• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photoabsorption of Nan Clusters andVolume Plasmon:Experimental Results

    2011-01-22 09:45:22
    關(guān)鍵詞:吸收截面光吸收示意圖

    (American GoldmanSachs Group,New York 10821,USA)

    As predicted by a lot of calculations (as reviewed in Ref.[1]), one expect to see a certain amount of photoabsorption in the spectra of Na clusters in the UV range, while this has never been done experimentally.Motivated by this, we carried out the photodepletion experiment to search for the volume-type plasmons.The clusters we choose are Na20and Na92covering the near-UV, as well as the visible parts of their resonance spectra[2].

    1 Experimental setup

    The experimental setup consists mainly of the supersonic source, detectors and laser system, as shown in Fig.1.In the source chamber we have a standard supersonic expansion source.Pure sodium is heated up to 640~670 ℃ and the vapor together with carrier gas is co-expanded through a heated supersonic nozzle of 75 μm in diameter, outside where the neutral clusters of various sizes are formed.The central part of the beam passes through a skimmer and is then collimated by a series of apertures: aperture A of 1.5 by 1.5 mm located ~65 cm away from skimmer, aperture B of diameter 2 mm located ~50 cm downstream of aperture A, and aperture C of 4.5 by 4.5 mm, 95cm downstream of aperture B.The ion optics eliminate the ions and the remaining neutral ones are then ionized by filtered ultraviolet light from an arc lamp, size selected by a quadrupole mass analyzer (QMA) and detected by a photo multiplier tube (PMT).The multichannel scaler collects the data and produces a time resolved mass scan (TRS).

    圖1 光吸收實驗的示意圖(大小未按比例).源的溫度在640~670 ℃之間,載氣的壓強為4~6 atm. A, B, C 的大小分別為1.5×1.5, 2×2, 4.5×4.5 mm Fig.1 Outline of the experimental arrangement for optical absorption measurement by photodepletion spectroscopy (not to scale).The source is operated at a temperature of 640~670 ℃ with carrier gas pressure 4~6 atm.The size of the aperture A, B and C are 1.5×1.5, 2×2, 4.5×4.5 mm respectively

    The laser system is a tunable Nd:YAG-Laser system manufactured by EKSPLA (model number NT342/3/UV).It consists of pump laser NL303, harmonics generators (SHG, THG), optical parametric oscillator PG122 (OPO) and UV extension (SH1, SH2), as sketched in Fig.2.

    圖2 NT342/3/UV Nd:YAG激光系統(tǒng)示意圖.基本輻射由泵浦激光器NL303產(chǎn)生,通過SHG和THG轉(zhuǎn)換成355 nm ,然后拆分成信號和閑頻光.UV輸出則是通過對信號光束的倍頻得到 Fig.2 Schematic of the NT342/3/UV Nd:YAG-Laser system.The fundamental radiation of 1064 nm is generated by pump laser NL303 and converted into 3rd harmonics by SHG and THG.The 355 nm beam is then splitted by the OPO into a signal and idler.UV output is obtained by another frequency increase using SH1 and SH2

    The pump laser generates optical pulses of the fundamental Nd:YAG radiation (wave- length 1064 nm) with duration of 3~6 ns/pulse and maximum repetition rate of 20 Hz.The fundamental radiation is converted into the third harmonic (355 nm) by SHG and THG, and then splitted into two beams of various wavelengths depending on the orientation of the OPO crystal: one visible (in the range of 420~709.9nm, so called "signal") and one near infrared (in the range of 710~2300nm, "idler").Making use of the SH1 and SH2 extensions, it can also generate signal in the UV region (210~419.9nm), i.e., it could cover the wavelength from 210 to 2300 nm continuously with a resolution of 0.1 nm.If the pump energy is set to about 110 mJ per pulse, the ideal maximum output would be a few mJ in the UV range and 10~30 mJ in the visible.Since the photoabsorption cross section varies with the irradiation photon energy and size of the cluster a lot, in order to have an appropriate on/off ratio we sometimes need to use neutral density filters (OD 0.5, 1.0, 2.0 or combinations of above) to reduce the amount of photons that illuminate the clusters.

    To get an accurate measurement of the photoabsorption cross section, it is crucial to have the laser beam and the cluster beam very well aligned.The photo diode to the left of aperture A is for alignment purpose only and is out of the way of the beam during a measurement.It is made by Electro-Optics Technology, Inc.and the model number is ET-2020.Since photodiode is very sensitive to photons and reaches saturation at very low laser energy, two neutral density filters (OD 1.0 an 2.0 respectively) are placed in front of the active area, which is 2.55 mm in diameter.The output is monitored by an oscilloscope.

    Since the cross section is inverse proportional to the laser fluence, it is vital to precisely measure the laser pulse energy that passes through aperture B.The energy detector that we used is a compact pyroelectric joule-meter made by Gentec (part number QE4-SP-S- MT-DO).The sensor is connected by a BNC cable to an oscilloscope, which reads the voltage output.The sensitivity (the ratio of the voltage output to the actual energy, in unit of V/J) depends on the absorption rate at different wavelengths and is calibrated by the manufacturer.For better accuracy, we usually take an average of ~100 pulses.This unit has a spectral range from 190 nm to 2.5 μm and active area diameter of 3.7 mm.To ensure we take into account all the photons that overlap the cluster beam, the detector is placed very close to aperture B (approximately 1 cm), which has a diameter of 2 mm.

    2 Experimental procedure

    Depending on the source condition, one measurement takes up to 15 hours excluding the alignment procedures.Once the vacuum meets the experimental requirement, we start to heat up the source reservoir.This usually takes 1~2 hours, in the mean time, we check the laser alignment and optimize the prisms again.Once the reservoir is heated to the appropriate temperature, we start to adjust the position of source and skimmer until the cluster counting rate is maximized, which means the source is well aligned.The skimmer could move in Z direction (along the cluster beam) and the source itself could move in X and Y direction.

    Once the laser is well aligned and the source is ready, we measure the cross section of one cluster size at a certain wavelength in 3 steps.

    1) Measure the laser pulse intensity using the energy detector.Set the wavelength of the output laser beam and move the energy meter in position so that all the photons pass through aperture B are registered by the energy meter QE4.Since it takes some time (about 1 minute) for the laser beam intensity to stabilize, every time the wavelength is changed, we wait a little bit before reading voltage from oscilloscope, in the mean time, we measure the background noise(with cluster beam blocked and laser beam on) and check if it is very low.Usually the energy is averaged over 100 pulses.

    2) Move the energy meter out and take the time resolved scan (TRS) using multi- channel scaler (MCS).MCS is synchronized with the laser pulse which is set to its maximum frequency (i.e.20 Hz) with a duration of 3~6 ns.MCS is typically set to 100 channels with a dwell time of 50 μs per channel.We take 2000~4000 scans (2~4 minutes) depending on the counting rate of the cluster signal and noise level.As an example, Fig.3 shows the TRS for Na20 at wavelength 500 nm.

    圖3 激光波長為500nms時Na20的時間分辨掃描樣本, 其中1~40信道對應(yīng)光吸收后的信號強度 Fig.3 Time resolved scan (TRS) of Na20 with wavelength 500 nm.Channel 1~40 correspond to the depleted beam and the highlighted part is the depleted signal I which is taken as the average of the 7 channels centered at channel 22

    Channel 1~40 correspond to the depleted beam.Upon absorbing a photon, clusters rapidly evaporate, so that following a laser pulse the counting rate of the selected cluster size drops and remains depleted for ~2 ms (corresponding to the beam flight time from the skimmer to the detector entrance).After that, the signal will get back to normal rate.Ideally the signal should be a step function: in the depleted region, it is a constant I while in the un-illuminated part, it is another constantI0.In reality, due to the spread of the cluster speed, the divergence of the laser beam and possible misalignment of the laser beam, the edge is not that sharp as seen in this figure.

    3) Measure the average laser pulse energy once again to make sure that the laser pulse energy is not drifting during the scan.

    In principle, we can scan many different cluster sizes one after another in step 2 and don't have to repeat the energy measurement.In practice, in order to get a good resolution for different clusters, we need to change AC/DC ratio unless the targeted masses are close enough (say Na19, Na20and Na21).Data points were acquired in 5 nm intervals between 220~420 nm and 10 nm intervals between 420~600 nm since the focus is the UV region.

    Once we have these data, we can calculate the absolute cross section.

    3 Experimental data

    Since we are more interested in volume plasmons which correspond to higher energy photons, we collected data for sodium clusters of size 8, 19, 20, 21, 57, 58, 92 in the range of 210~420 nm.We also measured the spectra for size 20 and 92 in the visible range in order to check the accuracy of the data.The experimental cross section values for Na20and Na92are given in Fig.4,5.

    圖4 Na20的光吸收截面,其中紅點代表實驗數(shù)據(jù) Fig.4 Photo-absorption cross section (per atom) of Na20 as a function of photon energy.Dots are experimental data; solid line is drawn to guide the eye

    圖5 Na92的光吸收截面,其中紅點代表實驗數(shù)據(jù) Fig.5 Photo-absorption cross section (per atom) of Na92 as a function of photon energy.Dots are experimental data; solid line is drawn to guide the eye

    4 Data validity and error analysis

    a) Cross Section vs Photon Fluence.

    To make sure that the photo depletion process is a linear process in our work, we have measured the photoabsorption cross section of Na8and Na20as a function of the laser intensities at some different wavelengths in the UV.Fig.6 shows the cross section as a function of the photon fluence at wavelength 320 nm.In this figure,Xaxis is the reading of the oscilloscope in unit of mV, which is proportional to the laser pulse energy,Yaxis is the photoabsorption cross section in arbitrary unit, different symbols stand for the calculation based on different number of channels.It is seen that in the range of 6~20 mV, (22~70μJ) the cross section is a constant and does not depend on the laser fluence.

    圖6 Na20的光吸收截面與激光能量密度之間的關(guān)系圖 Fig.6 Photoabsorption cross section as a function of laser fluence at wavelength 320 and 335 nm for Na20.Different symbols stand for the cross section calculated using different number of channels

    For Na92, we do not have a complete set of data as for Na8and Na20, but repeated measurement of the photoabsorption cross section at different laser fluence.The cross section - fluence relation shows that one-photon process is also valid in this case, as seen in Fig.7.

    圖7 Na92的光吸收截面與激光能量密度之間的關(guān)系圖 Fig.7 Photoabsorption cross section vs laser fluence for Na92.The squares, solid dots, triangles and circles are for wavelength 250, 305, 315 and 335 nm respectively

    b) Comparison with Other Experiments.

    Photoabsorption cross section in the visible range for Na20has been measured in different works previously; it is natural to compare our result with the existing experimental data.Besides the experiment by K.Selby et al., S.Pollack et al.also have measured the optical response of Na20in a similar manner[3].They have covered the wavelength in between 370 to 600 nm with resolution of better than 20 ?.

    The errors on absolute cross sections were conservatively estimated as ±50%.The comparison between our data and these two works is shown in Fig.8.We find that our data match the other two very well.The position, shape and strength of the surface plasmon are all in very good agreement.To the best of our knowledge, there have been no prior measurements for Na92.

    圖8 可見光部分的數(shù)據(jù)與以前的實驗結(jié)果的對比 Fig.8 Comparison of experimental data for Na20 in the visible with previous works.Solid line is a smoothed line through the present data points; triangles are data points of Ref.[12]; dots are data points adapted from Ref.[3]

    c) Error Estimation.

    To estimate the relative error bars of the experimental data, we combined the uncertainties derived from different channels and repeated experiments.It is found that the typically error bars are ≈ 15% for Na20and ≈ 20% for Na92except a few data point.The slightly larger uncertainty for Na92than Na20is because of the lower intensity of the Na92cluster signal.It is seen that our data agree with Selby's and Pollack's within the error limits, see Fig.9.

    圖9 Na20實驗數(shù)據(jù)的誤差分析 Fig.9 Error analysis of experimental data for Na20 in the visible with previous works.Solid line is a smoothed line through the present data points; triangles are data points of Ref.[12]; dots are data points adapted from Ref.[3]

    5 Discussion

    The visible portions of both plots exhibit the strong surface-plasmon resonances, which is known and has been studied extensively.An important new part of the data is the considerable tail extending into the UV.

    Before proceeding with a quantitative discussion, it may be worth noting that both clusters display a weak undulation between 3.5 and 4.0 eV, which is close to their ionization potentials of 3.75 eV (Na20) and 3.47 eV (Na92)[4,5]and is therefore possibly related to the opening of the continuum channel for electron emission[6].

    a) Fitting Results.

    The Na92spectrum was fitted to three Lorentzian peaks, while for Na20either three or four peaks could be used, the latter choice appearing more suitable.

    For Na20, the fitted peaks are depicted in Fig.10, the fitting parameters and uncertainties are listed in Tab.1.

    表1 Na20的擬合參數(shù)

    Tab.1 Fitting parameters for Na20: peak energies (E), widths (F, FWHM), and areas (?, per atom) derived from fits to the Na20photoabsorption pro- files.Quantities in parentheses are estimated uncertainties in fitting parameters

    PeakE/eVF/eVA/(eV*?2)Peak14.04(0.03)1.19(0.07)0.15(0.01)Peak23.17(0.02)0.52(0.02)0.13(0.01)Peak32.77(0.01)0.23(0.01)0.10(0.01)Peak42.42(0.01)0.26(0.01)0.40(0.01)

    圖10 Na20的光吸收截面的擬合結(jié)果 Fig.10 Photoabsorption cross sections per atom of Na20 nanocluster.Circles: photoabsorption cross sections of Na20, solid line: fit to the data by means of sum of Lorentzian profiles (dashed lines).The shaded peak is the volume plasmon which becomes dipole-active in finite particles

    As a comparison, the fitting parameters from Ref.[3] are listed in Tab.2.The center of the 2 major peaks agree perfectly (peak I and II vs peak 3 and 4), but the width and area of these peaks differ from our fitting, because we have a larger data sample that extends into UV.The interesting part is the additional broad peak centered at 4.04 eV in our fitting.Before going into the explanation, let us take a look at the fitted peaks for Na92which are depicted in Fig.11, and the fitting parameters and uncertainties are listed in Tab.3.It is seen that for Na92, besides the peaks in the visible, there also exists a broad peak centered at 4.20 eV.

    表2 文獻[3]中的Na20擬合參數(shù)

    Tab.2 Fitting parameters for Na20as in Ref.[3].The original fitting parameters are converted into peak energies (E), widths (F, FWHM), and areas (?, per atom) for easier comparison

    PeakE/eVF/eVA(eV*?2)PeakI2.780.40.12PeakII2.420.20.33

    表3 Na92的擬合參數(shù)

    Tab.3 Fitting parameters for Na92: peak energies (E), widths (F, FWHM), and areas (?, per atom) derived from fits to the Na92photoabsorption profiles.Quantities in parentheses are estimated uncertainties in fitting parameters

    PeakE/eVF/eVA(eV*?2)Peak14.20(0.08)1.16(0.15)0.093(0.016)Peak23.24(0.03)0.37(0.04)0.07(0.01)Peak32.80(0.01)0.42(0.01)0.50(0.02)

    b) Existence and Redshift of the Volume Plasmon.

    Of particular interest for our present purposes is the broad peak slightly above 4 eV, labeled Peak 1 in Table 1, 3 and shaded in Figs.10 and 11.In Na20it is slightly more red-shifted (ω= 0.68ωp, whereωp= 5.9 eV is the bulk free-electron sodium plasma frequency) and comprises a higher fraction of the area of the listed peaks (19%) than in Na92(0.71ωpand 14%).This behavior is in clear correspondence with that illustrated for a dipolar "volume plasmon" resonance.The absolute magnitudes of the frequency and the red shift are also in very good agreement with theoretical predictions for such a resonance: e.g., the analytical calculation in[7]yielded ≈ 0.75ωpfor its position, and ≈ 20% and ≈ 15% for its weight in Na20and Na92, respectively.The manifest match between the behavior and parameters of the UV feature and the predicted nanocluster “volume plasmon” resonance enables us to identify them with each other.

    圖11 Na92的光吸收截面的擬合結(jié)果 Fig.11 Photoabsorption cross sections per atom of Na92 nanocluster.Circles: photoabsorption cross sections of Na92, solid line: fit to the data by means of sum of Lorentzian profiles (dashed lines).The shaded peak is the volume plasmon which becomes dipole-active in finite particles

    c) Remaining Oscillator Strength.

    Even though they extend to higher frequencies than previous experiments, the peaks in Figs.10 and 11 still do not encompass the full dipole oscillator strength f of the delocalized cluster valence electrons: the peaks in Tab.1 and 3 correspond tof= 71% for Na20andf= 60% for Na92, significantly lower than the value from TRK sum rule.Therefore additional photoabsorption channels must be present in other frequency ranges.For example, even though cross sections become small at the high-frequency end of the plots, the excitation of individual valence electrons into the continuum has been predicted to produce a low but very long photo-ionization tail[8], thereby accommodating an appreciable amount of these electrons′ oscillator strength.

    One could roughly estimate the distribution of the remaining oscillator strength based on TRK and polarizability sum rules.For example, in the case of Na20, the remaining strength should be 0.29 as from TRK sum rule.And from the polarizability constraint, one could find thatE5=2.2 eV, given the static electric polarizabilityα(ω= 0) = 1.85 in unit ofR3[9].

    Thus the high energy ionization tail must be accompanied by enhanced valence electron absorption in the IR (cf.[10]), most likely due to individual electron-hole excitations.A search for cluster electron photoabsorption at both of these frequency limits, while experimentally quite challenging, would be very interesting and informative.

    d) Comparison of Different Cluster Sizes.

    One interesting fact to notice is that although the cross section profile for Na20and Na92differ a lot in the visible range (besides the difference between the center of the surface plasmon peak, the peak value of these two absorption differ by about 20%, and this trend coincides with theoretical prediction), they are very close in the UV range (see Fig.12).A further comparison with other clusters shows a similar picture for Na19, Na21, Na57, Na58(this on the other hand confirms that our data are reliable).The only exception is Na8, which is significantly lower than others.According to Ref.[11], the volume plasmon should have a higher fraction of the total area than Na20.Intuitively, the cross section in the UV region should be at least as much as that of Na20(and others).However since the Na8surface-plasmon peak is noticeably more red-shifted than the Na20one[12,13], the same may be expected for its volume plasmon, hence it would possess a lower amplitude in the UV region.

    圖12 Na20和Na92的光吸收截面的比較 Fig.12 Comparison of photoabsorption cross sections per atom of Na20 and Na92 nanocluster.In the visible range, the profiles differ a lot, but in the UV range, they are very close

    6 Conclusion

    In summary, the photoabsorption spectra reported here provide the first experimental observation of optically excited "volume plasmon" collective electronic states in metal nanocluster particles, a phenomenon unique to finite systems.

    [1] Xia C, Yin C, Kresin V V.Photoabsorption by volume plasmons in metal nanoclusters[J].Phys Rev Lett, 2009,102:156802-156805.

    [2] Dahlseid T A, Koretsky G M, Pollack S, et al.Nuclear Physics Concepts in the Study of Atomic Cluster Physics[M].Berlin :Springer, 1992.

    [3] Pollack S, Wang C R C, Kappes M M.On the optical response of Na20 and its relation to computational prediction[J].J Chem Phys, 1990 ,94:2496 -2501.

    [4] Persson J L.Dissertation[D].Los Angeles:University of California, 1991.

    [5] Chandezon F, Bjornholm S, Borggreen J.Electronic shell energies and deformations in large sodium clusters from evaporation spectra[J].Phys Rev B, 1997 ,55;5485-5490.

    [6] Brechignac C, Cahuzac P, Carlier F,et al.Ionization vs.neutralization in alkali-atom clusters[J] J Phys II France, 1992 ,2:971-983 .

    [7] Kresin V V.Collective resonances and response properties of electrons in metal clusters[J].Phys Rep, 1992 ,220: 1-52 .

    [8] Frank O, Rost J M.From collectivity to the single-particle picture in the photoionization of clusters[J].Phys Rev A, 1999, 60:392-397 .

    [9] Tikhonov G, Kasperovich V, Wong K.A measurement of the polarizability of sodium clusters[J].Phys Rev A, 2001, 64: 063202-063206.

    [10] Kim Y H, Tanner D B.Far-infrared absorption by aluminum small particles[J].Phys Rev B, 1989, 39: 3585-3589.

    [11] Brack M.The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches[J].Rev Mod Phys, 1993, 65: 677-732.

    [12] Selby K, Vollmer M, Masui J,et al.Surface plasma resonances in free metal clusters[J].Phys Rev B, 1989, 40: 5417-5427.

    [13] Pollack S, Wang C R C, Kappes M M.On the optical absorption spectrum of Na2Cl[J].Chem Phys Lett, 1990, 175: 209-215.

    猜你喜歡
    吸收截面光吸收示意圖
    臭氧253.65 nm吸收截面系數(shù)變化對中國環(huán)境空氣質(zhì)量達標(biāo)的影響
    先畫示意圖再解答問題
    雪花狀冰晶的毫米波散射特性
    黔西南州旅游示意圖
    NO氣體紫外差分吸收截面的測量
    多元稀土硼化物Ce1-xNdxB6的制備及性能研究*
    功能材料(2016年1期)2016-05-17 03:38:24
    鑲嵌納米晶硅的氧化硅薄膜微觀結(jié)構(gòu)調(diào)整及其光吸收特性
    兩張圖讀懂“青年之聲”
    中國共青團(2015年7期)2015-12-17 01:24:38
    處理NaCs光解離問題的兩種方案比較
    Photoabsorp tion of Na n C lusters and Vo lum e P lasm on:Theory Rev iew
    91av网站免费观看| 久久久欧美国产精品| 久久久国产一区二区| 91成人精品电影| 亚洲人成电影免费在线| 国产无遮挡羞羞视频在线观看| a级毛片在线看网站| 国产精品一区二区精品视频观看| 性色av乱码一区二区三区2| 精品国产国语对白av| 精品福利观看| 国产伦人伦偷精品视频| 91成人精品电影| 欧美精品av麻豆av| 在线观看免费日韩欧美大片| 久久天躁狠狠躁夜夜2o2o| avwww免费| 亚洲欧美日韩另类电影网站| 亚洲国产精品一区三区| 日本撒尿小便嘘嘘汇集6| 啦啦啦免费观看视频1| 多毛熟女@视频| 在线永久观看黄色视频| 成人影院久久| 久久久久精品人妻al黑| 国产免费视频播放在线视频| 人人妻人人澡人人看| 汤姆久久久久久久影院中文字幕| 又紧又爽又黄一区二区| 免费高清在线观看视频在线观看| 久久久精品区二区三区| 久久香蕉激情| av天堂在线播放| 精品欧美一区二区三区在线| 日韩精品免费视频一区二区三区| 国产高清videossex| 亚洲久久久国产精品| 国产成人免费无遮挡视频| 午夜福利在线免费观看网站| 国产在视频线精品| 久久久久久久久久久久大奶| 亚洲欧美激情在线| 欧美人与性动交α欧美精品济南到| 好男人电影高清在线观看| 成人国产av品久久久| 欧美在线一区亚洲| 又紧又爽又黄一区二区| 精品国产乱码久久久久久小说| 亚洲少妇的诱惑av| 久久久国产一区二区| 亚洲av美国av| 精品卡一卡二卡四卡免费| 欧美xxⅹ黑人| 日韩一区二区三区影片| 99香蕉大伊视频| 无遮挡黄片免费观看| 久久ye,这里只有精品| 亚洲精品美女久久久久99蜜臀| 国产99久久九九免费精品| 99国产综合亚洲精品| av免费在线观看网站| 18禁黄网站禁片午夜丰满| 一级a爱片免费观看的视频| 级片在线观看| 最近视频中文字幕2019在线8| 岛国在线观看网站| 桃红色精品国产亚洲av| 人人妻,人人澡人人爽秒播| 午夜老司机福利片| 亚洲乱码一区二区免费版| 欧美中文综合在线视频| 亚洲精品色激情综合| 特级一级黄色大片| 两性夫妻黄色片| 女人高潮潮喷娇喘18禁视频| 亚洲第一电影网av| 女生性感内裤真人,穿戴方法视频| 一本大道久久a久久精品| 久久精品成人免费网站| 国产精品综合久久久久久久免费| 国产69精品久久久久777片 | 欧美三级亚洲精品| 夜夜夜夜夜久久久久| 一进一出好大好爽视频| 午夜亚洲福利在线播放| 国产成人精品久久二区二区免费| 最近最新免费中文字幕在线| 亚洲专区中文字幕在线| 色尼玛亚洲综合影院| 女生性感内裤真人,穿戴方法视频| 色老头精品视频在线观看| 免费在线观看黄色视频的| 国产真人三级小视频在线观看| 五月伊人婷婷丁香| 女生性感内裤真人,穿戴方法视频| 免费高清视频大片| 色综合亚洲欧美另类图片| 国产高清视频在线播放一区| 久久国产精品影院| 成人av一区二区三区在线看| 国产人伦9x9x在线观看| 蜜桃久久精品国产亚洲av| 国产真实乱freesex| 国产精品久久久人人做人人爽| 黑人操中国人逼视频| 禁无遮挡网站| 国产精品久久久人人做人人爽| 搞女人的毛片| 黄色片一级片一级黄色片| 88av欧美| 一级黄色大片毛片| 午夜两性在线视频| 国产精品综合久久久久久久免费| 亚洲成人免费电影在线观看| 在线国产一区二区在线| 日韩欧美国产在线观看| 欧美成人免费av一区二区三区| 成人国语在线视频| a级毛片a级免费在线| 大型黄色视频在线免费观看| 啦啦啦观看免费观看视频高清| 最近最新免费中文字幕在线| 欧美在线黄色| 欧美乱色亚洲激情| 久久久精品国产亚洲av高清涩受| 天堂√8在线中文| 亚洲熟女毛片儿| 亚洲avbb在线观看| 亚洲av电影在线进入| 欧美一区二区精品小视频在线| 观看免费一级毛片| 亚洲精品久久国产高清桃花| 日韩精品免费视频一区二区三区| 一本大道久久a久久精品| 国产成人aa在线观看| 亚洲,欧美精品.| 国产乱人伦免费视频| 亚洲av电影不卡..在线观看| 黄频高清免费视频| 免费看a级黄色片| 久久精品国产综合久久久| 午夜激情福利司机影院| 亚洲精品国产精品久久久不卡| 久久人人精品亚洲av| 欧美乱码精品一区二区三区| 最近在线观看免费完整版| 免费电影在线观看免费观看| 变态另类成人亚洲欧美熟女| 成熟少妇高潮喷水视频| 国产成人精品无人区| 天天躁狠狠躁夜夜躁狠狠躁| 日本三级黄在线观看| 男女视频在线观看网站免费 | 午夜福利在线观看吧| 亚洲美女视频黄频| 欧美日韩精品网址| 亚洲精品国产一区二区精华液| 国产成人精品久久二区二区91| 欧美在线黄色| 老司机在亚洲福利影院| 熟女少妇亚洲综合色aaa.| 精品乱码久久久久久99久播| 欧美高清成人免费视频www| 51午夜福利影视在线观看| 亚洲美女黄片视频| 国产亚洲精品一区二区www| 久久久久性生活片| 成在线人永久免费视频| 婷婷精品国产亚洲av在线| 国产熟女xx| 国产v大片淫在线免费观看| 成人午夜高清在线视频| 国产真人三级小视频在线观看| 色老头精品视频在线观看| 国产成人啪精品午夜网站| 国产精品久久视频播放| 宅男免费午夜| 动漫黄色视频在线观看| 欧美最黄视频在线播放免费| 黄色片一级片一级黄色片| 欧美性猛交╳xxx乱大交人| 亚洲自拍偷在线| 99国产精品一区二区三区| 国产v大片淫在线免费观看| 免费人成视频x8x8入口观看| 久久天堂一区二区三区四区| 久久香蕉精品热| 国产激情欧美一区二区| 国产成人一区二区三区免费视频网站| 听说在线观看完整版免费高清| 国产亚洲精品第一综合不卡| 亚洲国产精品合色在线| 中文在线观看免费www的网站 | 特级一级黄色大片| 欧美中文综合在线视频| 国产亚洲av嫩草精品影院| 麻豆国产97在线/欧美 | 午夜免费观看网址| 悠悠久久av| 亚洲一区二区三区不卡视频| 国产v大片淫在线免费观看| 18美女黄网站色大片免费观看| 日韩欧美三级三区| 美女免费视频网站| 18禁美女被吸乳视频| 日本 欧美在线| 麻豆av在线久日| 1024视频免费在线观看| 制服诱惑二区| 老司机午夜福利在线观看视频| 又大又爽又粗| 成在线人永久免费视频| 欧美午夜高清在线| 久久久久久人人人人人| 欧美乱码精品一区二区三区| 欧美国产日韩亚洲一区| 国产精品美女特级片免费视频播放器 | 国产亚洲欧美98| 18禁裸乳无遮挡免费网站照片| 国产午夜精品久久久久久| 成人午夜高清在线视频| 麻豆成人午夜福利视频| 成年人黄色毛片网站| 老司机午夜十八禁免费视频| 在线看三级毛片| 欧美日韩一级在线毛片| 少妇的丰满在线观看| 国产又黄又爽又无遮挡在线| 99久久精品国产亚洲精品| 久久精品成人免费网站| 叶爱在线成人免费视频播放| 免费电影在线观看免费观看| 村上凉子中文字幕在线| 国产精品久久久久久久电影 | 午夜福利18| 日本黄大片高清| 少妇熟女aⅴ在线视频| 成人18禁高潮啪啪吃奶动态图| 国产麻豆成人av免费视频| 亚洲精华国产精华精| 精品久久久久久久毛片微露脸| 99久久精品热视频| 久久久久亚洲av毛片大全| 国产精品98久久久久久宅男小说| 亚洲 欧美一区二区三区| 两人在一起打扑克的视频| 久久精品影院6| 亚洲欧美精品综合一区二区三区| 亚洲精品av麻豆狂野| 国产久久久一区二区三区| 免费在线观看成人毛片| 亚洲精品久久国产高清桃花| 欧洲精品卡2卡3卡4卡5卡区| 国产免费av片在线观看野外av| 久久精品aⅴ一区二区三区四区| 久久久久国内视频| 国产人伦9x9x在线观看| 久久精品亚洲精品国产色婷小说| 黄色丝袜av网址大全| 国产视频内射| 亚洲欧美日韩高清专用| 国产成人精品久久二区二区91| 久久精品综合一区二区三区| 91麻豆精品激情在线观看国产| 亚洲欧美日韩无卡精品| 999久久久国产精品视频| 亚洲专区国产一区二区| 9191精品国产免费久久| 变态另类成人亚洲欧美熟女| 99久久精品热视频| 久久久国产成人免费| 亚洲国产精品成人综合色| 一个人免费在线观看的高清视频| 宅男免费午夜| 欧美在线黄色| 免费看a级黄色片| 999久久久国产精品视频| 久久精品91蜜桃| 黄色成人免费大全| 天天一区二区日本电影三级| 中文字幕高清在线视频| 日本一本二区三区精品| 亚洲avbb在线观看| 狂野欧美激情性xxxx| 女警被强在线播放| 午夜精品在线福利| 国产成人影院久久av| 人成视频在线观看免费观看| 欧美日韩乱码在线| 天天添夜夜摸| 久久久国产精品麻豆| 国产精品一区二区免费欧美| 国产精品亚洲av一区麻豆| 无人区码免费观看不卡| 精品熟女少妇八av免费久了| 毛片女人毛片| 男插女下体视频免费在线播放| 色精品久久人妻99蜜桃| cao死你这个sao货| 国产高清有码在线观看视频 | 久久99热这里只有精品18| 中文字幕人成人乱码亚洲影| 精品久久久久久,| 亚洲专区中文字幕在线| 少妇粗大呻吟视频| 天堂动漫精品| x7x7x7水蜜桃| 久久国产精品影院| 亚洲,欧美精品.| 亚洲一码二码三码区别大吗| 97超级碰碰碰精品色视频在线观看| 99热这里只有是精品50| 欧美绝顶高潮抽搐喷水| 午夜福利高清视频| 精品久久久久久久毛片微露脸| 久久久精品欧美日韩精品| 欧美日韩亚洲综合一区二区三区_| 香蕉丝袜av| 欧美成人性av电影在线观看| 国产成人精品久久二区二区91| 欧美在线一区亚洲| 国产精品久久视频播放| 亚洲精品久久国产高清桃花| 高清毛片免费观看视频网站| 一边摸一边抽搐一进一小说| 欧美成人一区二区免费高清观看 | 哪里可以看免费的av片| 久9热在线精品视频| 老司机深夜福利视频在线观看| 一区福利在线观看| 51午夜福利影视在线观看| 欧美色欧美亚洲另类二区| 一级毛片精品| 在线观看www视频免费| 丰满的人妻完整版| 99久久无色码亚洲精品果冻| 国产又黄又爽又无遮挡在线| 国产激情欧美一区二区| 在线观看舔阴道视频| 欧美日韩瑟瑟在线播放| 又黄又爽又免费观看的视频| 777久久人妻少妇嫩草av网站| 一边摸一边做爽爽视频免费| 国产一级毛片七仙女欲春2| 精品电影一区二区在线| av天堂在线播放| 美女午夜性视频免费| 1024香蕉在线观看| 日韩三级视频一区二区三区| 亚洲人成77777在线视频| 黄频高清免费视频| 1024视频免费在线观看| 制服诱惑二区| 免费在线观看亚洲国产| 婷婷丁香在线五月| 国产aⅴ精品一区二区三区波| 窝窝影院91人妻| 一本综合久久免费| 亚洲精品一卡2卡三卡4卡5卡| 国产99白浆流出| 久久久久亚洲av毛片大全| 精华霜和精华液先用哪个| 香蕉av资源在线| 久久久久久国产a免费观看| 亚洲av第一区精品v没综合| 国产精品精品国产色婷婷| 欧美在线一区亚洲| 成年人黄色毛片网站| 免费在线观看成人毛片| 亚洲精品国产一区二区精华液| 亚洲人成网站高清观看| 国产亚洲精品综合一区在线观看 | 国产高清视频在线观看网站| 亚洲av电影在线进入| 色播亚洲综合网| 麻豆成人午夜福利视频| 亚洲欧美日韩东京热| 国产精品一区二区三区四区久久| 免费看日本二区| 黄色 视频免费看| 18美女黄网站色大片免费观看| 久久久精品国产亚洲av高清涩受| 欧美成人免费av一区二区三区| 日日摸夜夜添夜夜添小说| 国产精品一区二区精品视频观看| 一区二区三区高清视频在线| 亚洲成人中文字幕在线播放| 免费电影在线观看免费观看| 亚洲av电影在线进入| 老鸭窝网址在线观看| 国产成人aa在线观看| 午夜成年电影在线免费观看| 日日爽夜夜爽网站| 成年版毛片免费区| 成人国产一区最新在线观看| 国产精品香港三级国产av潘金莲| 国产av不卡久久| 欧美在线一区亚洲| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美丝袜亚洲另类 | 一本大道久久a久久精品| 日本黄色视频三级网站网址| 午夜福利18| 久久精品影院6| 免费搜索国产男女视频| 一进一出抽搐动态| 久久久久精品国产欧美久久久| 午夜日韩欧美国产| 一区二区三区激情视频| 国产精品久久久av美女十八| 中文字幕人妻丝袜一区二区| 日日干狠狠操夜夜爽| 日本一区二区免费在线视频| 欧美国产日韩亚洲一区| 国产亚洲精品av在线| 亚洲精品在线美女| 国产在线观看jvid| 国产精品日韩av在线免费观看| 99久久无色码亚洲精品果冻| 99热6这里只有精品| 久久久久久久久免费视频了| 两性午夜刺激爽爽歪歪视频在线观看 | 国语自产精品视频在线第100页| 国产精品影院久久| 亚洲国产欧洲综合997久久,| 国产成人精品久久二区二区91| 三级毛片av免费| 黑人欧美特级aaaaaa片| 天天一区二区日本电影三级| 国产三级中文精品| 日韩欧美三级三区| 一个人观看的视频www高清免费观看 | 一区二区三区国产精品乱码| 熟女电影av网| 日韩精品免费视频一区二区三区| 叶爱在线成人免费视频播放| 精品熟女少妇八av免费久了| 中文字幕最新亚洲高清| 超碰成人久久| 国产精品影院久久| 19禁男女啪啪无遮挡网站| 禁无遮挡网站| 成人国产综合亚洲| 国产黄色小视频在线观看| 久久人妻av系列| 又粗又爽又猛毛片免费看| 两个人视频免费观看高清| 九色国产91popny在线| 此物有八面人人有两片| 久久久久久久精品吃奶| 国产在线精品亚洲第一网站| 国产亚洲精品久久久久久毛片| 久久这里只有精品中国| cao死你这个sao货| 欧美日韩亚洲国产一区二区在线观看| 国产精品亚洲美女久久久| 久久精品人妻少妇| 国产亚洲欧美在线一区二区| 制服诱惑二区| 男女那种视频在线观看| 久久国产精品影院| 黄色女人牲交| 欧美成人一区二区免费高清观看 | 后天国语完整版免费观看| 欧美久久黑人一区二区| 亚洲中文字幕日韩| 免费电影在线观看免费观看| 国产亚洲欧美98| 久久欧美精品欧美久久欧美| 给我免费播放毛片高清在线观看| 亚洲一区二区三区不卡视频| 18禁国产床啪视频网站| 久久这里只有精品19| av福利片在线观看| 久久久久久大精品| 伦理电影免费视频| 婷婷精品国产亚洲av在线| 一本久久中文字幕| 免费在线观看日本一区| 免费在线观看影片大全网站| 黄色视频不卡| 久久这里只有精品19| 久久久久免费精品人妻一区二区| 久久久国产欧美日韩av| 51午夜福利影视在线观看| 色综合欧美亚洲国产小说| 曰老女人黄片| 丰满的人妻完整版| 青草久久国产| 窝窝影院91人妻| av天堂在线播放| 黄频高清免费视频| 校园春色视频在线观看| 欧美精品亚洲一区二区| 宅男免费午夜| 别揉我奶头~嗯~啊~动态视频| 看黄色毛片网站| 日韩成人在线观看一区二区三区| 国产伦人伦偷精品视频| 国产成人啪精品午夜网站| 亚洲人成网站在线播放欧美日韩| 1024香蕉在线观看| 1024手机看黄色片| 亚洲av片天天在线观看| 日韩成人在线观看一区二区三区| 51午夜福利影视在线观看| 中文资源天堂在线| 俄罗斯特黄特色一大片| 日韩欧美在线二视频| 一区二区三区激情视频| 国产一区二区在线av高清观看| 成人18禁高潮啪啪吃奶动态图| 久久久久久久久久黄片| 精品无人区乱码1区二区| 天天一区二区日本电影三级| 丰满的人妻完整版| 成人av在线播放网站| 亚洲国产日韩欧美精品在线观看 | 最近最新中文字幕大全免费视频| 色尼玛亚洲综合影院| 两个人的视频大全免费| a级毛片a级免费在线| 成人三级做爰电影| 精品国产亚洲在线| 国产一区二区三区在线臀色熟女| 99久久综合精品五月天人人| 精品不卡国产一区二区三区| 19禁男女啪啪无遮挡网站| 性欧美人与动物交配| 女同久久另类99精品国产91| 国产一区二区激情短视频| 成年女人毛片免费观看观看9| 国产精品99久久99久久久不卡| 亚洲av成人av| 国产单亲对白刺激| 日韩中文字幕欧美一区二区| 欧美性猛交黑人性爽| 精品久久久久久成人av| 妹子高潮喷水视频| 久久中文字幕一级| 中文在线观看免费www的网站 | 一级片免费观看大全| 国内精品久久久久精免费| 国产亚洲精品第一综合不卡| 午夜福利在线观看吧| 精品久久久久久久人妻蜜臀av| 一级a爱片免费观看的视频| 成年人黄色毛片网站| 一本大道久久a久久精品| 99热只有精品国产| xxxwww97欧美| 在线a可以看的网站| 中文字幕熟女人妻在线| 精品久久久久久久久久久久久| 嫩草影视91久久| 久久精品成人免费网站| 久久精品国产综合久久久| 91麻豆精品激情在线观看国产| 精品无人区乱码1区二区| 小说图片视频综合网站| 叶爱在线成人免费视频播放| 黑人欧美特级aaaaaa片| 一级a爱片免费观看的视频| 好男人在线观看高清免费视频| 亚洲va日本ⅴa欧美va伊人久久| 久久精品影院6| 午夜成年电影在线免费观看| www.自偷自拍.com| a在线观看视频网站| 老司机深夜福利视频在线观看| 久久精品影院6| 色尼玛亚洲综合影院| 人人妻人人澡欧美一区二区| 午夜福利视频1000在线观看| 99国产精品一区二区三区| 变态另类丝袜制服| 国产精品 欧美亚洲| 午夜福利18| 女警被强在线播放| 日韩中文字幕欧美一区二区| 久久精品国产亚洲av高清一级| 久久 成人 亚洲| 18禁国产床啪视频网站| 99久久综合精品五月天人人| 大型黄色视频在线免费观看| 午夜免费激情av| 老熟妇乱子伦视频在线观看| videosex国产| 亚洲欧美日韩高清在线视频| 久久婷婷人人爽人人干人人爱| 成人国语在线视频| 亚洲 国产 在线| 久久久久国内视频| 99国产精品一区二区三区| 午夜福利免费观看在线| 国产成人av激情在线播放| 国产av一区二区精品久久| 久久久国产成人精品二区| 又粗又爽又猛毛片免费看| 精品欧美国产一区二区三| 久热爱精品视频在线9| 狠狠狠狠99中文字幕| 欧美乱码精品一区二区三区| 变态另类丝袜制服| 精品一区二区三区av网在线观看| 男女做爰动态图高潮gif福利片| 狂野欧美激情性xxxx| 免费看a级黄色片| 狂野欧美白嫩少妇大欣赏| 老司机靠b影院| 久久性视频一级片| 欧美成人午夜精品| 色精品久久人妻99蜜桃| 婷婷亚洲欧美| 成人午夜高清在线视频|