• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photoabsorption of Nan Clusters andVolume Plasmon:Experimental Results

    2011-01-22 09:45:22
    關(guān)鍵詞:吸收截面光吸收示意圖

    (American GoldmanSachs Group,New York 10821,USA)

    As predicted by a lot of calculations (as reviewed in Ref.[1]), one expect to see a certain amount of photoabsorption in the spectra of Na clusters in the UV range, while this has never been done experimentally.Motivated by this, we carried out the photodepletion experiment to search for the volume-type plasmons.The clusters we choose are Na20and Na92covering the near-UV, as well as the visible parts of their resonance spectra[2].

    1 Experimental setup

    The experimental setup consists mainly of the supersonic source, detectors and laser system, as shown in Fig.1.In the source chamber we have a standard supersonic expansion source.Pure sodium is heated up to 640~670 ℃ and the vapor together with carrier gas is co-expanded through a heated supersonic nozzle of 75 μm in diameter, outside where the neutral clusters of various sizes are formed.The central part of the beam passes through a skimmer and is then collimated by a series of apertures: aperture A of 1.5 by 1.5 mm located ~65 cm away from skimmer, aperture B of diameter 2 mm located ~50 cm downstream of aperture A, and aperture C of 4.5 by 4.5 mm, 95cm downstream of aperture B.The ion optics eliminate the ions and the remaining neutral ones are then ionized by filtered ultraviolet light from an arc lamp, size selected by a quadrupole mass analyzer (QMA) and detected by a photo multiplier tube (PMT).The multichannel scaler collects the data and produces a time resolved mass scan (TRS).

    圖1 光吸收實驗的示意圖(大小未按比例).源的溫度在640~670 ℃之間,載氣的壓強為4~6 atm. A, B, C 的大小分別為1.5×1.5, 2×2, 4.5×4.5 mm Fig.1 Outline of the experimental arrangement for optical absorption measurement by photodepletion spectroscopy (not to scale).The source is operated at a temperature of 640~670 ℃ with carrier gas pressure 4~6 atm.The size of the aperture A, B and C are 1.5×1.5, 2×2, 4.5×4.5 mm respectively

    The laser system is a tunable Nd:YAG-Laser system manufactured by EKSPLA (model number NT342/3/UV).It consists of pump laser NL303, harmonics generators (SHG, THG), optical parametric oscillator PG122 (OPO) and UV extension (SH1, SH2), as sketched in Fig.2.

    圖2 NT342/3/UV Nd:YAG激光系統(tǒng)示意圖.基本輻射由泵浦激光器NL303產(chǎn)生,通過SHG和THG轉(zhuǎn)換成355 nm ,然后拆分成信號和閑頻光.UV輸出則是通過對信號光束的倍頻得到 Fig.2 Schematic of the NT342/3/UV Nd:YAG-Laser system.The fundamental radiation of 1064 nm is generated by pump laser NL303 and converted into 3rd harmonics by SHG and THG.The 355 nm beam is then splitted by the OPO into a signal and idler.UV output is obtained by another frequency increase using SH1 and SH2

    The pump laser generates optical pulses of the fundamental Nd:YAG radiation (wave- length 1064 nm) with duration of 3~6 ns/pulse and maximum repetition rate of 20 Hz.The fundamental radiation is converted into the third harmonic (355 nm) by SHG and THG, and then splitted into two beams of various wavelengths depending on the orientation of the OPO crystal: one visible (in the range of 420~709.9nm, so called "signal") and one near infrared (in the range of 710~2300nm, "idler").Making use of the SH1 and SH2 extensions, it can also generate signal in the UV region (210~419.9nm), i.e., it could cover the wavelength from 210 to 2300 nm continuously with a resolution of 0.1 nm.If the pump energy is set to about 110 mJ per pulse, the ideal maximum output would be a few mJ in the UV range and 10~30 mJ in the visible.Since the photoabsorption cross section varies with the irradiation photon energy and size of the cluster a lot, in order to have an appropriate on/off ratio we sometimes need to use neutral density filters (OD 0.5, 1.0, 2.0 or combinations of above) to reduce the amount of photons that illuminate the clusters.

    To get an accurate measurement of the photoabsorption cross section, it is crucial to have the laser beam and the cluster beam very well aligned.The photo diode to the left of aperture A is for alignment purpose only and is out of the way of the beam during a measurement.It is made by Electro-Optics Technology, Inc.and the model number is ET-2020.Since photodiode is very sensitive to photons and reaches saturation at very low laser energy, two neutral density filters (OD 1.0 an 2.0 respectively) are placed in front of the active area, which is 2.55 mm in diameter.The output is monitored by an oscilloscope.

    Since the cross section is inverse proportional to the laser fluence, it is vital to precisely measure the laser pulse energy that passes through aperture B.The energy detector that we used is a compact pyroelectric joule-meter made by Gentec (part number QE4-SP-S- MT-DO).The sensor is connected by a BNC cable to an oscilloscope, which reads the voltage output.The sensitivity (the ratio of the voltage output to the actual energy, in unit of V/J) depends on the absorption rate at different wavelengths and is calibrated by the manufacturer.For better accuracy, we usually take an average of ~100 pulses.This unit has a spectral range from 190 nm to 2.5 μm and active area diameter of 3.7 mm.To ensure we take into account all the photons that overlap the cluster beam, the detector is placed very close to aperture B (approximately 1 cm), which has a diameter of 2 mm.

    2 Experimental procedure

    Depending on the source condition, one measurement takes up to 15 hours excluding the alignment procedures.Once the vacuum meets the experimental requirement, we start to heat up the source reservoir.This usually takes 1~2 hours, in the mean time, we check the laser alignment and optimize the prisms again.Once the reservoir is heated to the appropriate temperature, we start to adjust the position of source and skimmer until the cluster counting rate is maximized, which means the source is well aligned.The skimmer could move in Z direction (along the cluster beam) and the source itself could move in X and Y direction.

    Once the laser is well aligned and the source is ready, we measure the cross section of one cluster size at a certain wavelength in 3 steps.

    1) Measure the laser pulse intensity using the energy detector.Set the wavelength of the output laser beam and move the energy meter in position so that all the photons pass through aperture B are registered by the energy meter QE4.Since it takes some time (about 1 minute) for the laser beam intensity to stabilize, every time the wavelength is changed, we wait a little bit before reading voltage from oscilloscope, in the mean time, we measure the background noise(with cluster beam blocked and laser beam on) and check if it is very low.Usually the energy is averaged over 100 pulses.

    2) Move the energy meter out and take the time resolved scan (TRS) using multi- channel scaler (MCS).MCS is synchronized with the laser pulse which is set to its maximum frequency (i.e.20 Hz) with a duration of 3~6 ns.MCS is typically set to 100 channels with a dwell time of 50 μs per channel.We take 2000~4000 scans (2~4 minutes) depending on the counting rate of the cluster signal and noise level.As an example, Fig.3 shows the TRS for Na20 at wavelength 500 nm.

    圖3 激光波長為500nms時Na20的時間分辨掃描樣本, 其中1~40信道對應(yīng)光吸收后的信號強度 Fig.3 Time resolved scan (TRS) of Na20 with wavelength 500 nm.Channel 1~40 correspond to the depleted beam and the highlighted part is the depleted signal I which is taken as the average of the 7 channels centered at channel 22

    Channel 1~40 correspond to the depleted beam.Upon absorbing a photon, clusters rapidly evaporate, so that following a laser pulse the counting rate of the selected cluster size drops and remains depleted for ~2 ms (corresponding to the beam flight time from the skimmer to the detector entrance).After that, the signal will get back to normal rate.Ideally the signal should be a step function: in the depleted region, it is a constant I while in the un-illuminated part, it is another constantI0.In reality, due to the spread of the cluster speed, the divergence of the laser beam and possible misalignment of the laser beam, the edge is not that sharp as seen in this figure.

    3) Measure the average laser pulse energy once again to make sure that the laser pulse energy is not drifting during the scan.

    In principle, we can scan many different cluster sizes one after another in step 2 and don't have to repeat the energy measurement.In practice, in order to get a good resolution for different clusters, we need to change AC/DC ratio unless the targeted masses are close enough (say Na19, Na20and Na21).Data points were acquired in 5 nm intervals between 220~420 nm and 10 nm intervals between 420~600 nm since the focus is the UV region.

    Once we have these data, we can calculate the absolute cross section.

    3 Experimental data

    Since we are more interested in volume plasmons which correspond to higher energy photons, we collected data for sodium clusters of size 8, 19, 20, 21, 57, 58, 92 in the range of 210~420 nm.We also measured the spectra for size 20 and 92 in the visible range in order to check the accuracy of the data.The experimental cross section values for Na20and Na92are given in Fig.4,5.

    圖4 Na20的光吸收截面,其中紅點代表實驗數(shù)據(jù) Fig.4 Photo-absorption cross section (per atom) of Na20 as a function of photon energy.Dots are experimental data; solid line is drawn to guide the eye

    圖5 Na92的光吸收截面,其中紅點代表實驗數(shù)據(jù) Fig.5 Photo-absorption cross section (per atom) of Na92 as a function of photon energy.Dots are experimental data; solid line is drawn to guide the eye

    4 Data validity and error analysis

    a) Cross Section vs Photon Fluence.

    To make sure that the photo depletion process is a linear process in our work, we have measured the photoabsorption cross section of Na8and Na20as a function of the laser intensities at some different wavelengths in the UV.Fig.6 shows the cross section as a function of the photon fluence at wavelength 320 nm.In this figure,Xaxis is the reading of the oscilloscope in unit of mV, which is proportional to the laser pulse energy,Yaxis is the photoabsorption cross section in arbitrary unit, different symbols stand for the calculation based on different number of channels.It is seen that in the range of 6~20 mV, (22~70μJ) the cross section is a constant and does not depend on the laser fluence.

    圖6 Na20的光吸收截面與激光能量密度之間的關(guān)系圖 Fig.6 Photoabsorption cross section as a function of laser fluence at wavelength 320 and 335 nm for Na20.Different symbols stand for the cross section calculated using different number of channels

    For Na92, we do not have a complete set of data as for Na8and Na20, but repeated measurement of the photoabsorption cross section at different laser fluence.The cross section - fluence relation shows that one-photon process is also valid in this case, as seen in Fig.7.

    圖7 Na92的光吸收截面與激光能量密度之間的關(guān)系圖 Fig.7 Photoabsorption cross section vs laser fluence for Na92.The squares, solid dots, triangles and circles are for wavelength 250, 305, 315 and 335 nm respectively

    b) Comparison with Other Experiments.

    Photoabsorption cross section in the visible range for Na20has been measured in different works previously; it is natural to compare our result with the existing experimental data.Besides the experiment by K.Selby et al., S.Pollack et al.also have measured the optical response of Na20in a similar manner[3].They have covered the wavelength in between 370 to 600 nm with resolution of better than 20 ?.

    The errors on absolute cross sections were conservatively estimated as ±50%.The comparison between our data and these two works is shown in Fig.8.We find that our data match the other two very well.The position, shape and strength of the surface plasmon are all in very good agreement.To the best of our knowledge, there have been no prior measurements for Na92.

    圖8 可見光部分的數(shù)據(jù)與以前的實驗結(jié)果的對比 Fig.8 Comparison of experimental data for Na20 in the visible with previous works.Solid line is a smoothed line through the present data points; triangles are data points of Ref.[12]; dots are data points adapted from Ref.[3]

    c) Error Estimation.

    To estimate the relative error bars of the experimental data, we combined the uncertainties derived from different channels and repeated experiments.It is found that the typically error bars are ≈ 15% for Na20and ≈ 20% for Na92except a few data point.The slightly larger uncertainty for Na92than Na20is because of the lower intensity of the Na92cluster signal.It is seen that our data agree with Selby's and Pollack's within the error limits, see Fig.9.

    圖9 Na20實驗數(shù)據(jù)的誤差分析 Fig.9 Error analysis of experimental data for Na20 in the visible with previous works.Solid line is a smoothed line through the present data points; triangles are data points of Ref.[12]; dots are data points adapted from Ref.[3]

    5 Discussion

    The visible portions of both plots exhibit the strong surface-plasmon resonances, which is known and has been studied extensively.An important new part of the data is the considerable tail extending into the UV.

    Before proceeding with a quantitative discussion, it may be worth noting that both clusters display a weak undulation between 3.5 and 4.0 eV, which is close to their ionization potentials of 3.75 eV (Na20) and 3.47 eV (Na92)[4,5]and is therefore possibly related to the opening of the continuum channel for electron emission[6].

    a) Fitting Results.

    The Na92spectrum was fitted to three Lorentzian peaks, while for Na20either three or four peaks could be used, the latter choice appearing more suitable.

    For Na20, the fitted peaks are depicted in Fig.10, the fitting parameters and uncertainties are listed in Tab.1.

    表1 Na20的擬合參數(shù)

    Tab.1 Fitting parameters for Na20: peak energies (E), widths (F, FWHM), and areas (?, per atom) derived from fits to the Na20photoabsorption pro- files.Quantities in parentheses are estimated uncertainties in fitting parameters

    PeakE/eVF/eVA/(eV*?2)Peak14.04(0.03)1.19(0.07)0.15(0.01)Peak23.17(0.02)0.52(0.02)0.13(0.01)Peak32.77(0.01)0.23(0.01)0.10(0.01)Peak42.42(0.01)0.26(0.01)0.40(0.01)

    圖10 Na20的光吸收截面的擬合結(jié)果 Fig.10 Photoabsorption cross sections per atom of Na20 nanocluster.Circles: photoabsorption cross sections of Na20, solid line: fit to the data by means of sum of Lorentzian profiles (dashed lines).The shaded peak is the volume plasmon which becomes dipole-active in finite particles

    As a comparison, the fitting parameters from Ref.[3] are listed in Tab.2.The center of the 2 major peaks agree perfectly (peak I and II vs peak 3 and 4), but the width and area of these peaks differ from our fitting, because we have a larger data sample that extends into UV.The interesting part is the additional broad peak centered at 4.04 eV in our fitting.Before going into the explanation, let us take a look at the fitted peaks for Na92which are depicted in Fig.11, and the fitting parameters and uncertainties are listed in Tab.3.It is seen that for Na92, besides the peaks in the visible, there also exists a broad peak centered at 4.20 eV.

    表2 文獻[3]中的Na20擬合參數(shù)

    Tab.2 Fitting parameters for Na20as in Ref.[3].The original fitting parameters are converted into peak energies (E), widths (F, FWHM), and areas (?, per atom) for easier comparison

    PeakE/eVF/eVA(eV*?2)PeakI2.780.40.12PeakII2.420.20.33

    表3 Na92的擬合參數(shù)

    Tab.3 Fitting parameters for Na92: peak energies (E), widths (F, FWHM), and areas (?, per atom) derived from fits to the Na92photoabsorption profiles.Quantities in parentheses are estimated uncertainties in fitting parameters

    PeakE/eVF/eVA(eV*?2)Peak14.20(0.08)1.16(0.15)0.093(0.016)Peak23.24(0.03)0.37(0.04)0.07(0.01)Peak32.80(0.01)0.42(0.01)0.50(0.02)

    b) Existence and Redshift of the Volume Plasmon.

    Of particular interest for our present purposes is the broad peak slightly above 4 eV, labeled Peak 1 in Table 1, 3 and shaded in Figs.10 and 11.In Na20it is slightly more red-shifted (ω= 0.68ωp, whereωp= 5.9 eV is the bulk free-electron sodium plasma frequency) and comprises a higher fraction of the area of the listed peaks (19%) than in Na92(0.71ωpand 14%).This behavior is in clear correspondence with that illustrated for a dipolar "volume plasmon" resonance.The absolute magnitudes of the frequency and the red shift are also in very good agreement with theoretical predictions for such a resonance: e.g., the analytical calculation in[7]yielded ≈ 0.75ωpfor its position, and ≈ 20% and ≈ 15% for its weight in Na20and Na92, respectively.The manifest match between the behavior and parameters of the UV feature and the predicted nanocluster “volume plasmon” resonance enables us to identify them with each other.

    圖11 Na92的光吸收截面的擬合結(jié)果 Fig.11 Photoabsorption cross sections per atom of Na92 nanocluster.Circles: photoabsorption cross sections of Na92, solid line: fit to the data by means of sum of Lorentzian profiles (dashed lines).The shaded peak is the volume plasmon which becomes dipole-active in finite particles

    c) Remaining Oscillator Strength.

    Even though they extend to higher frequencies than previous experiments, the peaks in Figs.10 and 11 still do not encompass the full dipole oscillator strength f of the delocalized cluster valence electrons: the peaks in Tab.1 and 3 correspond tof= 71% for Na20andf= 60% for Na92, significantly lower than the value from TRK sum rule.Therefore additional photoabsorption channels must be present in other frequency ranges.For example, even though cross sections become small at the high-frequency end of the plots, the excitation of individual valence electrons into the continuum has been predicted to produce a low but very long photo-ionization tail[8], thereby accommodating an appreciable amount of these electrons′ oscillator strength.

    One could roughly estimate the distribution of the remaining oscillator strength based on TRK and polarizability sum rules.For example, in the case of Na20, the remaining strength should be 0.29 as from TRK sum rule.And from the polarizability constraint, one could find thatE5=2.2 eV, given the static electric polarizabilityα(ω= 0) = 1.85 in unit ofR3[9].

    Thus the high energy ionization tail must be accompanied by enhanced valence electron absorption in the IR (cf.[10]), most likely due to individual electron-hole excitations.A search for cluster electron photoabsorption at both of these frequency limits, while experimentally quite challenging, would be very interesting and informative.

    d) Comparison of Different Cluster Sizes.

    One interesting fact to notice is that although the cross section profile for Na20and Na92differ a lot in the visible range (besides the difference between the center of the surface plasmon peak, the peak value of these two absorption differ by about 20%, and this trend coincides with theoretical prediction), they are very close in the UV range (see Fig.12).A further comparison with other clusters shows a similar picture for Na19, Na21, Na57, Na58(this on the other hand confirms that our data are reliable).The only exception is Na8, which is significantly lower than others.According to Ref.[11], the volume plasmon should have a higher fraction of the total area than Na20.Intuitively, the cross section in the UV region should be at least as much as that of Na20(and others).However since the Na8surface-plasmon peak is noticeably more red-shifted than the Na20one[12,13], the same may be expected for its volume plasmon, hence it would possess a lower amplitude in the UV region.

    圖12 Na20和Na92的光吸收截面的比較 Fig.12 Comparison of photoabsorption cross sections per atom of Na20 and Na92 nanocluster.In the visible range, the profiles differ a lot, but in the UV range, they are very close

    6 Conclusion

    In summary, the photoabsorption spectra reported here provide the first experimental observation of optically excited "volume plasmon" collective electronic states in metal nanocluster particles, a phenomenon unique to finite systems.

    [1] Xia C, Yin C, Kresin V V.Photoabsorption by volume plasmons in metal nanoclusters[J].Phys Rev Lett, 2009,102:156802-156805.

    [2] Dahlseid T A, Koretsky G M, Pollack S, et al.Nuclear Physics Concepts in the Study of Atomic Cluster Physics[M].Berlin :Springer, 1992.

    [3] Pollack S, Wang C R C, Kappes M M.On the optical response of Na20 and its relation to computational prediction[J].J Chem Phys, 1990 ,94:2496 -2501.

    [4] Persson J L.Dissertation[D].Los Angeles:University of California, 1991.

    [5] Chandezon F, Bjornholm S, Borggreen J.Electronic shell energies and deformations in large sodium clusters from evaporation spectra[J].Phys Rev B, 1997 ,55;5485-5490.

    [6] Brechignac C, Cahuzac P, Carlier F,et al.Ionization vs.neutralization in alkali-atom clusters[J] J Phys II France, 1992 ,2:971-983 .

    [7] Kresin V V.Collective resonances and response properties of electrons in metal clusters[J].Phys Rep, 1992 ,220: 1-52 .

    [8] Frank O, Rost J M.From collectivity to the single-particle picture in the photoionization of clusters[J].Phys Rev A, 1999, 60:392-397 .

    [9] Tikhonov G, Kasperovich V, Wong K.A measurement of the polarizability of sodium clusters[J].Phys Rev A, 2001, 64: 063202-063206.

    [10] Kim Y H, Tanner D B.Far-infrared absorption by aluminum small particles[J].Phys Rev B, 1989, 39: 3585-3589.

    [11] Brack M.The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches[J].Rev Mod Phys, 1993, 65: 677-732.

    [12] Selby K, Vollmer M, Masui J,et al.Surface plasma resonances in free metal clusters[J].Phys Rev B, 1989, 40: 5417-5427.

    [13] Pollack S, Wang C R C, Kappes M M.On the optical absorption spectrum of Na2Cl[J].Chem Phys Lett, 1990, 175: 209-215.

    猜你喜歡
    吸收截面光吸收示意圖
    臭氧253.65 nm吸收截面系數(shù)變化對中國環(huán)境空氣質(zhì)量達標(biāo)的影響
    先畫示意圖再解答問題
    雪花狀冰晶的毫米波散射特性
    黔西南州旅游示意圖
    NO氣體紫外差分吸收截面的測量
    多元稀土硼化物Ce1-xNdxB6的制備及性能研究*
    功能材料(2016年1期)2016-05-17 03:38:24
    鑲嵌納米晶硅的氧化硅薄膜微觀結(jié)構(gòu)調(diào)整及其光吸收特性
    兩張圖讀懂“青年之聲”
    中國共青團(2015年7期)2015-12-17 01:24:38
    處理NaCs光解離問題的兩種方案比較
    Photoabsorp tion of Na n C lusters and Vo lum e P lasm on:Theory Rev iew
    在线免费观看不下载黄p国产| 亚洲一区高清亚洲精品| 欧美一区二区精品小视频在线| 99在线人妻在线中文字幕| 国产色婷婷99| 在现免费观看毛片| av在线天堂中文字幕| 成人av在线播放网站| 久久精品夜夜夜夜夜久久蜜豆| 亚洲欧美日韩东京热| 成人综合一区亚洲| 国产真实乱freesex| 久久天躁狠狠躁夜夜2o2o| 丰满乱子伦码专区| 精品午夜福利在线看| 婷婷精品国产亚洲av| 国产91av在线免费观看| 久久久久国内视频| 国产高清视频在线观看网站| 日韩一本色道免费dvd| 久久亚洲国产成人精品v| 精品久久久久久成人av| 一级毛片我不卡| 男女边吃奶边做爰视频| 亚洲乱码一区二区免费版| 老熟妇乱子伦视频在线观看| 级片在线观看| 51国产日韩欧美| 最近中文字幕高清免费大全6| 日本色播在线视频| 国产精品乱码一区二三区的特点| 麻豆一二三区av精品| 99精品在免费线老司机午夜| 日本一本二区三区精品| av黄色大香蕉| 久久久久精品国产欧美久久久| 成熟少妇高潮喷水视频| 在线观看午夜福利视频| 欧美性感艳星| 国产一区二区激情短视频| 国产高清视频在线观看网站| 日韩欧美一区二区三区在线观看| 久久精品国产亚洲av涩爱 | 天天一区二区日本电影三级| 极品教师在线视频| 色视频www国产| 少妇人妻精品综合一区二区 | 熟女电影av网| 国产在线精品亚洲第一网站| 女人被狂操c到高潮| 久久精品国产亚洲网站| 人妻少妇偷人精品九色| 毛片一级片免费看久久久久| 国产精品女同一区二区软件| 国产成年人精品一区二区| 日韩人妻高清精品专区| 特级一级黄色大片| 国产大屁股一区二区在线视频| 最近的中文字幕免费完整| 毛片一级片免费看久久久久| 麻豆国产97在线/欧美| 少妇人妻一区二区三区视频| 国产精品久久久久久久电影| 三级男女做爰猛烈吃奶摸视频| 欧美国产日韩亚洲一区| 女人被狂操c到高潮| 日本黄色片子视频| 色视频www国产| 久久久国产成人精品二区| 最新在线观看一区二区三区| 如何舔出高潮| 麻豆av噜噜一区二区三区| 精品欧美国产一区二区三| 国产精品久久视频播放| 少妇裸体淫交视频免费看高清| 免费观看人在逋| 亚洲av熟女| 床上黄色一级片| 日韩精品有码人妻一区| 午夜影院日韩av| 久久久午夜欧美精品| 色哟哟哟哟哟哟| av福利片在线观看| 在线a可以看的网站| 一级黄色大片毛片| av天堂中文字幕网| 午夜a级毛片| 日韩一本色道免费dvd| 久久久久久九九精品二区国产| 欧美日韩综合久久久久久| 欧美不卡视频在线免费观看| av福利片在线观看| 精品一区二区三区视频在线观看免费| 啦啦啦韩国在线观看视频| 亚洲精品456在线播放app| 亚洲四区av| 欧美激情在线99| 色哟哟·www| 深夜a级毛片| 日本免费一区二区三区高清不卡| 国产毛片a区久久久久| 午夜日韩欧美国产| 国产大屁股一区二区在线视频| 91精品国产九色| 成人av在线播放网站| 成人无遮挡网站| 深爱激情五月婷婷| 亚洲精品粉嫩美女一区| 久久亚洲精品不卡| 国产精品福利在线免费观看| 午夜福利在线观看免费完整高清在 | 无遮挡黄片免费观看| 色在线成人网| 黄色欧美视频在线观看| 亚洲久久久久久中文字幕| 一本精品99久久精品77| 国产 一区 欧美 日韩| 国内精品久久久久精免费| 99精品在免费线老司机午夜| 亚洲国产日韩欧美精品在线观看| 亚洲av五月六月丁香网| 国语自产精品视频在线第100页| 午夜精品一区二区三区免费看| 精品久久久久久久久久免费视频| 国产激情偷乱视频一区二区| 尾随美女入室| 精品国内亚洲2022精品成人| 乱码一卡2卡4卡精品| 久久精品国产鲁丝片午夜精品| 狂野欧美激情性xxxx在线观看| 自拍偷自拍亚洲精品老妇| 少妇丰满av| 国产黄a三级三级三级人| 免费人成视频x8x8入口观看| 日本免费a在线| 色综合站精品国产| 久久久精品欧美日韩精品| 精品久久国产蜜桃| 精品久久国产蜜桃| 免费大片18禁| 91久久精品国产一区二区成人| 岛国在线免费视频观看| 听说在线观看完整版免费高清| 少妇的逼好多水| 免费电影在线观看免费观看| 日韩欧美一区二区三区在线观看| 精品久久久久久久久亚洲| 神马国产精品三级电影在线观看| 国产精品一区二区性色av| 夜夜看夜夜爽夜夜摸| 亚洲成人av在线免费| 国产精品国产高清国产av| 国产午夜精品论理片| 麻豆一二三区av精品| 国产探花在线观看一区二区| 欧美xxxx性猛交bbbb| 亚洲欧美日韩卡通动漫| 天美传媒精品一区二区| 久久精品夜夜夜夜夜久久蜜豆| 国产乱人视频| av在线亚洲专区| 在线播放无遮挡| 人人妻人人看人人澡| 亚洲色图av天堂| 亚洲成人久久性| 深夜a级毛片| 久久久久久伊人网av| 麻豆国产97在线/欧美| 久久99热这里只有精品18| www日本黄色视频网| 国产精品福利在线免费观看| www.色视频.com| 激情 狠狠 欧美| 毛片一级片免费看久久久久| 亚洲性夜色夜夜综合| 亚洲国产欧美人成| 色综合站精品国产| or卡值多少钱| 日日摸夜夜添夜夜爱| 久久久久久九九精品二区国产| 国产成人freesex在线 | 免费不卡的大黄色大毛片视频在线观看 | 国产欧美日韩精品一区二区| 国产色婷婷99| 91狼人影院| 日韩,欧美,国产一区二区三区 | a级毛片a级免费在线| 国产精品国产三级国产av玫瑰| av免费在线看不卡| 男女做爰动态图高潮gif福利片| 久久精品国产自在天天线| 久久精品久久久久久噜噜老黄 | 欧美xxxx性猛交bbbb| 国产麻豆成人av免费视频| 午夜激情欧美在线| 国产精品一二三区在线看| 久久久国产成人精品二区| 狂野欧美白嫩少妇大欣赏| 狂野欧美白嫩少妇大欣赏| 精品久久久久久成人av| 可以在线观看毛片的网站| 亚洲,欧美,日韩| 欧美三级亚洲精品| 国产一区二区三区av在线 | 人妻夜夜爽99麻豆av| 国产精品一区二区性色av| 日韩精品青青久久久久久| 国产蜜桃级精品一区二区三区| 色哟哟·www| 日韩av在线大香蕉| 一级毛片久久久久久久久女| 一夜夜www| 天天躁日日操中文字幕| 国产亚洲精品久久久com| 久久草成人影院| 大又大粗又爽又黄少妇毛片口| 日韩,欧美,国产一区二区三区 | 欧美zozozo另类| 18禁在线无遮挡免费观看视频 | 成年女人看的毛片在线观看| 女同久久另类99精品国产91| 波多野结衣高清无吗| 亚洲av成人av| 中文字幕熟女人妻在线| 在线观看一区二区三区| 一a级毛片在线观看| 12—13女人毛片做爰片一| 久久这里只有精品中国| 欧美性感艳星| 久99久视频精品免费| 久久久久久久久久久丰满| 成人永久免费在线观看视频| 国产精品亚洲一级av第二区| av中文乱码字幕在线| 国产 一区精品| 热99在线观看视频| 国产精品,欧美在线| 哪里可以看免费的av片| 麻豆国产av国片精品| 亚洲在线自拍视频| 欧美激情久久久久久爽电影| 国产精品乱码一区二三区的特点| 国产精品1区2区在线观看.| 亚洲欧美精品自产自拍| 午夜福利在线在线| 色噜噜av男人的天堂激情| 国产精品一及| 成年女人永久免费观看视频| 一个人免费在线观看电影| 一区二区三区免费毛片| 亚洲av一区综合| 激情 狠狠 欧美| 91久久精品国产一区二区成人| 成人漫画全彩无遮挡| 久久久久久国产a免费观看| 亚洲综合色惰| 久久久成人免费电影| 久久人人爽人人爽人人片va| 18禁在线播放成人免费| 卡戴珊不雅视频在线播放| 最后的刺客免费高清国语| 麻豆成人午夜福利视频| 亚洲一区高清亚洲精品| 国产乱人偷精品视频| 亚洲欧美日韩高清在线视频| 亚洲中文日韩欧美视频| 国产精品一区二区三区四区免费观看 | 熟妇人妻久久中文字幕3abv| 亚洲电影在线观看av| 午夜a级毛片| 欧美一区二区亚洲| 日韩 亚洲 欧美在线| 男女那种视频在线观看| 亚洲精品一卡2卡三卡4卡5卡| 国产男靠女视频免费网站| 国产欧美日韩精品亚洲av| av天堂中文字幕网| 国产三级中文精品| 日本 av在线| 舔av片在线| 日日摸夜夜添夜夜爱| 日本黄色片子视频| a级一级毛片免费在线观看| 国产精品久久久久久久电影| av在线观看视频网站免费| 99久久精品热视频| 国产精品三级大全| 亚洲av第一区精品v没综合| 给我免费播放毛片高清在线观看| 欧美高清性xxxxhd video| 国产亚洲精品综合一区在线观看| 国产极品精品免费视频能看的| 成人三级黄色视频| 91久久精品国产一区二区三区| 美女cb高潮喷水在线观看| 久久精品国产鲁丝片午夜精品| 伦理电影大哥的女人| 婷婷精品国产亚洲av在线| 九色成人免费人妻av| 国产欧美日韩一区二区精品| 啦啦啦观看免费观看视频高清| 亚洲经典国产精华液单| 精品久久久久久久久亚洲| 我要看日韩黄色一级片| 国产黄色视频一区二区在线观看 | 九九在线视频观看精品| 国产 一区精品| 天堂√8在线中文| 美女内射精品一级片tv| 国产精品一二三区在线看| 国产精品人妻久久久久久| 国产三级中文精品| 久久久久久大精品| 国产精品美女特级片免费视频播放器| 亚洲丝袜综合中文字幕| av在线蜜桃| 国产精品人妻久久久影院| 91久久精品国产一区二区成人| 久久精品国产99精品国产亚洲性色| 小蜜桃在线观看免费完整版高清| 久久久久久九九精品二区国产| 国产成人91sexporn| 一区二区三区四区激情视频 | 91久久精品国产一区二区成人| 免费看日本二区| 看片在线看免费视频| 成人毛片a级毛片在线播放| 国产精品久久久久久精品电影| 深爱激情五月婷婷| 国产欧美日韩一区二区精品| 亚洲图色成人| 天天一区二区日本电影三级| 国产三级中文精品| 亚洲18禁久久av| 欧美激情在线99| 99热这里只有是精品在线观看| 啦啦啦观看免费观看视频高清| .国产精品久久| 最好的美女福利视频网| 男人舔女人下体高潮全视频| 长腿黑丝高跟| 一级毛片我不卡| 成人av在线播放网站| 女的被弄到高潮叫床怎么办| 91狼人影院| 国产精品亚洲一级av第二区| 免费av毛片视频| 插阴视频在线观看视频| 久久人妻av系列| 人妻夜夜爽99麻豆av| 我的女老师完整版在线观看| 两个人视频免费观看高清| 国产v大片淫在线免费观看| 欧美人与善性xxx| 亚洲精品一区av在线观看| 欧美性感艳星| 国产亚洲欧美98| 99久久精品一区二区三区| 寂寞人妻少妇视频99o| 精品一区二区免费观看| 亚洲国产精品成人综合色| 夜夜夜夜夜久久久久| 搡老熟女国产l中国老女人| 亚洲成人精品中文字幕电影| 色综合站精品国产| 夜夜夜夜夜久久久久| 久久鲁丝午夜福利片| 亚洲欧美成人综合另类久久久 | 国产伦精品一区二区三区四那| 亚洲精华国产精华液的使用体验 | 亚洲中文字幕日韩| 亚州av有码| 老司机影院成人| 美女被艹到高潮喷水动态| 1000部很黄的大片| 亚洲自偷自拍三级| 男插女下体视频免费在线播放| 国产久久久一区二区三区| 中文资源天堂在线| 大型黄色视频在线免费观看| 天堂动漫精品| 免费观看的影片在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产黄片美女视频| 男女下面进入的视频免费午夜| 最近中文字幕高清免费大全6| 最新在线观看一区二区三区| 亚洲成av人片在线播放无| 又粗又爽又猛毛片免费看| 精品久久国产蜜桃| 国产精品一区www在线观看| 青春草视频在线免费观看| 身体一侧抽搐| 国产精品,欧美在线| 一级毛片我不卡| 级片在线观看| 国产视频一区二区在线看| 久久久久久伊人网av| 成人无遮挡网站| 大又大粗又爽又黄少妇毛片口| 大型黄色视频在线免费观看| 久久久精品欧美日韩精品| 欧美3d第一页| 国产老妇女一区| 国产国拍精品亚洲av在线观看| 久久99热6这里只有精品| 大香蕉久久网| 深夜精品福利| 精品无人区乱码1区二区| 日韩精品中文字幕看吧| 丰满人妻一区二区三区视频av| 久久精品国产亚洲网站| 三级男女做爰猛烈吃奶摸视频| 深夜精品福利| 日本撒尿小便嘘嘘汇集6| 日韩精品中文字幕看吧| 97超视频在线观看视频| 99热6这里只有精品| 国产成人一区二区在线| 少妇被粗大猛烈的视频| 99久久无色码亚洲精品果冻| 真实男女啪啪啪动态图| 国内精品美女久久久久久| 九九热线精品视视频播放| 久久精品国产99精品国产亚洲性色| 久久久久国产网址| 精品久久久久久久久亚洲| 久久午夜福利片| 人妻丰满熟妇av一区二区三区| 一级a爱片免费观看的视频| 亚洲va在线va天堂va国产| av专区在线播放| 男女下面进入的视频免费午夜| 久久国内精品自在自线图片| 免费观看精品视频网站| 此物有八面人人有两片| 亚洲七黄色美女视频| 日本一本二区三区精品| 久久久久久九九精品二区国产| 亚洲性夜色夜夜综合| 亚洲精品乱码久久久v下载方式| 身体一侧抽搐| 一个人免费在线观看电影| 国产 一区 欧美 日韩| 欧美又色又爽又黄视频| 免费人成视频x8x8入口观看| 国产高清三级在线| 22中文网久久字幕| 国产精品女同一区二区软件| 午夜福利成人在线免费观看| 国产白丝娇喘喷水9色精品| 国产私拍福利视频在线观看| 国产欧美日韩一区二区精品| 日韩欧美在线乱码| 精品久久久久久久久亚洲| 国产淫片久久久久久久久| 亚洲美女搞黄在线观看 | 久久精品国产清高在天天线| 日本欧美国产在线视频| 99久久精品一区二区三区| 无遮挡黄片免费观看| 欧美成人a在线观看| 成人美女网站在线观看视频| 国产精品久久久久久亚洲av鲁大| 嫩草影院新地址| 久久精品国产鲁丝片午夜精品| 国内精品美女久久久久久| 激情 狠狠 欧美| 亚洲美女搞黄在线观看 | 老司机影院成人| 欧美日本视频| 日韩制服骚丝袜av| 夜夜夜夜夜久久久久| 国产精品久久久久久久电影| 观看美女的网站| 成人综合一区亚洲| 一a级毛片在线观看| 精品人妻熟女av久视频| 伦理电影大哥的女人| 日韩强制内射视频| 国产又黄又爽又无遮挡在线| 一级a爱片免费观看的视频| 99久国产av精品国产电影| 欧美激情国产日韩精品一区| 变态另类丝袜制服| 精品日产1卡2卡| 国产乱人视频| 午夜老司机福利剧场| av在线亚洲专区| 有码 亚洲区| 一本精品99久久精品77| 最好的美女福利视频网| 午夜福利视频1000在线观看| 搞女人的毛片| 国产精品,欧美在线| 性欧美人与动物交配| 色哟哟哟哟哟哟| 亚洲av熟女| 在线播放无遮挡| 免费高清视频大片| 欧洲精品卡2卡3卡4卡5卡区| 在线观看av片永久免费下载| 中国美女看黄片| 不卡视频在线观看欧美| 久久久久久久午夜电影| 老师上课跳d突然被开到最大视频| 国产精品福利在线免费观看| 男插女下体视频免费在线播放| 亚洲,欧美,日韩| 欧美精品国产亚洲| 亚洲美女搞黄在线观看 | av视频在线观看入口| 国产精品电影一区二区三区| 菩萨蛮人人尽说江南好唐韦庄 | 青春草视频在线免费观看| 欧美日韩精品成人综合77777| 可以在线观看的亚洲视频| 精品福利观看| 嫩草影院精品99| 男女那种视频在线观看| 国产精品无大码| 亚洲国产色片| 人人妻人人澡人人爽人人夜夜 | 亚洲中文字幕日韩| 日韩欧美免费精品| 啦啦啦观看免费观看视频高清| 欧美bdsm另类| 少妇熟女欧美另类| 精品熟女少妇av免费看| av在线播放精品| 赤兔流量卡办理| 美女黄网站色视频| 精品午夜福利视频在线观看一区| 国内少妇人妻偷人精品xxx网站| 嫩草影院入口| 97超碰精品成人国产| 久久久久久久久久黄片| 免费看日本二区| 精品人妻偷拍中文字幕| 午夜老司机福利剧场| 国产成人freesex在线 | 又爽又黄a免费视频| 国产 一区精品| 美女 人体艺术 gogo| 99久久久亚洲精品蜜臀av| 免费观看的影片在线观看| 亚洲经典国产精华液单| 美女xxoo啪啪120秒动态图| 久久久欧美国产精品| 长腿黑丝高跟| 亚洲人成网站高清观看| 国产蜜桃级精品一区二区三区| 亚洲精品456在线播放app| 国产男靠女视频免费网站| 欧美色视频一区免费| 亚洲中文字幕日韩| 欧美xxxx黑人xx丫x性爽| 亚洲色图av天堂| 亚洲欧美日韩卡通动漫| 亚洲精华国产精华液的使用体验 | 精华霜和精华液先用哪个| 久久精品国产亚洲网站| 此物有八面人人有两片| 亚洲欧美中文字幕日韩二区| 国产午夜福利久久久久久| 99riav亚洲国产免费| 婷婷亚洲欧美| av在线播放精品| 精品少妇黑人巨大在线播放 | 国产成人a区在线观看| 亚洲美女视频黄频| 人妻久久中文字幕网| 欧美日本亚洲视频在线播放| 中文字幕精品亚洲无线码一区| 99久久久亚洲精品蜜臀av| 在现免费观看毛片| av.在线天堂| 亚洲精品国产av成人精品 | 一个人免费在线观看电影| 日韩欧美在线乱码| 97在线视频观看| 一级毛片aaaaaa免费看小| 国产成年人精品一区二区| 精品久久久噜噜| 国产成人91sexporn| 女的被弄到高潮叫床怎么办| 午夜影院日韩av| 国产黄色视频一区二区在线观看 | 天天躁日日操中文字幕| 99视频精品全部免费 在线| 国产亚洲av嫩草精品影院| 免费在线观看影片大全网站| 狂野欧美白嫩少妇大欣赏| 91久久精品电影网| 精品一区二区三区视频在线| 1000部很黄的大片| 麻豆国产av国片精品| 精品一区二区三区人妻视频| 欧美xxxx黑人xx丫x性爽| h日本视频在线播放| 99久久无色码亚洲精品果冻| 日韩,欧美,国产一区二区三区 | 国产色婷婷99| 欧美精品国产亚洲| 亚洲欧美日韩高清在线视频| 我的女老师完整版在线观看| 国产大屁股一区二区在线视频| 男女下面进入的视频免费午夜| 夜夜夜夜夜久久久久| 国产熟女欧美一区二区| 嫩草影院新地址| 少妇熟女aⅴ在线视频| 最近中文字幕高清免费大全6| 欧美绝顶高潮抽搐喷水| 亚洲熟妇中文字幕五十中出|