謝昆 田孝東 楊尹默
·綜述與講座·
Hedgehog信號(hào)通路對(duì)胰腺癌細(xì)胞上皮間質(zhì)轉(zhuǎn)化的調(diào)控作用
謝昆 田孝東 楊尹默
Hedgehog(Hh)信號(hào)通路及上皮間質(zhì)轉(zhuǎn)化(epithelial mesenchymal transition,EMT)調(diào)控細(xì)胞的增殖和分化,在胚胎發(fā)育過程中均發(fā)揮重要作用。正常成人組織中二者活性均明顯下降,其異?;罨c惡性腫瘤的發(fā)生、發(fā)展、侵襲及轉(zhuǎn)移密切相關(guān)。在胰腺癌細(xì)胞中常發(fā)現(xiàn)有Hh信號(hào)通路的異?;罨虴MT現(xiàn)象,本文就Hh信號(hào)通路調(diào)控胰腺癌細(xì)胞EMT的作用及其機(jī)制做一綜述。
一、Hh信號(hào)通路與胰腺癌
Hh信號(hào)通路主要由分泌型蛋白配體Hedgehog(Hh)、細(xì)胞膜受體Patched(Ptc)和Smoothened(Smo)以及轉(zhuǎn)錄因子Gli構(gòu)成,在干細(xì)胞自我更新、細(xì)胞分化、胚胎發(fā)育及組織修復(fù)等過程中發(fā)揮重要作用[1]。近年研究發(fā)現(xiàn),Hh信號(hào)通路在腫瘤發(fā)生和發(fā)展中起著至關(guān)重要的作用,其中的多種基因(Hh、Ptch、Smo及Gli)被視為原癌基因或腫瘤抑制基因,在胰腺癌、基底細(xì)胞癌、肝癌、肺癌、髓母細(xì)胞瘤及前列腺癌等多種類型的惡性腫瘤中均可觀察到Hh信號(hào)通路的異常激活[2]。人胰腺癌組織及胰腺癌細(xì)胞系中均存在Hh信號(hào)通路的異常活化,且與胰腺癌細(xì)胞增殖能力相關(guān)。應(yīng)用Hh信號(hào)通路特異性阻斷劑環(huán)巴明(Cyclopamine)在體內(nèi)外實(shí)驗(yàn)中均可顯著抑制腫瘤細(xì)胞的增殖。
Hh信號(hào)通路與胰腺癌的發(fā)生存在相關(guān)性。Morton等[3]建立了Pdx-Shh轉(zhuǎn)基因小鼠模型,發(fā)現(xiàn)異常活化的Hh信號(hào)通路可誘導(dǎo)小鼠胰腺發(fā)生異常的管狀結(jié)構(gòu),類似人PanIN-1/2的表型結(jié)構(gòu),這表明Hh信號(hào)通路與胰腺癌前病變的發(fā)生有著密切關(guān)系,同時(shí)這些異常的管狀結(jié)構(gòu)也含有K-ras基因突變和HER-2/neu的過度表達(dá)。Pasca di Magliano等[4]建立了Pdx-1Cre、CLEG2、K-rasG12D轉(zhuǎn)基因動(dòng)物模型,發(fā)現(xiàn)Ras通路和Hh信號(hào)通路的同時(shí)活化可誘發(fā)PanIN病變,并在早期形成胰腺癌,證明Hh和Ras通路在胰腺癌發(fā)生的早期階段共同發(fā)揮重要作用。研究認(rèn)為,Hh信號(hào)通路主要參與細(xì)胞周期的調(diào)控,通過促進(jìn)胰腺腫瘤細(xì)胞增殖和抑制凋亡發(fā)揮作用。同時(shí)有研究顯示,Hh信號(hào)通路還與Wnt、Notch、TGF-β及EGFR等多個(gè)腫瘤相關(guān)的信號(hào)通路存在著廣泛的交互作用[5-6]。
Hh信號(hào)通路亦參與胰腺癌的侵襲、轉(zhuǎn)移過程。Feldmann等[7]報(bào)道,Gli1的過度表達(dá)導(dǎo)致胰腺癌細(xì)胞侵襲性和轉(zhuǎn)移性增高。使用環(huán)巴明后,腫瘤的侵襲能力明顯減弱,接受環(huán)巴明治療的7只種植腫瘤小鼠中,只有1只出現(xiàn)肺的微轉(zhuǎn)移灶,而未給藥組小鼠全部出現(xiàn)肉眼可見的轉(zhuǎn)移灶。環(huán)巴明和吉西他濱聯(lián)合給藥組所有小鼠均未出現(xiàn)轉(zhuǎn)移灶,并顯著縮小了原發(fā)腫瘤的大小,表明抑制Hh信號(hào)通路能顯著抑制胰腺癌的生長(zhǎng)、侵襲及轉(zhuǎn)移[8]。
二、EMT在胰腺癌侵襲、轉(zhuǎn)移中的作用
EMT是指在某些特殊的生理或病理?xiàng)l件下具有極性的上皮細(xì)胞失去極性,轉(zhuǎn)換成具有遷移能力、能夠在細(xì)胞基質(zhì)間自由移動(dòng)的間質(zhì)細(xì)胞的過程[9]。EMT以上皮細(xì)胞極性的喪失及間質(zhì)特性的獲得為重要特征,同時(shí)細(xì)胞表型發(fā)生改變,E-鈣粘素(E-cadherin)、細(xì)胞角蛋白(Cytokeratin)、α-連環(huán)素(α-catenin)、β-連環(huán)素(β-catenin)、γ-連環(huán)素(γ-catenin)、橋粒斑蛋白、緊密連接蛋白、黏蛋白等上皮表型標(biāo)志物逐漸喪失,而波形蛋白(Vimentin)、纖維連接蛋白(Fibronectin)、N-鈣粘素(N-cadherin)、α-平滑肌動(dòng)蛋白(α-SMA)等間質(zhì)表型的表達(dá)上調(diào)。在胰腺的胚胎發(fā)育期,EMT在胰腺內(nèi)分泌細(xì)胞形成胰島的過程中有著重要作用[10]。此外,在創(chuàng)傷修復(fù)的生理過程中,EMT也極為活躍[11]。
目前廣泛認(rèn)為,黏附分子E-cadherin表達(dá)的變化在EMT過程中有著至關(guān)重要的作用[12]。E-cadherin的分子之間通過細(xì)胞外的免疫球蛋白結(jié)構(gòu)域相互形成鏈接,并通過胞質(zhì)內(nèi)的α、β-catenin與肌動(dòng)蛋白骨架相連,可以形成穩(wěn)定的細(xì)胞間接觸;其表達(dá)減少,可導(dǎo)致細(xì)胞間連接解體,細(xì)胞分散,角蛋白為主的細(xì)胞骨架轉(zhuǎn)變?yōu)椴ㄐ蔚鞍诪橹鞯募?xì)胞骨架,E-cadherin逐漸被N-cadherin所取代,細(xì)胞骨架的重排引起細(xì)胞表型的改變,細(xì)胞運(yùn)動(dòng)能力增強(qiáng)。
EMT是上皮來源的惡性腫瘤細(xì)胞獲得遷移和侵襲能力的重要生物學(xué)過程。通過EMT,上皮細(xì)胞失去了細(xì)胞極性,失去了與基底膜的連接等上皮表型,獲得了具有較高遷移與侵襲、抗凋亡和降解細(xì)胞外基質(zhì)等能力的間質(zhì)表型。從而使腫瘤形成局部浸潤(rùn)和遠(yuǎn)處轉(zhuǎn)移,并再次通過間質(zhì)-上皮轉(zhuǎn)化(mesenchymal-epithelial transition,MET)定植形成轉(zhuǎn)移灶。近來有很多研究證實(shí),在包括結(jié)腸癌、胰腺癌、乳腺癌、前列腺癌、肝癌、肺癌及宮頸癌等多種腫瘤侵襲轉(zhuǎn)移的過程中均觀察到EMT的發(fā)生,而且腫瘤組織中發(fā)生EMT的腫瘤細(xì)胞數(shù)量直接與其侵襲轉(zhuǎn)移程度有關(guān)[13-14]。
近年來研究發(fā)現(xiàn),Twist、Snail、Slug、Sip1及NF-κB等多種轉(zhuǎn)錄因子的表達(dá)均可以促進(jìn)EMT,在腫瘤細(xì)胞的轉(zhuǎn)移中起著重要作用。其中Snail是最重要的EMT誘導(dǎo)因子,Snail(Snai1)和Slug(Snai2)都屬于鋅指蛋白Snai超家族,它們含有鋅指結(jié)構(gòu)的DNA結(jié)合蛋白,可以識(shí)別并與E-cadherin啟動(dòng)子部位的E-box結(jié)合,抑制E-cadherin的表達(dá),上調(diào)FSP1、Vimentin和Rho等表達(dá),促進(jìn)EMT的發(fā)生[15]。Snail高表達(dá)的惡性腫瘤多分化較差、侵襲能力較強(qiáng)、易發(fā)生轉(zhuǎn)移和復(fù)發(fā),被認(rèn)為是一個(gè)反映惡性腫瘤預(yù)后不良的重要生物學(xué)標(biāo)記物。Twist屬于堿性螺旋-環(huán)-螺旋蛋白家族,是一個(gè)高度保守的轉(zhuǎn)錄因子,可以調(diào)節(jié)胚胎發(fā)育中的組織重建,并賦予細(xì)胞遷徙的能力。研究發(fā)現(xiàn),Twist也可與E-box序列結(jié)合,下調(diào)E-cadherin和β-catenin等黏附連接蛋白表達(dá),激活間質(zhì)標(biāo)記物,從而促進(jìn)EMT的發(fā)生[16]。NF-κB可與Vimentin基因啟動(dòng)子調(diào)節(jié)序列結(jié)合,并促進(jìn)Twist表達(dá),誘導(dǎo)EMT的發(fā)生。NF-κB還可以上調(diào)ZEB1(zinc finger E-box binding homeobox 1)的表達(dá),ZEB1可抑制多種重要的上皮分化和細(xì)胞黏附因子,抑制E-cadherin的表達(dá),誘導(dǎo)EMT發(fā)生[17]。Maier等[18]在乳腺癌模型的研究證明,在誘導(dǎo)和維持EMT的過程中,NF-κB信號(hào)通路是必需的;抑制NF-κB可以阻止EMT的發(fā)生。相反,激活NF-κB則可以促進(jìn)上皮細(xì)胞向間質(zhì)細(xì)胞轉(zhuǎn)變。Sip1也是一種鋅指蛋白,也可以抑制E-cadherin的表達(dá),與Snail的結(jié)合序列有部分重疊。在某些E-cadherin缺失的人類癌細(xì)胞系中,Sip1呈高表達(dá);另外,某些E-cadherin啟動(dòng)子高度甲基化的細(xì)胞系亦高表達(dá)Sip1[19]。
許多信號(hào)轉(zhuǎn)導(dǎo)通路也參與EMT的調(diào)節(jié),包括Ras、Wnt、Notch、Hedgehog、Rho家族激酶及TGF-β、生長(zhǎng)因子受體等[20]。目前認(rèn)為,腫瘤細(xì)胞發(fā)生EMT是微環(huán)境中作用因子和腫瘤細(xì)胞相互作用的結(jié)果,作用因子通過與細(xì)胞表面特異受體結(jié)合而將細(xì)胞外信號(hào)轉(zhuǎn)入細(xì)胞內(nèi),通過胞內(nèi)的Ras、Wnt、Hh、Notch、TGF-β和生長(zhǎng)因子受體等信號(hào)轉(zhuǎn)導(dǎo)途徑,活化Snail、Twist等核內(nèi)轉(zhuǎn)錄因子,調(diào)節(jié)下游基因的表達(dá),最終使腫瘤細(xì)胞更富于侵襲性而利于進(jìn)一步發(fā)生轉(zhuǎn)移。
EMT過程與胰腺癌的侵襲、轉(zhuǎn)移密切相關(guān)。Nakajima等[21]研究發(fā)現(xiàn),胰腺癌組織中N-cadherin表達(dá)明顯上調(diào),在原發(fā)腫瘤部位和肝轉(zhuǎn)移灶中表達(dá)率分別為43.3%(13/30)和53.3%(8/15),其表達(dá)與腫瘤神經(jīng)浸潤(rùn)顯著相關(guān),而Vimentin則主要表達(dá)在肝轉(zhuǎn)移灶中。此外,很多研究發(fā)現(xiàn)EMT過程與胰腺癌干細(xì)胞關(guān)系密切。Dembinski等[22]在分離出的DiI+/SCC細(xì)胞群,Kabashim等[23]在SP細(xì)胞亞群均發(fā)現(xiàn)存在明顯增強(qiáng)的EMT過程,認(rèn)為EMT現(xiàn)象與腫瘤干細(xì)胞侵襲性增加相關(guān)。
三、Hh信號(hào)通路調(diào)控胰腺癌細(xì)胞EMT的作用及機(jī)制
Hh信號(hào)通路介導(dǎo)EMT發(fā)生的機(jī)制目前雖不甚明確,但研究表明兩者之間有一定的相關(guān)性。研究發(fā)現(xiàn),EMT過程中的重要轉(zhuǎn)錄因子Snail可能為Gli1蛋白的下游轉(zhuǎn)錄調(diào)控靶點(diǎn)。Li等[24]在皮膚癌的研究中發(fā)現(xiàn)Hh信號(hào)轉(zhuǎn)導(dǎo)通路中的下游轉(zhuǎn)錄因子Gli水平的升高可迅速上調(diào)Snail的表達(dá),Snail可進(jìn)一步介導(dǎo)E-cadherin表達(dá)水平下調(diào),促進(jìn)EMT的發(fā)生。Feldmann等[7]胰腺癌的研究中也報(bào)道Hh通路下游因子Gli1過度表達(dá),可促進(jìn)Snail的表達(dá)上調(diào),使E-cadherin表達(dá)明顯下調(diào),促進(jìn)EMT的發(fā)生,導(dǎo)致腫瘤細(xì)胞侵襲性和轉(zhuǎn)移性增高;使用環(huán)巴明后,Snail水平明顯下調(diào),而E-cadherin表達(dá)水平明顯上調(diào),腫瘤的侵襲能力明顯減弱。
EMT相關(guān)轉(zhuǎn)錄因子Sip1的啟動(dòng)子區(qū)域也具有Gli1蛋白的轉(zhuǎn)錄調(diào)控DNA結(jié)合位點(diǎn)。Ohta等[25]使用小干擾RNA技術(shù)沉默Gli1后胃癌的Sip1蛋白的表達(dá)相應(yīng)下調(diào),但并未發(fā)現(xiàn)Sip1可下調(diào)EMT過程中的重要蛋白E-鈣粘素(CDH1基因)的表達(dá)。然而目前尚無證據(jù)表明胰腺癌細(xì)胞中Hh信號(hào)通路可直接調(diào)控Sip1表達(dá)進(jìn)而調(diào)控EMT過程。
Li等[26]報(bào)道,Hh信號(hào)轉(zhuǎn)導(dǎo)通路的異?;罨裳杆偕险{(diào)Wnt家族如Wnt2b、Wnt7b等的表達(dá),間接激活Wnt通路,與Snail協(xié)同作用于β-catenin,破壞E-cadherin-β-catenin復(fù)合物,并抑制蛋白激酶GSK-3β對(duì)β-catenin的降解作用,使β-catenin在細(xì)胞內(nèi)積聚并重新定位,從細(xì)胞膜上解離進(jìn)入細(xì)胞核內(nèi),與核內(nèi)轉(zhuǎn)錄因子相互作用,調(diào)節(jié)下游靶基因的表達(dá)水平,導(dǎo)致細(xì)胞黏附力下降,細(xì)胞浸潤(rùn)轉(zhuǎn)移能力增強(qiáng),促進(jìn)EMT的發(fā)生。另有研究表明,Hh與Wnt、Notch、Ras、TGF-β及生長(zhǎng)因子受體等與EMT發(fā)生關(guān)系密切的信號(hào)轉(zhuǎn)導(dǎo)通路均存在協(xié)同交互作用[5,7]。近年研究發(fā)現(xiàn),Hh信號(hào)通路及EMT過程均在腫瘤干細(xì)胞的形成及其生物學(xué)特性的維持中有著重要作用。Dembinski等[27]發(fā)現(xiàn),CD24+/CD44+,CD133+并表達(dá)ALDH的胰腺癌腫瘤干細(xì)胞中均有Hh信號(hào)通路高表達(dá),而且這類細(xì)胞EMT現(xiàn)象較其他胰腺癌腫瘤細(xì)胞明顯增強(qiáng),E-cadherin表達(dá)顯著下調(diào),而Twist、N-cadherin、Vimentin及MMP-2的表達(dá)均明顯上調(diào)。但是在腫瘤干細(xì)胞的形成及其生物學(xué)特性的維持過程中,Hh信號(hào)通路及EMT是否存在相互作用及其作用機(jī)制仍有待進(jìn)一步研究證實(shí)。
總之,Hh信號(hào)通路可通過介導(dǎo)其下游轉(zhuǎn)錄因子Snail的表達(dá)、下調(diào)E-cadherin的表達(dá)來直接介導(dǎo)胰腺癌細(xì)胞EMT的發(fā)生;也可能通過與Wnt/β-catenin等信號(hào)轉(zhuǎn)導(dǎo)通路的交互作用間接介導(dǎo)EMT的發(fā)生;抑制Hh信號(hào)轉(zhuǎn)導(dǎo)通路可明顯抑制胰腺癌細(xì)胞EMT的發(fā)生,進(jìn)而使腫瘤的侵襲和轉(zhuǎn)移能力減弱。進(jìn)一步深入研究Hh信號(hào)通路調(diào)控胰腺癌細(xì)胞EMT的作用機(jī)制,將為腫瘤的治療尋找新的切入點(diǎn)及新的藥物作用靶點(diǎn)提供方向。
[1] Hezel AF, Kimmelman AC, Stanger BZ, et al. Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev, 2006,20:1218-1249.
[2] Barakat MT, Humke EW, Scott MP. Learning from Jekyll to control Hyde: Hedgehog signaling in development and cancer. Trends Mol Med, 2010,16:337-348.
[3] Morton JP,Mongeau ME, Klimstra DS, et al. Sonic hedgehog acts atmultiple stages during pancreatic tumorigenesis. Proc NatlAcad Sci USA, 2007, 104:5103-5108.
[4] Pasca di Magliano M, Sekine S, Ermilov A, et al. Hedgehog/Ras interactions regulate early stages of pancreatic cancer. Genes Dev, 2006, 20:3161-3173.
[5] Dennler S, André J, Alexaki I, et al. Induction of sonic hedgehog mediators by transforming growth factor-β: Smad3-dependent activation of Gli2 and Gli1 expression in vitro and in vivo. Cancer Res, 2007, 67:6981-6986.
[6] Stecca B, Mas C, Clement V, et al.Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways. Proc Natl Acad Sci USA, 2007, 104:5895-5900.
[7] Feldmann G, Dhara S, Fendrich V, et al. Blockade of hedgehog signaling inhibits pancreatic cancer invasion and metastases a new paradigm for combination therapy in solid cancers.Cancer Reserch, 2007, 67:2187-2196.
[8] Katoh Y, Katoh M. Hedgehog signaling, epithelial-to-mesenchymal transition and miRNA. Int J Mol Med, 2008, 22:271-275.
[9] Savagner P. The epithelial-mesenchymal transition (EMT) phenomenon. Ann Oncol, 2010,21:vii89-vii92.
[10] Cates JM, Byrd RH, Fohn LE, et al. Epithelial-mesenchymal transition markers in pancreatic ductal adenocarcinoma. Pancreas, 2009,38:e1-e6.
[11] Arnoux V, Nassour M, L′ Helgoualc′h A,et al. Erk5 controls Slug expression and keratinocyte activation during wound healing. Mol Biol Cell, 2008, 19:4738-4749.
[12] Chao YL, Shepard CR, Wells A. Breast carcinoma cells re-express E-cadherin during mesenchymal to epithelial reverting transition. Mol Cancer, 2010, 9:179.
[13] Guarino M. Epithelial-mesenchymal transition and tumour invasion. Int J Biochem Cell Biol, 2007, 39:2153-2160.
[14] Prall F. Tumour budding in colorectal carcinoma. Histopathology, 2007, 50:151-162.
[15] Olmeda D, Moreno-Bueno G, Flores JM, et al. SNAI1 is required for tumor growth and lymph node metastasis of human breast carcinoma MDA-MB-231 cells. Cancer Res, 2007, 67:11721-11731.
[16] Hotz B, Arndt M, Dullat S, et al. Epithelial to mesenchymal transition: expression of the regulators snail, slug, and twist in pancreatic cancer. Clin Cancer Res, 2007,13:4769-4776.
[17] Chua HL,Bhat-Nakshatri P,Clare SE,et al.NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells:potential involvement of ZEB-1 and ZEB-2.Oncogene,2007,26:711-724.
[18] Maier HJ, Schmidt-Strassburger U, Huber MA, et al. NF-kappaB promotes epithelial-mesenchymal transition, migration and invasion of pancreatic carcinoma cells. Cancer Lett, 2010,295:214-228.
[19] Mejlvang J, Kriajevska M, Vandewalle C, et al.Direct repression of cyclin D1 by SIP1 attenuates cell cycle progression in cells undergoing an epithelial mesenchymal transition. Mol Biol Cell, 2007,18:4624.
[20] Huber MA, Kraut N, Beug H. Molecular requirements for epithelial-mesenchymal transitionduring tumor progression. Curr Opin Cell Biol, 2005, 17:548-558.
[21] Nakajima S, Doi R, Toyoda E, et al. N-cadherin expression and epithelial-mesenchymal transition in pancreatic carcinoma. Clin Cancer Res, 2004,10:4125-4133.
[22] Dembinski JL, Krauss S. Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma. Clin Exp Metastasis, 2009,26:611-623.
[23] Kabashima A, Higuchi H, Takaishi H, et al. Side population of pancreatic cancer cells predominates in TGF-beta-mediated epithelial to mesenchymal transition and invasion. Int J Cancer, 2009,124:2771-2779.
[24] Li X, Deng W, Nail CD, et al. Snail induction is an early response to Gli1 that determines the efficiency of epithelial transformation. Oncogene, 2006, 25: 609-621.
[25] Ohta H, Aoyagi K, Fukaya M, et al. Cross talk between hedgehog and epithelial-mesenchymal transition pathways in gastric pit cells and in diffuse-type gastric cancers,Br J Cancer, 2009, 100:389-398.
[26] Li X, Deng W, Lobo-Ruppert SM, et al. Gli1 acts through Snail and E-cadherin to promote nuclear signaling by beta-catenin. Oncogene, 2007, 26:4489-4498.
[27] Dembinski JL, Krauss S. Characterization and functional analysis of a slow cycling stem cell-like subpopulation in pancreas adenocarcinoma. Clin Exp Metastasis, 2009, 26:611-623.
2011-01-04)
(本文編輯:呂芳萍)
10.3760/cma.j.issn.1674-1935.2011.06.024
國(guó)家自然科學(xué)基金(30972897)
100034 北京,北京大學(xué)第一醫(yī)院外科
楊尹默,Email:yangyinmo@263.net