羅 勇
(吉首大學(xué) 師范學(xué)院,湖南 吉首 416000)
本文考慮如下分式半無限規(guī)劃:
s.t.h(x,u)≤0,x∈X0,u∈U,
Δ={i|h(x,ui)≤0,x∈X0,ui∈U},U*={ui∈U|h(x,ui)≤0,x∈X0,i∈Δ}為U的任意可數(shù)子集.Λ={μi|μi≥0,i∈Δ,且僅有有限個(gè)μi≠0},
對(duì)于分式半無限規(guī)劃問題(FP),文獻(xiàn)[1]對(duì)可微的函數(shù)引入了Bε-不變凸、Bε-不變擬凸和Bε-不變偽凸函數(shù)等概念,推廣了文獻(xiàn)[2-4]定義的不變凸函數(shù)概念,并在這些凸性下,獲得了(FP)的一些ε-最優(yōu)性充分條件.
本文對(duì)文獻(xiàn)[1]定義的Bε-不變凸、Bε-不變擬凸和Bε-不變偽凸函數(shù)等概念進(jìn)行推廣,定義了非光滑的Bε-不變凸、Bε-不變擬凸和Bε-不變偽凸函數(shù)等概念,然后在這些非光滑凸性條件下獲得了(FP)的一些ε-最優(yōu)性充分條件,推廣了文獻(xiàn)[1]的相應(yīng)結(jié)果.
對(duì)于局部Lipschitz函數(shù)f(x),Clarke[ 5]曾經(jīng)給出如下廣義方向?qū)?shù)和廣義梯度概念:
定義2[ 6]稱函數(shù)F∶X0×X0×Rn→R為次線性的,若對(duì)任何x,y∈X0,有:
(i)F(x,y;z1+z2)≤F(x,y;z1)+F(x,y;z2),?z1,z2∈Rn.
(ii)F(x,y;az)=aF(x,y;z),?z∈Rn,a∈R,a≥0.
(1)
(2)
(3)
(4)
(5)
于是又由F的次線性及μi∈Λ和式(4),(5),有:
即:
(6)
類似可證明下述定理.
[1] 楊勇.Bε-不變凸分式半無限規(guī)劃的E-最優(yōu)性[J].西南大學(xué)學(xué)報(bào),2009,31(9):58-60.
[2] Jeyakumar V,Mond B.On Generalized Convex Mathematical Programming[J].J Austral Math Soc Sor B,1992,34(1):43-53.
[3] Hanson M A.On Sufficiency of the Kuhn-Tucker Condition[J].J Math Anal Appl B,1981,80:545-550.
[4] SUN Qing Ying,Ye Liu Qing.Necessary and Sufficient Conditions in Smooth Programming with Generalized Convexity[J].Chinese Quarterly Journal Mathematical,2000,15(4):33-37.
[5] Clarke F H.Optimization and nonsmooth analysis[M].New York:Wiley-Interscience,1983.
[6] Preta V.On efficiency and duality for multiobjective programs[J].Journal of Mathematical Analysis and Applications,1992,166(2):356-377.