• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Photoabsorption of Nan Clusters andVolume Plasmon:Experimental Results

    2011-01-22 09:45:22
    關(guān)鍵詞:吸收截面光吸收示意圖

    (American GoldmanSachs Group,New York 10821,USA)

    As predicted by a lot of calculations (as reviewed in Ref.[1]), one expect to see a certain amount of photoabsorption in the spectra of Na clusters in the UV range, while this has never been done experimentally.Motivated by this, we carried out the photodepletion experiment to search for the volume-type plasmons.The clusters we choose are Na20and Na92covering the near-UV, as well as the visible parts of their resonance spectra[2].

    1 Experimental setup

    The experimental setup consists mainly of the supersonic source, detectors and laser system, as shown in Fig.1.In the source chamber we have a standard supersonic expansion source.Pure sodium is heated up to 640~670 ℃ and the vapor together with carrier gas is co-expanded through a heated supersonic nozzle of 75 μm in diameter, outside where the neutral clusters of various sizes are formed.The central part of the beam passes through a skimmer and is then collimated by a series of apertures: aperture A of 1.5 by 1.5 mm located ~65 cm away from skimmer, aperture B of diameter 2 mm located ~50 cm downstream of aperture A, and aperture C of 4.5 by 4.5 mm, 95cm downstream of aperture B.The ion optics eliminate the ions and the remaining neutral ones are then ionized by filtered ultraviolet light from an arc lamp, size selected by a quadrupole mass analyzer (QMA) and detected by a photo multiplier tube (PMT).The multichannel scaler collects the data and produces a time resolved mass scan (TRS).

    圖1 光吸收實驗的示意圖(大小未按比例).源的溫度在640~670 ℃之間,載氣的壓強為4~6 atm. A, B, C 的大小分別為1.5×1.5, 2×2, 4.5×4.5 mm Fig.1 Outline of the experimental arrangement for optical absorption measurement by photodepletion spectroscopy (not to scale).The source is operated at a temperature of 640~670 ℃ with carrier gas pressure 4~6 atm.The size of the aperture A, B and C are 1.5×1.5, 2×2, 4.5×4.5 mm respectively

    The laser system is a tunable Nd:YAG-Laser system manufactured by EKSPLA (model number NT342/3/UV).It consists of pump laser NL303, harmonics generators (SHG, THG), optical parametric oscillator PG122 (OPO) and UV extension (SH1, SH2), as sketched in Fig.2.

    圖2 NT342/3/UV Nd:YAG激光系統(tǒng)示意圖.基本輻射由泵浦激光器NL303產(chǎn)生,通過SHG和THG轉(zhuǎn)換成355 nm ,然后拆分成信號和閑頻光.UV輸出則是通過對信號光束的倍頻得到 Fig.2 Schematic of the NT342/3/UV Nd:YAG-Laser system.The fundamental radiation of 1064 nm is generated by pump laser NL303 and converted into 3rd harmonics by SHG and THG.The 355 nm beam is then splitted by the OPO into a signal and idler.UV output is obtained by another frequency increase using SH1 and SH2

    The pump laser generates optical pulses of the fundamental Nd:YAG radiation (wave- length 1064 nm) with duration of 3~6 ns/pulse and maximum repetition rate of 20 Hz.The fundamental radiation is converted into the third harmonic (355 nm) by SHG and THG, and then splitted into two beams of various wavelengths depending on the orientation of the OPO crystal: one visible (in the range of 420~709.9nm, so called "signal") and one near infrared (in the range of 710~2300nm, "idler").Making use of the SH1 and SH2 extensions, it can also generate signal in the UV region (210~419.9nm), i.e., it could cover the wavelength from 210 to 2300 nm continuously with a resolution of 0.1 nm.If the pump energy is set to about 110 mJ per pulse, the ideal maximum output would be a few mJ in the UV range and 10~30 mJ in the visible.Since the photoabsorption cross section varies with the irradiation photon energy and size of the cluster a lot, in order to have an appropriate on/off ratio we sometimes need to use neutral density filters (OD 0.5, 1.0, 2.0 or combinations of above) to reduce the amount of photons that illuminate the clusters.

    To get an accurate measurement of the photoabsorption cross section, it is crucial to have the laser beam and the cluster beam very well aligned.The photo diode to the left of aperture A is for alignment purpose only and is out of the way of the beam during a measurement.It is made by Electro-Optics Technology, Inc.and the model number is ET-2020.Since photodiode is very sensitive to photons and reaches saturation at very low laser energy, two neutral density filters (OD 1.0 an 2.0 respectively) are placed in front of the active area, which is 2.55 mm in diameter.The output is monitored by an oscilloscope.

    Since the cross section is inverse proportional to the laser fluence, it is vital to precisely measure the laser pulse energy that passes through aperture B.The energy detector that we used is a compact pyroelectric joule-meter made by Gentec (part number QE4-SP-S- MT-DO).The sensor is connected by a BNC cable to an oscilloscope, which reads the voltage output.The sensitivity (the ratio of the voltage output to the actual energy, in unit of V/J) depends on the absorption rate at different wavelengths and is calibrated by the manufacturer.For better accuracy, we usually take an average of ~100 pulses.This unit has a spectral range from 190 nm to 2.5 μm and active area diameter of 3.7 mm.To ensure we take into account all the photons that overlap the cluster beam, the detector is placed very close to aperture B (approximately 1 cm), which has a diameter of 2 mm.

    2 Experimental procedure

    Depending on the source condition, one measurement takes up to 15 hours excluding the alignment procedures.Once the vacuum meets the experimental requirement, we start to heat up the source reservoir.This usually takes 1~2 hours, in the mean time, we check the laser alignment and optimize the prisms again.Once the reservoir is heated to the appropriate temperature, we start to adjust the position of source and skimmer until the cluster counting rate is maximized, which means the source is well aligned.The skimmer could move in Z direction (along the cluster beam) and the source itself could move in X and Y direction.

    Once the laser is well aligned and the source is ready, we measure the cross section of one cluster size at a certain wavelength in 3 steps.

    1) Measure the laser pulse intensity using the energy detector.Set the wavelength of the output laser beam and move the energy meter in position so that all the photons pass through aperture B are registered by the energy meter QE4.Since it takes some time (about 1 minute) for the laser beam intensity to stabilize, every time the wavelength is changed, we wait a little bit before reading voltage from oscilloscope, in the mean time, we measure the background noise(with cluster beam blocked and laser beam on) and check if it is very low.Usually the energy is averaged over 100 pulses.

    2) Move the energy meter out and take the time resolved scan (TRS) using multi- channel scaler (MCS).MCS is synchronized with the laser pulse which is set to its maximum frequency (i.e.20 Hz) with a duration of 3~6 ns.MCS is typically set to 100 channels with a dwell time of 50 μs per channel.We take 2000~4000 scans (2~4 minutes) depending on the counting rate of the cluster signal and noise level.As an example, Fig.3 shows the TRS for Na20 at wavelength 500 nm.

    圖3 激光波長為500nms時Na20的時間分辨掃描樣本, 其中1~40信道對應(yīng)光吸收后的信號強度 Fig.3 Time resolved scan (TRS) of Na20 with wavelength 500 nm.Channel 1~40 correspond to the depleted beam and the highlighted part is the depleted signal I which is taken as the average of the 7 channels centered at channel 22

    Channel 1~40 correspond to the depleted beam.Upon absorbing a photon, clusters rapidly evaporate, so that following a laser pulse the counting rate of the selected cluster size drops and remains depleted for ~2 ms (corresponding to the beam flight time from the skimmer to the detector entrance).After that, the signal will get back to normal rate.Ideally the signal should be a step function: in the depleted region, it is a constant I while in the un-illuminated part, it is another constantI0.In reality, due to the spread of the cluster speed, the divergence of the laser beam and possible misalignment of the laser beam, the edge is not that sharp as seen in this figure.

    3) Measure the average laser pulse energy once again to make sure that the laser pulse energy is not drifting during the scan.

    In principle, we can scan many different cluster sizes one after another in step 2 and don't have to repeat the energy measurement.In practice, in order to get a good resolution for different clusters, we need to change AC/DC ratio unless the targeted masses are close enough (say Na19, Na20and Na21).Data points were acquired in 5 nm intervals between 220~420 nm and 10 nm intervals between 420~600 nm since the focus is the UV region.

    Once we have these data, we can calculate the absolute cross section.

    3 Experimental data

    Since we are more interested in volume plasmons which correspond to higher energy photons, we collected data for sodium clusters of size 8, 19, 20, 21, 57, 58, 92 in the range of 210~420 nm.We also measured the spectra for size 20 and 92 in the visible range in order to check the accuracy of the data.The experimental cross section values for Na20and Na92are given in Fig.4,5.

    圖4 Na20的光吸收截面,其中紅點代表實驗數(shù)據(jù) Fig.4 Photo-absorption cross section (per atom) of Na20 as a function of photon energy.Dots are experimental data; solid line is drawn to guide the eye

    圖5 Na92的光吸收截面,其中紅點代表實驗數(shù)據(jù) Fig.5 Photo-absorption cross section (per atom) of Na92 as a function of photon energy.Dots are experimental data; solid line is drawn to guide the eye

    4 Data validity and error analysis

    a) Cross Section vs Photon Fluence.

    To make sure that the photo depletion process is a linear process in our work, we have measured the photoabsorption cross section of Na8and Na20as a function of the laser intensities at some different wavelengths in the UV.Fig.6 shows the cross section as a function of the photon fluence at wavelength 320 nm.In this figure,Xaxis is the reading of the oscilloscope in unit of mV, which is proportional to the laser pulse energy,Yaxis is the photoabsorption cross section in arbitrary unit, different symbols stand for the calculation based on different number of channels.It is seen that in the range of 6~20 mV, (22~70μJ) the cross section is a constant and does not depend on the laser fluence.

    圖6 Na20的光吸收截面與激光能量密度之間的關(guān)系圖 Fig.6 Photoabsorption cross section as a function of laser fluence at wavelength 320 and 335 nm for Na20.Different symbols stand for the cross section calculated using different number of channels

    For Na92, we do not have a complete set of data as for Na8and Na20, but repeated measurement of the photoabsorption cross section at different laser fluence.The cross section - fluence relation shows that one-photon process is also valid in this case, as seen in Fig.7.

    圖7 Na92的光吸收截面與激光能量密度之間的關(guān)系圖 Fig.7 Photoabsorption cross section vs laser fluence for Na92.The squares, solid dots, triangles and circles are for wavelength 250, 305, 315 and 335 nm respectively

    b) Comparison with Other Experiments.

    Photoabsorption cross section in the visible range for Na20has been measured in different works previously; it is natural to compare our result with the existing experimental data.Besides the experiment by K.Selby et al., S.Pollack et al.also have measured the optical response of Na20in a similar manner[3].They have covered the wavelength in between 370 to 600 nm with resolution of better than 20 ?.

    The errors on absolute cross sections were conservatively estimated as ±50%.The comparison between our data and these two works is shown in Fig.8.We find that our data match the other two very well.The position, shape and strength of the surface plasmon are all in very good agreement.To the best of our knowledge, there have been no prior measurements for Na92.

    圖8 可見光部分的數(shù)據(jù)與以前的實驗結(jié)果的對比 Fig.8 Comparison of experimental data for Na20 in the visible with previous works.Solid line is a smoothed line through the present data points; triangles are data points of Ref.[12]; dots are data points adapted from Ref.[3]

    c) Error Estimation.

    To estimate the relative error bars of the experimental data, we combined the uncertainties derived from different channels and repeated experiments.It is found that the typically error bars are ≈ 15% for Na20and ≈ 20% for Na92except a few data point.The slightly larger uncertainty for Na92than Na20is because of the lower intensity of the Na92cluster signal.It is seen that our data agree with Selby's and Pollack's within the error limits, see Fig.9.

    圖9 Na20實驗數(shù)據(jù)的誤差分析 Fig.9 Error analysis of experimental data for Na20 in the visible with previous works.Solid line is a smoothed line through the present data points; triangles are data points of Ref.[12]; dots are data points adapted from Ref.[3]

    5 Discussion

    The visible portions of both plots exhibit the strong surface-plasmon resonances, which is known and has been studied extensively.An important new part of the data is the considerable tail extending into the UV.

    Before proceeding with a quantitative discussion, it may be worth noting that both clusters display a weak undulation between 3.5 and 4.0 eV, which is close to their ionization potentials of 3.75 eV (Na20) and 3.47 eV (Na92)[4,5]and is therefore possibly related to the opening of the continuum channel for electron emission[6].

    a) Fitting Results.

    The Na92spectrum was fitted to three Lorentzian peaks, while for Na20either three or four peaks could be used, the latter choice appearing more suitable.

    For Na20, the fitted peaks are depicted in Fig.10, the fitting parameters and uncertainties are listed in Tab.1.

    表1 Na20的擬合參數(shù)

    Tab.1 Fitting parameters for Na20: peak energies (E), widths (F, FWHM), and areas (?, per atom) derived from fits to the Na20photoabsorption pro- files.Quantities in parentheses are estimated uncertainties in fitting parameters

    PeakE/eVF/eVA/(eV*?2)Peak14.04(0.03)1.19(0.07)0.15(0.01)Peak23.17(0.02)0.52(0.02)0.13(0.01)Peak32.77(0.01)0.23(0.01)0.10(0.01)Peak42.42(0.01)0.26(0.01)0.40(0.01)

    圖10 Na20的光吸收截面的擬合結(jié)果 Fig.10 Photoabsorption cross sections per atom of Na20 nanocluster.Circles: photoabsorption cross sections of Na20, solid line: fit to the data by means of sum of Lorentzian profiles (dashed lines).The shaded peak is the volume plasmon which becomes dipole-active in finite particles

    As a comparison, the fitting parameters from Ref.[3] are listed in Tab.2.The center of the 2 major peaks agree perfectly (peak I and II vs peak 3 and 4), but the width and area of these peaks differ from our fitting, because we have a larger data sample that extends into UV.The interesting part is the additional broad peak centered at 4.04 eV in our fitting.Before going into the explanation, let us take a look at the fitted peaks for Na92which are depicted in Fig.11, and the fitting parameters and uncertainties are listed in Tab.3.It is seen that for Na92, besides the peaks in the visible, there also exists a broad peak centered at 4.20 eV.

    表2 文獻[3]中的Na20擬合參數(shù)

    Tab.2 Fitting parameters for Na20as in Ref.[3].The original fitting parameters are converted into peak energies (E), widths (F, FWHM), and areas (?, per atom) for easier comparison

    PeakE/eVF/eVA(eV*?2)PeakI2.780.40.12PeakII2.420.20.33

    表3 Na92的擬合參數(shù)

    Tab.3 Fitting parameters for Na92: peak energies (E), widths (F, FWHM), and areas (?, per atom) derived from fits to the Na92photoabsorption profiles.Quantities in parentheses are estimated uncertainties in fitting parameters

    PeakE/eVF/eVA(eV*?2)Peak14.20(0.08)1.16(0.15)0.093(0.016)Peak23.24(0.03)0.37(0.04)0.07(0.01)Peak32.80(0.01)0.42(0.01)0.50(0.02)

    b) Existence and Redshift of the Volume Plasmon.

    Of particular interest for our present purposes is the broad peak slightly above 4 eV, labeled Peak 1 in Table 1, 3 and shaded in Figs.10 and 11.In Na20it is slightly more red-shifted (ω= 0.68ωp, whereωp= 5.9 eV is the bulk free-electron sodium plasma frequency) and comprises a higher fraction of the area of the listed peaks (19%) than in Na92(0.71ωpand 14%).This behavior is in clear correspondence with that illustrated for a dipolar "volume plasmon" resonance.The absolute magnitudes of the frequency and the red shift are also in very good agreement with theoretical predictions for such a resonance: e.g., the analytical calculation in[7]yielded ≈ 0.75ωpfor its position, and ≈ 20% and ≈ 15% for its weight in Na20and Na92, respectively.The manifest match between the behavior and parameters of the UV feature and the predicted nanocluster “volume plasmon” resonance enables us to identify them with each other.

    圖11 Na92的光吸收截面的擬合結(jié)果 Fig.11 Photoabsorption cross sections per atom of Na92 nanocluster.Circles: photoabsorption cross sections of Na92, solid line: fit to the data by means of sum of Lorentzian profiles (dashed lines).The shaded peak is the volume plasmon which becomes dipole-active in finite particles

    c) Remaining Oscillator Strength.

    Even though they extend to higher frequencies than previous experiments, the peaks in Figs.10 and 11 still do not encompass the full dipole oscillator strength f of the delocalized cluster valence electrons: the peaks in Tab.1 and 3 correspond tof= 71% for Na20andf= 60% for Na92, significantly lower than the value from TRK sum rule.Therefore additional photoabsorption channels must be present in other frequency ranges.For example, even though cross sections become small at the high-frequency end of the plots, the excitation of individual valence electrons into the continuum has been predicted to produce a low but very long photo-ionization tail[8], thereby accommodating an appreciable amount of these electrons′ oscillator strength.

    One could roughly estimate the distribution of the remaining oscillator strength based on TRK and polarizability sum rules.For example, in the case of Na20, the remaining strength should be 0.29 as from TRK sum rule.And from the polarizability constraint, one could find thatE5=2.2 eV, given the static electric polarizabilityα(ω= 0) = 1.85 in unit ofR3[9].

    Thus the high energy ionization tail must be accompanied by enhanced valence electron absorption in the IR (cf.[10]), most likely due to individual electron-hole excitations.A search for cluster electron photoabsorption at both of these frequency limits, while experimentally quite challenging, would be very interesting and informative.

    d) Comparison of Different Cluster Sizes.

    One interesting fact to notice is that although the cross section profile for Na20and Na92differ a lot in the visible range (besides the difference between the center of the surface plasmon peak, the peak value of these two absorption differ by about 20%, and this trend coincides with theoretical prediction), they are very close in the UV range (see Fig.12).A further comparison with other clusters shows a similar picture for Na19, Na21, Na57, Na58(this on the other hand confirms that our data are reliable).The only exception is Na8, which is significantly lower than others.According to Ref.[11], the volume plasmon should have a higher fraction of the total area than Na20.Intuitively, the cross section in the UV region should be at least as much as that of Na20(and others).However since the Na8surface-plasmon peak is noticeably more red-shifted than the Na20one[12,13], the same may be expected for its volume plasmon, hence it would possess a lower amplitude in the UV region.

    圖12 Na20和Na92的光吸收截面的比較 Fig.12 Comparison of photoabsorption cross sections per atom of Na20 and Na92 nanocluster.In the visible range, the profiles differ a lot, but in the UV range, they are very close

    6 Conclusion

    In summary, the photoabsorption spectra reported here provide the first experimental observation of optically excited "volume plasmon" collective electronic states in metal nanocluster particles, a phenomenon unique to finite systems.

    [1] Xia C, Yin C, Kresin V V.Photoabsorption by volume plasmons in metal nanoclusters[J].Phys Rev Lett, 2009,102:156802-156805.

    [2] Dahlseid T A, Koretsky G M, Pollack S, et al.Nuclear Physics Concepts in the Study of Atomic Cluster Physics[M].Berlin :Springer, 1992.

    [3] Pollack S, Wang C R C, Kappes M M.On the optical response of Na20 and its relation to computational prediction[J].J Chem Phys, 1990 ,94:2496 -2501.

    [4] Persson J L.Dissertation[D].Los Angeles:University of California, 1991.

    [5] Chandezon F, Bjornholm S, Borggreen J.Electronic shell energies and deformations in large sodium clusters from evaporation spectra[J].Phys Rev B, 1997 ,55;5485-5490.

    [6] Brechignac C, Cahuzac P, Carlier F,et al.Ionization vs.neutralization in alkali-atom clusters[J] J Phys II France, 1992 ,2:971-983 .

    [7] Kresin V V.Collective resonances and response properties of electrons in metal clusters[J].Phys Rep, 1992 ,220: 1-52 .

    [8] Frank O, Rost J M.From collectivity to the single-particle picture in the photoionization of clusters[J].Phys Rev A, 1999, 60:392-397 .

    [9] Tikhonov G, Kasperovich V, Wong K.A measurement of the polarizability of sodium clusters[J].Phys Rev A, 2001, 64: 063202-063206.

    [10] Kim Y H, Tanner D B.Far-infrared absorption by aluminum small particles[J].Phys Rev B, 1989, 39: 3585-3589.

    [11] Brack M.The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches[J].Rev Mod Phys, 1993, 65: 677-732.

    [12] Selby K, Vollmer M, Masui J,et al.Surface plasma resonances in free metal clusters[J].Phys Rev B, 1989, 40: 5417-5427.

    [13] Pollack S, Wang C R C, Kappes M M.On the optical absorption spectrum of Na2Cl[J].Chem Phys Lett, 1990, 175: 209-215.

    猜你喜歡
    吸收截面光吸收示意圖
    臭氧253.65 nm吸收截面系數(shù)變化對中國環(huán)境空氣質(zhì)量達標(biāo)的影響
    先畫示意圖再解答問題
    雪花狀冰晶的毫米波散射特性
    黔西南州旅游示意圖
    NO氣體紫外差分吸收截面的測量
    多元稀土硼化物Ce1-xNdxB6的制備及性能研究*
    功能材料(2016年1期)2016-05-17 03:38:24
    鑲嵌納米晶硅的氧化硅薄膜微觀結(jié)構(gòu)調(diào)整及其光吸收特性
    兩張圖讀懂“青年之聲”
    中國共青團(2015年7期)2015-12-17 01:24:38
    處理NaCs光解離問題的兩種方案比較
    Photoabsorp tion of Na n C lusters and Vo lum e P lasm on:Theory Rev iew
    色视频在线一区二区三区| 丝袜在线中文字幕| 人妻少妇偷人精品九色| 熟女人妻精品中文字幕| 三级国产精品片| 久久久精品区二区三区| 欧美3d第一页| 乱人伦中国视频| 欧美变态另类bdsm刘玥| 午夜视频国产福利| 日韩,欧美,国产一区二区三区| 亚洲久久久国产精品| 欧美日韩综合久久久久久| 欧美日韩综合久久久久久| 在线看a的网站| 波野结衣二区三区在线| 五月开心婷婷网| 国产精品一二三区在线看| 王馨瑶露胸无遮挡在线观看| 欧美日韩视频高清一区二区三区二| 黄色怎么调成土黄色| 美女福利国产在线| 人妻人人澡人人爽人人| 99久久精品国产国产毛片| 一级黄片播放器| 精品99又大又爽又粗少妇毛片| 日韩视频在线欧美| 精品少妇黑人巨大在线播放| 免费观看av网站的网址| 久久99蜜桃精品久久| 亚洲综合色惰| 精品第一国产精品| 一本久久精品| 欧美国产精品va在线观看不卡| 丰满饥渴人妻一区二区三| videos熟女内射| 国产精品国产av在线观看| 国产免费现黄频在线看| 99精国产麻豆久久婷婷| 99精国产麻豆久久婷婷| 男女免费视频国产| 边亲边吃奶的免费视频| 波多野结衣一区麻豆| 亚洲精品色激情综合| 黄片播放在线免费| av不卡在线播放| 婷婷成人精品国产| 天天影视国产精品| 国产成人精品福利久久| 纵有疾风起免费观看全集完整版| 观看av在线不卡| 精品久久国产蜜桃| 国产免费视频播放在线视频| 老司机亚洲免费影院| 国产精品一二三区在线看| 免费黄频网站在线观看国产| 久久久精品免费免费高清| 国产成人精品在线电影| 午夜日本视频在线| 中文字幕人妻熟女乱码| av免费观看日本| 高清av免费在线| 日本av手机在线免费观看| 男女高潮啪啪啪动态图| 久久久久人妻精品一区果冻| 啦啦啦中文免费视频观看日本| 一区二区三区乱码不卡18| 天堂俺去俺来也www色官网| 如何舔出高潮| 一级爰片在线观看| 国产淫语在线视频| 内地一区二区视频在线| 欧美成人精品欧美一级黄| 亚洲精品国产av蜜桃| 国产欧美日韩一区二区三区在线| 水蜜桃什么品种好| 超碰97精品在线观看| 狠狠精品人妻久久久久久综合| 久久久久久人人人人人| 亚洲人成网站在线观看播放| 欧美xxⅹ黑人| 免费人妻精品一区二区三区视频| 啦啦啦在线观看免费高清www| 欧美性感艳星| 中文字幕精品免费在线观看视频 | 熟妇人妻不卡中文字幕| 久热这里只有精品99| 高清视频免费观看一区二区| 人成视频在线观看免费观看| 国产一区二区三区av在线| 一级片'在线观看视频| 中文字幕av电影在线播放| 美国免费a级毛片| 国产成人a∨麻豆精品| 最近2019中文字幕mv第一页| 日韩制服丝袜自拍偷拍| 久久精品熟女亚洲av麻豆精品| 国产精品.久久久| 如日韩欧美国产精品一区二区三区| 国产男人的电影天堂91| 99久久综合免费| 水蜜桃什么品种好| 黑人巨大精品欧美一区二区蜜桃 | 久久久久精品久久久久真实原创| 亚洲国产欧美在线一区| 看免费av毛片| av电影中文网址| 国产乱来视频区| 18+在线观看网站| 2022亚洲国产成人精品| av天堂久久9| 午夜激情av网站| 亚洲图色成人| 欧美激情 高清一区二区三区| 亚洲成人av在线免费| 国产精品成人在线| 成人国产av品久久久| 国产精品女同一区二区软件| 久久国产亚洲av麻豆专区| 国产 精品1| 黄色视频在线播放观看不卡| 18禁观看日本| a级片在线免费高清观看视频| 国产精品人妻久久久久久| 99re6热这里在线精品视频| 中文天堂在线官网| 99香蕉大伊视频| 午夜激情久久久久久久| 最近中文字幕高清免费大全6| 国产老妇伦熟女老妇高清| 如何舔出高潮| 免费看不卡的av| 91精品三级在线观看| 精品国产一区二区三区久久久樱花| 在线观看免费视频网站a站| videos熟女内射| 亚洲av综合色区一区| 精品99又大又爽又粗少妇毛片| 巨乳人妻的诱惑在线观看| 欧美激情极品国产一区二区三区 | 国产成人免费无遮挡视频| 丁香六月天网| 22中文网久久字幕| 亚洲婷婷狠狠爱综合网| 日日啪夜夜爽| 中文欧美无线码| 丝袜美足系列| 亚洲欧美成人精品一区二区| 一级毛片 在线播放| 熟女人妻精品中文字幕| 免费高清在线观看日韩| 久久久精品94久久精品| 久久精品国产亚洲av天美| 欧美xxⅹ黑人| 9色porny在线观看| 国产日韩欧美在线精品| 欧美bdsm另类| 亚洲欧美日韩另类电影网站| 久久久久久久久久人人人人人人| 成人18禁高潮啪啪吃奶动态图| 18禁观看日本| 婷婷色麻豆天堂久久| 日韩成人av中文字幕在线观看| av线在线观看网站| 2022亚洲国产成人精品| 最后的刺客免费高清国语| 80岁老熟妇乱子伦牲交| 国产麻豆69| 欧美日韩av久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 26uuu在线亚洲综合色| 亚洲国产最新在线播放| 亚洲国产精品999| 搡女人真爽免费视频火全软件| 成年人午夜在线观看视频| 国产伦理片在线播放av一区| 在线观看三级黄色| 曰老女人黄片| 国产av一区二区精品久久| 亚洲精品一二三| 热99国产精品久久久久久7| 午夜免费观看性视频| 肉色欧美久久久久久久蜜桃| 免费观看a级毛片全部| 91精品伊人久久大香线蕉| 精品亚洲成国产av| 欧美日韩一区二区视频在线观看视频在线| 免费观看a级毛片全部| 天美传媒精品一区二区| 国产精品99久久99久久久不卡 | 国产成人91sexporn| 亚洲婷婷狠狠爱综合网| 国产亚洲精品第一综合不卡 | 在线免费观看不下载黄p国产| 国产一区二区激情短视频 | 狂野欧美激情性bbbbbb| 欧美激情极品国产一区二区三区 | 99国产精品免费福利视频| 桃花免费在线播放| 香蕉精品网在线| 欧美xxⅹ黑人| 久久午夜福利片| 久热这里只有精品99| 日韩精品有码人妻一区| 丰满饥渴人妻一区二区三| 日本免费在线观看一区| 在线观看免费高清a一片| 日韩欧美一区视频在线观看| 中国三级夫妇交换| 久久人人97超碰香蕉20202| 天天躁夜夜躁狠狠久久av| 国产免费视频播放在线视频| a级片在线免费高清观看视频| 女人精品久久久久毛片| 18禁动态无遮挡网站| 永久免费av网站大全| 亚洲欧美日韩卡通动漫| 亚洲国产精品999| 亚洲成国产人片在线观看| 三级国产精品片| 欧美日韩一区二区视频在线观看视频在线| 91精品国产国语对白视频| 在线观看免费视频网站a站| 成人国产麻豆网| 侵犯人妻中文字幕一二三四区| 久久国产精品大桥未久av| 久久影院123| 在线观看人妻少妇| 亚洲美女视频黄频| 久热久热在线精品观看| 亚洲精品久久久久久婷婷小说| 国产精品久久久久久av不卡| 在线精品无人区一区二区三| 欧美精品av麻豆av| 精品视频人人做人人爽| av免费在线看不卡| 熟妇人妻不卡中文字幕| 日本色播在线视频| 国产亚洲一区二区精品| 中文天堂在线官网| 免费日韩欧美在线观看| 精品国产一区二区三区久久久樱花| 久久综合国产亚洲精品| 人妻 亚洲 视频| 色婷婷av一区二区三区视频| 亚洲精品国产av蜜桃| 亚洲精品日韩在线中文字幕| 国产精品嫩草影院av在线观看| 久久久久国产网址| 国产精品一区二区在线不卡| 精品一品国产午夜福利视频| 女人精品久久久久毛片| 女的被弄到高潮叫床怎么办| 街头女战士在线观看网站| 国产精品嫩草影院av在线观看| 国产精品.久久久| av天堂久久9| 天天影视国产精品| 我的女老师完整版在线观看| 天天躁夜夜躁狠狠躁躁| 日本色播在线视频| 久久精品久久久久久久性| 男女下面插进去视频免费观看 | a级毛片在线看网站| 丝袜脚勾引网站| 看免费成人av毛片| 在线观看美女被高潮喷水网站| 亚洲国产看品久久| 国产成人91sexporn| 欧美3d第一页| 欧美亚洲 丝袜 人妻 在线| 大香蕉97超碰在线| 国产av码专区亚洲av| av国产精品久久久久影院| 国产精品国产av在线观看| 亚洲精品色激情综合| 免费黄网站久久成人精品| 国产精品偷伦视频观看了| 久久久久精品性色| 亚洲欧美一区二区三区黑人 | 极品少妇高潮喷水抽搐| 少妇人妻 视频| 免费看av在线观看网站| 天天操日日干夜夜撸| 性色avwww在线观看| www.av在线官网国产| 亚洲精品国产色婷婷电影| 国产精品麻豆人妻色哟哟久久| 日韩中字成人| 蜜桃国产av成人99| 亚洲色图 男人天堂 中文字幕 | 大话2 男鬼变身卡| 2021少妇久久久久久久久久久| 日韩熟女老妇一区二区性免费视频| 久久影院123| 秋霞伦理黄片| 日本猛色少妇xxxxx猛交久久| 老女人水多毛片| 久久久久精品久久久久真实原创| 午夜精品国产一区二区电影| 美女主播在线视频| 久久久久久久大尺度免费视频| 一区二区三区精品91| 人妻少妇偷人精品九色| 男的添女的下面高潮视频| 一区二区三区乱码不卡18| 成人免费观看视频高清| 啦啦啦视频在线资源免费观看| 亚洲性久久影院| 激情五月婷婷亚洲| 日韩欧美一区视频在线观看| 国国产精品蜜臀av免费| 少妇的逼水好多| 午夜激情久久久久久久| 国产淫语在线视频| 色哟哟·www| 老女人水多毛片| www.色视频.com| 自线自在国产av| 中文字幕人妻熟女乱码| 国产欧美日韩一区二区三区在线| 26uuu在线亚洲综合色| 婷婷成人精品国产| 99香蕉大伊视频| 亚洲精品456在线播放app| 亚洲av国产av综合av卡| a级毛色黄片| 日韩人妻精品一区2区三区| 中文乱码字字幕精品一区二区三区| 中文字幕另类日韩欧美亚洲嫩草| 久久国内精品自在自线图片| 男女免费视频国产| 国产精品久久久久久精品电影小说| 亚洲第一区二区三区不卡| 午夜老司机福利剧场| 女人久久www免费人成看片| 视频中文字幕在线观看| 99re6热这里在线精品视频| 精品第一国产精品| 十八禁网站网址无遮挡| 亚洲精品av麻豆狂野| 久久久久久久久久成人| 精品少妇久久久久久888优播| 亚洲精华国产精华液的使用体验| 国产高清国产精品国产三级| 久久亚洲国产成人精品v| 黑人猛操日本美女一级片| 亚洲国产看品久久| 国产精品欧美亚洲77777| 精品一品国产午夜福利视频| 激情五月婷婷亚洲| 中国美白少妇内射xxxbb| 激情五月婷婷亚洲| 免费在线观看完整版高清| 亚洲av电影在线观看一区二区三区| 午夜视频国产福利| 亚洲欧洲精品一区二区精品久久久 | 久久精品国产自在天天线| 妹子高潮喷水视频| 街头女战士在线观看网站| 国产精品一二三区在线看| av在线观看视频网站免费| 一边摸一边做爽爽视频免费| 国产精品成人在线| 久久久久久人人人人人| 精品一区二区三区四区五区乱码 | av免费观看日本| 黄色 视频免费看| 成人黄色视频免费在线看| 另类精品久久| 婷婷色综合大香蕉| 欧美成人午夜免费资源| 色吧在线观看| 夜夜爽夜夜爽视频| 男女高潮啪啪啪动态图| 国产成人一区二区在线| 久久99热这里只频精品6学生| 久久久久久久久久成人| 国产成人免费无遮挡视频| 日韩熟女老妇一区二区性免费视频| 午夜福利视频精品| 色网站视频免费| 日韩免费高清中文字幕av| 国产熟女欧美一区二区| 美女国产高潮福利片在线看| 婷婷色麻豆天堂久久| 国产乱来视频区| 两性夫妻黄色片 | 这个男人来自地球电影免费观看 | 久久久久网色| 亚洲av国产av综合av卡| 欧美亚洲日本最大视频资源| 26uuu在线亚洲综合色| 内地一区二区视频在线| 亚洲一级一片aⅴ在线观看| 免费少妇av软件| 2018国产大陆天天弄谢| 18禁国产床啪视频网站| www.熟女人妻精品国产 | 国产一区亚洲一区在线观看| www.熟女人妻精品国产 | 十八禁高潮呻吟视频| 最新的欧美精品一区二区| 99久久综合免费| 久久久久国产网址| 视频中文字幕在线观看| 精品视频人人做人人爽| 在线观看免费日韩欧美大片| 亚洲av免费高清在线观看| 青春草视频在线免费观看| 哪个播放器可以免费观看大片| 亚洲五月色婷婷综合| 交换朋友夫妻互换小说| 一本大道久久a久久精品| 尾随美女入室| 人人妻人人澡人人看| 亚洲成人一二三区av| 午夜福利在线观看免费完整高清在| 国产日韩一区二区三区精品不卡| 国产爽快片一区二区三区| 男人操女人黄网站| 一二三四中文在线观看免费高清| 亚洲欧美色中文字幕在线| 国产麻豆69| 香蕉精品网在线| 纵有疾风起免费观看全集完整版| 精品卡一卡二卡四卡免费| 国产精品人妻久久久久久| 免费av中文字幕在线| 黑人巨大精品欧美一区二区蜜桃 | 婷婷色综合www| videosex国产| 激情五月婷婷亚洲| 亚洲丝袜综合中文字幕| av又黄又爽大尺度在线免费看| 欧美成人午夜精品| 午夜福利在线观看免费完整高清在| 国产成人精品福利久久| 欧美国产精品一级二级三级| 成人综合一区亚洲| 国产一区二区在线观看日韩| 国产无遮挡羞羞视频在线观看| 亚洲精品乱码久久久久久按摩| 精品一区二区三区视频在线| 日本-黄色视频高清免费观看| 亚洲国产最新在线播放| 夫妻性生交免费视频一级片| 国产精品女同一区二区软件| 欧美精品高潮呻吟av久久| 少妇人妻 视频| 狠狠精品人妻久久久久久综合| 一区二区三区精品91| 麻豆乱淫一区二区| 午夜福利视频精品| 欧美成人精品欧美一级黄| 中文字幕人妻丝袜制服| 777米奇影视久久| 午夜福利视频在线观看免费| 少妇人妻 视频| 久久久久久久国产电影| 国产精品成人在线| 最后的刺客免费高清国语| 国产一区二区激情短视频 | 日本av免费视频播放| 国产精品国产三级国产专区5o| 亚洲精品日韩在线中文字幕| 亚洲精品日本国产第一区| 大香蕉久久网| 久久人人爽av亚洲精品天堂| 秋霞伦理黄片| 黑人高潮一二区| 巨乳人妻的诱惑在线观看| 99香蕉大伊视频| 人妻系列 视频| 亚洲一码二码三码区别大吗| 亚洲 欧美一区二区三区| 欧美人与善性xxx| 久久综合国产亚洲精品| 国产不卡av网站在线观看| 久久久久人妻精品一区果冻| 考比视频在线观看| 日韩三级伦理在线观看| 在线观看一区二区三区激情| 99久久中文字幕三级久久日本| 狠狠精品人妻久久久久久综合| 国产国语露脸激情在线看| 狠狠精品人妻久久久久久综合| 成人黄色视频免费在线看| 黄色视频在线播放观看不卡| 日韩av不卡免费在线播放| 亚洲欧美一区二区三区国产| 满18在线观看网站| 女性被躁到高潮视频| 边亲边吃奶的免费视频| 丝袜脚勾引网站| 中文天堂在线官网| 日韩免费高清中文字幕av| 精品国产一区二区三区久久久樱花| 在线观看免费高清a一片| 看十八女毛片水多多多| 视频中文字幕在线观看| 国产一区二区三区综合在线观看 | 中国美白少妇内射xxxbb| 久久久久人妻精品一区果冻| 亚洲国产毛片av蜜桃av| h视频一区二区三区| 精品一区二区三区四区五区乱码 | 青春草国产在线视频| 大香蕉久久成人网| 国产一级毛片在线| 26uuu在线亚洲综合色| 九九爱精品视频在线观看| 日本vs欧美在线观看视频| 久久久a久久爽久久v久久| 国产一区亚洲一区在线观看| 亚洲丝袜综合中文字幕| 国产高清国产精品国产三级| 亚洲成av片中文字幕在线观看 | 国产欧美另类精品又又久久亚洲欧美| 国产成人精品一,二区| 免费久久久久久久精品成人欧美视频 | 韩国av在线不卡| 亚洲av中文av极速乱| 另类精品久久| 国产一区二区三区av在线| 99热6这里只有精品| 成人毛片a级毛片在线播放| 成年人午夜在线观看视频| 日本免费在线观看一区| 丝袜美足系列| 国产成人精品在线电影| 26uuu在线亚洲综合色| 大片免费播放器 马上看| 九草在线视频观看| 亚洲成人手机| 久久国产精品大桥未久av| 婷婷色综合www| 22中文网久久字幕| 青春草国产在线视频| 69精品国产乱码久久久| 亚洲国产成人一精品久久久| 国产极品粉嫩免费观看在线| 久久精品国产亚洲av天美| 色吧在线观看| 午夜福利乱码中文字幕| 久久影院123| 亚洲精品美女久久av网站| 久久韩国三级中文字幕| 国产精品一区二区在线观看99| 午夜福利影视在线免费观看| av网站免费在线观看视频| 99久久精品国产国产毛片| 黄色一级大片看看| 精品少妇久久久久久888优播| 亚洲成人av在线免费| 国内精品宾馆在线| 成年美女黄网站色视频大全免费| 亚洲一级一片aⅴ在线观看| av在线老鸭窝| 一级a做视频免费观看| 国产精品国产av在线观看| 免费大片18禁| 亚洲中文av在线| 又黄又粗又硬又大视频| 成年美女黄网站色视频大全免费| 国产黄色视频一区二区在线观看| 久久99精品国语久久久| 国产乱来视频区| 亚洲色图 男人天堂 中文字幕 | 亚洲,欧美精品.| av在线播放精品| 一级毛片黄色毛片免费观看视频| 亚洲精品日本国产第一区| 亚洲精品,欧美精品| 18禁动态无遮挡网站| 日韩中文字幕视频在线看片| 亚洲欧美成人精品一区二区| 久久韩国三级中文字幕| 成年美女黄网站色视频大全免费| 国产 精品1| 久久99精品国语久久久| 熟妇人妻不卡中文字幕| 国产男人的电影天堂91| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美国产精品一级二级三级| 精品少妇黑人巨大在线播放| 国产在视频线精品| 边亲边吃奶的免费视频| 日韩一区二区三区影片| 欧美bdsm另类| 久久久久久久亚洲中文字幕| 久久ye,这里只有精品| 亚洲人成77777在线视频| 人妻少妇偷人精品九色| 国产一区二区在线观看日韩| 夜夜爽夜夜爽视频| 搡老乐熟女国产| 久久国产精品大桥未久av| 国产片特级美女逼逼视频| 街头女战士在线观看网站| 日日啪夜夜爽| 国国产精品蜜臀av免费| 大香蕉久久网| 美女国产高潮福利片在线看| 亚洲美女黄色视频免费看| 极品少妇高潮喷水抽搐| 91久久精品国产一区二区三区| 精品一区二区三卡| 人人妻人人添人人爽欧美一区卜| 久久女婷五月综合色啪小说| 午夜激情av网站| 精品国产乱码久久久久久小说| 男女无遮挡免费网站观看| 国产精品女同一区二区软件| 人体艺术视频欧美日本|