
    三毛,你什么時候回來
    意林(2013年8期)2013-05-14 16:49:19
    国产色视频综合| 欧美大码av| 中文字幕av电影在线播放| 一级黄色大片毛片| 亚洲视频免费观看视频| 欧美在线一区亚洲| 国产亚洲欧美精品永久| 99国产精品一区二区三区| av天堂在线播放| 国产精品国产av在线观看| 成在线人永久免费视频| 狠狠狠狠99中文字幕| 国产高清视频在线播放一区| 一级毛片女人18水好多| 国产精品秋霞免费鲁丝片| 免费在线观看黄色视频的| 超色免费av| 操出白浆在线播放| 国产欧美日韩一区二区精品| 欧美日韩福利视频一区二区| 久久这里只有精品19| 女人被狂操c到高潮| 亚洲国产中文字幕在线视频| 欧美精品av麻豆av| 脱女人内裤的视频| 黄网站色视频无遮挡免费观看| 久9热在线精品视频| 婷婷丁香在线五月| 亚洲国产精品合色在线| 日韩 欧美 亚洲 中文字幕| 91av网站免费观看| 精品久久蜜臀av无| 美国免费a级毛片| 99国产极品粉嫩在线观看| 国产欧美亚洲国产| 人人妻人人澡人人看| 一级毛片女人18水好多| 嫩草影视91久久| 黄色视频不卡| 很黄的视频免费| 一级毛片精品| 99国产极品粉嫩在线观看| 91成年电影在线观看| 国产熟女午夜一区二区三区| 日日摸夜夜添夜夜添小说| 国产无遮挡羞羞视频在线观看| 1024香蕉在线观看| 嫁个100分男人电影在线观看| svipshipincom国产片| 欧美日韩瑟瑟在线播放| 国产蜜桃级精品一区二区三区 | 校园春色视频在线观看| 97人妻天天添夜夜摸| 在线观看免费视频网站a站| 黄频高清免费视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品亚洲精品国产色婷小说| videos熟女内射| 久久国产精品大桥未久av| 日本wwww免费看| 看片在线看免费视频| 亚洲 国产 在线| 国产三级黄色录像| 国产亚洲欧美98| 精品国产国语对白av| 韩国精品一区二区三区| 少妇裸体淫交视频免费看高清 | 婷婷丁香在线五月| 变态另类成人亚洲欧美熟女 | 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕人妻丝袜制服| av网站在线播放免费| 老司机亚洲免费影院| 麻豆乱淫一区二区| 少妇被粗大的猛进出69影院| 最近最新中文字幕大全免费视频| 精品国产一区二区久久| 欧美精品啪啪一区二区三区| 国产精品国产av在线观看| 日韩大码丰满熟妇| 欧美国产精品一级二级三级| 黑人巨大精品欧美一区二区mp4| 欧美黑人精品巨大| 久9热在线精品视频| 一级毛片精品| 韩国精品一区二区三区| 久久人妻福利社区极品人妻图片| 美女扒开内裤让男人捅视频| 天堂俺去俺来也www色官网| 黄片小视频在线播放| tocl精华| 欧美日韩国产mv在线观看视频| 十八禁高潮呻吟视频| 色94色欧美一区二区| 极品人妻少妇av视频| 欧美日韩国产mv在线观看视频| 无遮挡黄片免费观看| 少妇裸体淫交视频免费看高清 | 日日夜夜操网爽| 国产精品综合久久久久久久免费 | 人人妻,人人澡人人爽秒播| videosex国产| 久久草成人影院| av不卡在线播放| 午夜福利欧美成人| 波多野结衣一区麻豆| 在线观看免费高清a一片| 日韩制服丝袜自拍偷拍| 满18在线观看网站| 国产aⅴ精品一区二区三区波| 建设人人有责人人尽责人人享有的| 深夜精品福利| 黄色片一级片一级黄色片| 国产成人精品久久二区二区免费| 国产精品综合久久久久久久免费 | 亚洲国产精品sss在线观看 | 麻豆国产av国片精品| 国产激情欧美一区二区| 久久久国产欧美日韩av| 欧美亚洲 丝袜 人妻 在线| www.熟女人妻精品国产| 久久久久久久国产电影| 狠狠狠狠99中文字幕| 国产精品永久免费网站| 成人国产一区最新在线观看| 51午夜福利影视在线观看| 免费av中文字幕在线| 在线观看免费视频日本深夜| 国产一区二区三区综合在线观看| 国产成人欧美在线观看 | 亚洲熟女精品中文字幕| 成人永久免费在线观看视频| 80岁老熟妇乱子伦牲交| 一进一出抽搐动态| 精品国产国语对白av| 国产xxxxx性猛交| 电影成人av| 我的亚洲天堂| 久久精品国产a三级三级三级| 天堂中文最新版在线下载| 国产男女内射视频| 国产亚洲av高清不卡| 成年人免费黄色播放视频| 国产精品秋霞免费鲁丝片| 两性午夜刺激爽爽歪歪视频在线观看 | 久久婷婷成人综合色麻豆| 国产免费现黄频在线看| 午夜成年电影在线免费观看| 亚洲第一青青草原| 精品久久久久久电影网| 在线观看66精品国产| 1024香蕉在线观看| 欧美黄色淫秽网站| 一区二区三区激情视频| 90打野战视频偷拍视频| 欧美精品av麻豆av| 亚洲欧美激情综合另类| 色婷婷久久久亚洲欧美| av有码第一页| 国产精品 欧美亚洲| 在线观看www视频免费| 亚洲中文av在线| 女人被狂操c到高潮| 一级黄色大片毛片| 国产有黄有色有爽视频| 国产男女内射视频| 国产精品影院久久| 久久性视频一级片| 在线观看舔阴道视频| 亚洲国产看品久久| 久久精品成人免费网站| 黑人操中国人逼视频| 午夜福利欧美成人| 亚洲人成伊人成综合网2020| 久久国产精品影院| 国产一区二区三区综合在线观看| 777米奇影视久久| 国产精品1区2区在线观看. | 黄片播放在线免费| 国产一区有黄有色的免费视频| 午夜福利在线观看吧| 成人18禁高潮啪啪吃奶动态图| 欧美亚洲日本最大视频资源| cao死你这个sao货| 一区二区三区国产精品乱码| 午夜影院日韩av| 又大又爽又粗| 真人做人爱边吃奶动态| 丰满的人妻完整版| 十分钟在线观看高清视频www| 一边摸一边抽搐一进一出视频| 一二三四社区在线视频社区8| 色婷婷av一区二区三区视频| av免费在线观看网站| 天堂动漫精品| 国产区一区二久久| 妹子高潮喷水视频| 精品免费久久久久久久清纯 | 韩国av一区二区三区四区| 人人妻人人澡人人看| 日韩欧美一区二区三区在线观看 | 午夜91福利影院| 中文字幕制服av| 久久精品国产亚洲av高清一级| 精品人妻熟女毛片av久久网站| 中文字幕最新亚洲高清| 亚洲av电影在线进入| 久久久久久久国产电影| 色老头精品视频在线观看| 人人妻人人澡人人看| 成人手机av| 亚洲精品美女久久久久99蜜臀| 亚洲人成电影观看| 高清毛片免费观看视频网站 | 国产精品九九99| 一级黄色大片毛片| 免费观看精品视频网站| 国产单亲对白刺激| 男人操女人黄网站| 国产色视频综合| 国产亚洲精品久久久久5区| 黄色女人牲交| 飞空精品影院首页| 色94色欧美一区二区| 成人三级做爰电影| 婷婷成人精品国产| cao死你这个sao货| 少妇猛男粗大的猛烈进出视频| 精品亚洲成国产av| 久久午夜亚洲精品久久| 老司机亚洲免费影院| 18禁国产床啪视频网站| e午夜精品久久久久久久| 国产精品99久久99久久久不卡| 捣出白浆h1v1| 熟女少妇亚洲综合色aaa.| 黄色 视频免费看| 51午夜福利影视在线观看| xxx96com| 精品人妻在线不人妻| 后天国语完整版免费观看| 欧美最黄视频在线播放免费 | 人人妻人人澡人人爽人人夜夜| 少妇被粗大的猛进出69影院| 精品人妻熟女毛片av久久网站| 男女下面插进去视频免费观看| 亚洲人成电影免费在线| 国产片内射在线| 精品久久久精品久久久| 亚洲 欧美一区二区三区| 91在线观看av| 亚洲一区二区三区不卡视频| 777久久人妻少妇嫩草av网站| 欧美乱色亚洲激情| 少妇粗大呻吟视频| 国产蜜桃级精品一区二区三区 | 人人澡人人妻人| 一二三四在线观看免费中文在| 久久国产乱子伦精品免费另类| 日本精品一区二区三区蜜桃| 中国美女看黄片| 校园春色视频在线观看| 精品久久久精品久久久| 色在线成人网| 国产有黄有色有爽视频| 男人操女人黄网站| 国产精品99久久99久久久不卡| 免费高清在线观看日韩| 中文字幕av电影在线播放| 黄色女人牲交| 欧美另类亚洲清纯唯美| 国产亚洲精品第一综合不卡| 精品熟女少妇八av免费久了| 中文亚洲av片在线观看爽 | 又黄又粗又硬又大视频| 老汉色∧v一级毛片| 咕卡用的链子| 亚洲精品av麻豆狂野| 日韩免费高清中文字幕av| 中文字幕最新亚洲高清| 国产亚洲欧美精品永久| 日本一区二区免费在线视频| 老汉色∧v一级毛片| 亚洲国产精品合色在线| 久久久精品区二区三区| 日韩欧美国产一区二区入口| 一二三四在线观看免费中文在| 女性被躁到高潮视频| 亚洲欧美激情在线| 亚洲欧美一区二区三区久久| 欧美精品啪啪一区二区三区| 妹子高潮喷水视频| 欧美精品av麻豆av| 久久香蕉精品热| 在线天堂中文资源库| 一级作爱视频免费观看| 一级片'在线观看视频| 伦理电影免费视频| 叶爱在线成人免费视频播放| 老鸭窝网址在线观看| 一区二区三区精品91| 亚洲精品国产一区二区精华液| 不卡av一区二区三区| 制服人妻中文乱码| 免费在线观看日本一区| 午夜91福利影院| 国产精品亚洲一级av第二区| 999精品在线视频| 丝袜美足系列| 在线国产一区二区在线| 国产在视频线精品| 精品久久久精品久久久| 成年版毛片免费区| 欧美精品av麻豆av| 国产成人免费无遮挡视频| 中文字幕精品免费在线观看视频| 757午夜福利合集在线观看| 精品午夜福利视频在线观看一区| 狂野欧美激情性xxxx| 在线观看免费午夜福利视频| 久99久视频精品免费| 成人国语在线视频| 中文字幕最新亚洲高清| 国内久久婷婷六月综合欲色啪| 人人妻人人澡人人看| 亚洲国产中文字幕在线视频| 成人18禁高潮啪啪吃奶动态图| 免费av中文字幕在线| 女性被躁到高潮视频| 动漫黄色视频在线观看| 人妻 亚洲 视频| 人妻 亚洲 视频| 国产成人精品在线电影| 大香蕉久久成人网| 伦理电影免费视频| 黑人巨大精品欧美一区二区mp4| 一区福利在线观看| 久久亚洲真实| 久久久国产一区二区| 不卡av一区二区三区| 啦啦啦免费观看视频1| 51午夜福利影视在线观看| 精品无人区乱码1区二区| 韩国av一区二区三区四区| 免费看a级黄色片| 成人免费观看视频高清| 亚洲欧美日韩高清在线视频| 999精品在线视频| 一区二区三区精品91| 变态另类成人亚洲欧美熟女 | av欧美777| 国产精品亚洲av一区麻豆| 好男人电影高清在线观看| 免费观看a级毛片全部| 亚洲中文字幕日韩| 午夜福利在线观看吧| 欧美日韩精品网址| av网站免费在线观看视频| 亚洲专区字幕在线| 狠狠婷婷综合久久久久久88av| 亚洲成人手机| 19禁男女啪啪无遮挡网站| 久久人人爽av亚洲精品天堂| www.999成人在线观看| 亚洲国产中文字幕在线视频| 老熟妇乱子伦视频在线观看| 久久亚洲精品不卡| 天堂中文最新版在线下载| 视频区图区小说| 高清在线国产一区| 日韩免费高清中文字幕av| 麻豆乱淫一区二区| 国产男靠女视频免费网站| 成年人免费黄色播放视频| 欧美精品人与动牲交sv欧美| 免费在线观看亚洲国产| 搡老熟女国产l中国老女人| 村上凉子中文字幕在线| 狠狠狠狠99中文字幕| www.精华液| 色老头精品视频在线观看| avwww免费| 精品国产一区二区三区久久久樱花| 精品久久久久久久毛片微露脸| 在线观看免费午夜福利视频| xxx96com| 老司机深夜福利视频在线观看| 午夜福利欧美成人| 又大又爽又粗| 国产激情欧美一区二区| 精品一品国产午夜福利视频| 99精品久久久久人妻精品| 亚洲欧美精品综合一区二区三区| 老司机影院毛片| 搡老乐熟女国产| 亚洲国产毛片av蜜桃av| 波多野结衣一区麻豆| 97人妻天天添夜夜摸| 亚洲av电影在线进入| 高潮久久久久久久久久久不卡| 亚洲熟妇中文字幕五十中出 | 一级a爱视频在线免费观看| 亚洲国产欧美一区二区综合| 一级黄色大片毛片| 男人操女人黄网站| 乱人伦中国视频| 午夜精品久久久久久毛片777| 亚洲欧美一区二区三区久久| 男女床上黄色一级片免费看| 色尼玛亚洲综合影院| 91字幕亚洲| 国产成人影院久久av| 成人影院久久| 午夜免费成人在线视频| 中亚洲国语对白在线视频| 国产在线精品亚洲第一网站| tube8黄色片| 后天国语完整版免费观看| 成年版毛片免费区| 99国产综合亚洲精品| 99精品在免费线老司机午夜| 亚洲国产毛片av蜜桃av| 国产成人影院久久av| 91精品国产国语对白视频| 他把我摸到了高潮在线观看| 欧美日韩成人在线一区二区| 国产99久久九九免费精品| 免费看a级黄色片| 男人操女人黄网站| 色老头精品视频在线观看| 亚洲中文av在线| xxx96com| 黄色女人牲交| 欧美一级毛片孕妇| 91字幕亚洲| 制服诱惑二区| 亚洲精品一卡2卡三卡4卡5卡| 99国产综合亚洲精品| 一级毛片精品| 亚洲男人天堂网一区| 国产精品 欧美亚洲| 欧美av亚洲av综合av国产av| 三级毛片av免费| 每晚都被弄得嗷嗷叫到高潮| 日韩大码丰满熟妇| 国产精品国产高清国产av | 国产成人av激情在线播放| 丰满的人妻完整版| 精品国产乱子伦一区二区三区| 国产精品九九99| 美国免费a级毛片| 亚洲七黄色美女视频| 欧美日韩精品网址| 男人操女人黄网站| 精品亚洲成a人片在线观看| 一夜夜www| 老司机亚洲免费影院| 夜夜爽天天搞| 欧美日韩精品网址| 大型av网站在线播放| 亚洲自偷自拍图片 自拍| 美女高潮到喷水免费观看| 法律面前人人平等表现在哪些方面| 女人高潮潮喷娇喘18禁视频| 国产精品偷伦视频观看了| 9热在线视频观看99| 女性生殖器流出的白浆| 国产高清videossex| 搡老岳熟女国产| 精品国产一区二区久久| 日本黄色视频三级网站网址 | 美国免费a级毛片| 午夜福利在线免费观看网站| 一级毛片精品| 久久久水蜜桃国产精品网| 精品一区二区三区av网在线观看| 热99久久久久精品小说推荐| 午夜久久久在线观看| 亚洲国产毛片av蜜桃av| 欧美日韩福利视频一区二区| 欧美日韩亚洲高清精品| 嫁个100分男人电影在线观看| 亚洲va日本ⅴa欧美va伊人久久| 久久久久久久午夜电影 | 日本vs欧美在线观看视频| 日韩免费av在线播放| 久久香蕉激情| 精品国产超薄肉色丝袜足j| 久久精品成人免费网站| 国产精品免费视频内射| a级毛片在线看网站| 亚洲色图av天堂| 亚洲av日韩在线播放| 欧美 亚洲 国产 日韩一| 欧美激情高清一区二区三区| 亚洲av成人一区二区三| 国产免费现黄频在线看| 亚洲av片天天在线观看| 一本一本久久a久久精品综合妖精| 看黄色毛片网站| 51午夜福利影视在线观看| 午夜两性在线视频| 亚洲欧美激情综合另类| 国产高清激情床上av| 黄色a级毛片大全视频| 精品久久久久久久毛片微露脸| 老司机在亚洲福利影院| 欧美人与性动交α欧美精品济南到| 女人高潮潮喷娇喘18禁视频| 欧美精品av麻豆av| 亚洲av电影在线进入| 午夜激情av网站| 欧美色视频一区免费| 精品久久久久久,| 丰满迷人的少妇在线观看| 黑丝袜美女国产一区| 亚洲专区国产一区二区| 久久久精品国产亚洲av高清涩受| 亚洲精品久久成人aⅴ小说| 国产99久久九九免费精品| 日本a在线网址| 精品一区二区三区视频在线观看免费 | 亚洲第一青青草原| 热re99久久国产66热| a级毛片在线看网站| 亚洲专区中文字幕在线| 免费久久久久久久精品成人欧美视频| 老汉色av国产亚洲站长工具| 欧美性长视频在线观看| 这个男人来自地球电影免费观看| 亚洲欧美日韩另类电影网站| 麻豆av在线久日| 变态另类成人亚洲欧美熟女 | 亚洲五月色婷婷综合| 亚洲精品自拍成人| 少妇 在线观看| 91av网站免费观看| 又黄又粗又硬又大视频| 性色av乱码一区二区三区2| 久久精品亚洲精品国产色婷小说| 黑丝袜美女国产一区| 久久精品亚洲精品国产色婷小说| 黄频高清免费视频| 女性被躁到高潮视频| 日韩人妻精品一区2区三区| 精品少妇一区二区三区视频日本电影| 亚洲人成电影观看| 老汉色∧v一级毛片| 18禁黄网站禁片午夜丰满| 极品少妇高潮喷水抽搐| 18禁裸乳无遮挡动漫免费视频| 国产不卡一卡二| av一本久久久久| 日本精品一区二区三区蜜桃| 久久 成人 亚洲| 久久中文字幕人妻熟女| 99国产精品一区二区三区| 久久亚洲真实| 亚洲中文字幕日韩| 久久香蕉激情| 十八禁高潮呻吟视频| 99久久综合精品五月天人人| 一区二区日韩欧美中文字幕| 亚洲在线自拍视频| 91成年电影在线观看| 一边摸一边做爽爽视频免费| 日韩一卡2卡3卡4卡2021年| 色在线成人网| www.精华液| 一区二区日韩欧美中文字幕| av一本久久久久| 国产不卡av网站在线观看| 午夜成年电影在线免费观看| 另类亚洲欧美激情| 最新美女视频免费是黄的| 一二三四社区在线视频社区8| 亚洲精品av麻豆狂野| 丝袜美腿诱惑在线| 岛国在线观看网站| 窝窝影院91人妻| 久久久国产精品麻豆| 欧美性长视频在线观看| 视频在线观看一区二区三区| 亚洲熟女毛片儿| 欧美日韩一级在线毛片| 丝瓜视频免费看黄片| 亚洲精品乱久久久久久| 日韩精品免费视频一区二区三区| 最近最新中文字幕大全电影3 | 在线天堂中文资源库| 咕卡用的链子| 夜夜爽天天搞| 老汉色∧v一级毛片| 国产亚洲欧美精品永久| 国产成人精品在线电影| 精品一区二区三区视频在线观看免费 | 又大又爽又粗| 在线视频色国产色| 亚洲精品久久午夜乱码| 天天操日日干夜夜撸| 国产亚洲精品久久久久久毛片 | 99久久人妻综合| 欧美日韩亚洲国产一区二区在线观看 | 少妇被粗大的猛进出69影院| 久久热在线av| 久久精品人人爽人人爽视色| 咕卡用的链子| 一级片免费观看大全| 精品国产超薄肉色丝袜足j| 国产精品美女特级片免费视频播放器 | 女性被躁到高潮视频| 亚洲人成伊人成综合网2020| 欧美老熟妇乱子伦牲交| 亚洲一区中文字幕在线| 18禁裸乳无遮挡动漫免费视频|