徐 衍, 李戰(zhàn)雄, 鄧敏智, 楊 軍
(1. 蘇州大學(xué) 紡織與服裝工程學(xué)院,江蘇 蘇州 215021; 2. 中國(guó)科學(xué)院 上海有機(jī)化學(xué)研究所,上海 200032)
金屬碳化反應(yīng)是碳-碳不飽和鍵對(duì)碳金屬鍵的插入反應(yīng),該反應(yīng)在形成新的碳-碳鍵的同時(shí),還生成了新的碳金屬鍵[1]。由于格氏試劑制備方便,原料易得且反應(yīng)活性高,碳鎂化反應(yīng)已成為金屬碳化反應(yīng)的研究熱點(diǎn)之一。
碳鎂化反應(yīng)中的格氏試劑和炔(烯)烴易得、操作簡(jiǎn)單且區(qū)域選擇性好,在有機(jī)合成中有著廣泛的用途[2~5]。早在1948年Fuson和Porter[6~9]就報(bào)道了烯烴的碳鎂化反應(yīng)。簡(jiǎn)單的有機(jī)鎂化合物(如格氏試劑)對(duì)分子間的碳-碳不飽和鍵的加成是很難進(jìn)行的,而當(dāng)反應(yīng)在分子內(nèi)發(fā)生時(shí)則較容易進(jìn)行[10~16]。如Kandil和Dessy[11]報(bào)道的炔烴分子內(nèi)碳鎂化反應(yīng),1經(jīng)過(guò)碳鎂化生成烯基鎂碘化鎂,再經(jīng)過(guò)水解生成4(Scheme 1)。
隨著研究的不斷深入,有機(jī)鎂化合物對(duì)碳-碳不飽和鍵的加成反應(yīng)的速度緩慢限制了其發(fā)展。從上個(gè)世紀(jì)50年代至今,化學(xué)家們發(fā)展了一系列的方法來(lái)提高有機(jī)鎂化合物與碳-碳不飽和鍵反應(yīng)過(guò)程中的活性,主要途徑可以分為三個(gè)方面:(1)添加過(guò)渡金屬催化劑來(lái)提高反應(yīng)活性;(2)利用帶有高活性的醇、胺等官能團(tuán)化的烯(炔)烴底物進(jìn)行反應(yīng);(3)利用帶有活潑的有機(jī)鎂化合物進(jìn)行反應(yīng)。在這三種方法中,添加過(guò)渡金屬催化劑來(lái)提高碳鎂化反應(yīng)活性是最簡(jiǎn)明有效的方法。該法不僅能提高反應(yīng)活性,而且還可很好的進(jìn)行區(qū)域選擇性調(diào)控。
本文綜述了過(guò)渡金屬(鋯、鐵、銅、錳)催化的碳鎂化反應(yīng)以及該反應(yīng)在不同底物、不同反應(yīng)條件下產(chǎn)物的區(qū)域或立體選擇性,并介紹了碳鎂化反應(yīng)在有機(jī)合成中的應(yīng)用。
Scheme1
Scheme2
R=H, yield 70%, 9∶10=95 ∶5; R=Me, yield 80%, 9∶10=11 ∶89
Scheme3
R=H, yield 75%, 12∶13>99 ∶ 1; R=Me, yield 65%, 12∶13=97 ∶3
R=H, yield 55%, 15∶16=85 ∶ 15; R=Me, yield 38%, 15∶16=65 ∶35
Scheme4
最早的鋯催化烯烴的碳鎂化反應(yīng)是由Dzhemilev[17~19]報(bào)道的,此后Hoveyda等[20~31]對(duì)鋯催化普通烯烴的碳鎂化反應(yīng)進(jìn)行了較系統(tǒng)的研究,于1991年[20]報(bào)道了在鋯試劑催化下普通烯烴與格氏試劑的碳鎂化反應(yīng)(Scheme 2)。該反應(yīng)中格氏試劑的碳負(fù)離子進(jìn)攻5的2-位后形成烷基氯化鎂中間體,再與親電試劑反應(yīng),以大于99 ∶1的區(qū)域選擇性得到產(chǎn)物。
碳鎂化反應(yīng)的區(qū)域選擇性多有文獻(xiàn)報(bào)道,而有關(guān)立體選擇性的報(bào)道相對(duì)較少。Hoveyda等[20]研究了鋯催化烯丙醇(醚)與格氏試劑的碳鎂化反應(yīng)(Scheme 3)。在該此反應(yīng)中,當(dāng)?shù)孜锸窍┍紩r(shí)所得產(chǎn)物以9為主;而當(dāng)?shù)孜锸窍┍褧r(shí)所得產(chǎn)物以10為主。其原因是,在反應(yīng)過(guò)程中烯丙位的氧原子作為L(zhǎng)ewis堿與Mg發(fā)生了配位,由此提高了反應(yīng)的立體選擇性。
Hoveyda等[21]進(jìn)一步研究了鋯催化高烯丙醇(醚)與格氏試劑的碳鎂化反應(yīng)(Scheme 4),當(dāng)?shù)孜餅榉词礁呦┍?醚)時(shí),產(chǎn)物以反式為主,立體選擇性很好。而當(dāng)?shù)孜餅轫樖礁呦┍?醚)時(shí),立體選擇性以及產(chǎn)率都相對(duì)下降。
一般而言,對(duì)于端位含有雙鍵的分子而言,在鋯催化下發(fā)生的加成反應(yīng)中,碳負(fù)離子總是能夠選擇性較好的進(jìn)攻雙鍵的2-位,得到相應(yīng)的加成產(chǎn)物。
Nakamura等[32]報(bào)道了17在催化量鐵存在下的順式碳鎂化反應(yīng)(Scheme 5),區(qū)域選擇性好。Ready等[33]報(bào)道了鐵催化下炔醇類的順式碳鎂化反應(yīng)(Scheme 6),選擇性亦很好。格氏試劑中的碳負(fù)離子進(jìn)攻20的4-位后高區(qū)域選擇性的得到取代烯丙醇。作者也研究了其它的過(guò)渡金屬催化劑,如Co(OAc)2和Ni(acac)2也有催化活性,但在該反應(yīng)中催化活性不如鐵催化劑高。Hayashi等[34]報(bào)道了在催化量卡賓[1,3-bis-(2,6-diisopropylphenyl)imidazol-2-ylidene]存在下鐵催化的芳基格氏試劑與炔烴的碳鎂化反應(yīng)(Scheme 7)。該反應(yīng)以順式碳鎂化反應(yīng)為主,順?lè)幢葹?9 ∶11,格氏試劑中碳負(fù)離子主要進(jìn)攻23的2-位,產(chǎn)物以2-位為主,區(qū)域選擇性好。
Normant等[35]報(bào)道了在催化量銅存在下乙炔與烷基格氏試劑的順式碳鎂化反應(yīng)(Scheme 8),以較好的區(qū)域選擇性得到順式烯丙醇衍生物。Wang等[36]報(bào)道了銅催化下芳基格氏試劑對(duì)30的碳鎂化反應(yīng)(Scheme 9)。在銅催化下發(fā)生了順式碳鎂化反應(yīng)后,所得的烯基鎂中間體與磺酰亞胺加成后,以55%的收率區(qū)域選擇性較好的構(gòu)建了一個(gè)含四取代烯烴結(jié)構(gòu)的烯丙胺衍生物。
Duboudin等[37~39]對(duì)銅催化的丙炔醇及其衍生物與各種格氏試劑的碳鎂化反應(yīng)做了較系統(tǒng)的研究(Scheme 10)。格氏試劑中的碳負(fù)離子主要進(jìn)攻炔醇中的2-位,產(chǎn)物以2-位為主。該反應(yīng)是一個(gè)反式碳鎂化反應(yīng),且區(qū)域選擇性好。麻生明等[40]報(bào)道了銅催化下格氏試劑對(duì)二級(jí)末端炔丙醇的碳鎂化反應(yīng)(Scheme 11)。當(dāng)格氏試劑以THF為溶劑時(shí),得到以反式碳鎂化為主的產(chǎn)物。格氏試劑中碳負(fù)離子主要進(jìn)攻36的2-位。當(dāng)格氏試劑以甲苯為溶劑時(shí),得到順式碳鎂化為主的產(chǎn)物,格氏試劑中碳負(fù)離子主要進(jìn)攻36中的3-位,產(chǎn)物以3-位為主,兩者都有較好的區(qū)域選擇性。
由上可知,銅催化劑是碳鎂化反應(yīng)中十分重要的催化劑。銅催化的碳鎂化反應(yīng)往往應(yīng)用于炔醇類等含有活潑羥基的底物,在這一條件下發(fā)生的碳鎂化反應(yīng)大多是反式碳鎂化反應(yīng),究其原因或可歸結(jié)為炔醇中的羥基在反應(yīng)中作為路易斯堿會(huì)起到配位作用,使得格氏試劑中的碳負(fù)離子對(duì)碳-碳三鍵加成后形成的烯基負(fù)離子與醇鎂結(jié)合生成內(nèi)烷氧基烯基鎂的絡(luò)合物,穩(wěn)定性大大增加,由此促使反應(yīng)向反式碳鎂化方向進(jìn)行。
17 18 19(yield 56%~96%)
Scheme5
Scheme6
24∶25∶26=88 ∶ 11 ∶ 1
Scheme7
Scheme8
Scheme9
Scheme10
37∶38=92 ∶8 or 37∶38=7 ∶93
Scheme11
Scheme12
Scheme13
Scheme14
Scheme15
Oshima等[42~44]對(duì)錳催化的碳鎂化反應(yīng)進(jìn)行了較深入的研究,于1996年[41]報(bào)道了在催化量錳存在下烯丙基格氏試劑的碳鎂化反應(yīng)(Scheme 12)。格氏試劑中的碳負(fù)離子進(jìn)攻39的4-位碳,區(qū)域選擇性好的得到順式產(chǎn)物。1998年他們還報(bào)道[42]在催化量錳存在下苯基格氏試劑與芳基炔烴的碳鎂化反應(yīng)(Scheme 13),區(qū)域選擇性好并得到順式三取代烯烴。
除以上常用的催化劑外,還有鎳催化劑[45~48],鉻催化劑[49~51],鈦催化劑[52,53]及銀催化劑[54]等應(yīng)用于碳鎂化反應(yīng)的報(bào)道。最近,Kambe等[48]報(bào)道了鎳催化下芳基格氏試劑對(duì)45的碳鎂化反應(yīng)(Scheme 14),格氏試劑中碳負(fù)離子區(qū)域選擇性好進(jìn)攻45的2-位碳,打開(kāi)三元環(huán)后與親電試劑反應(yīng),以良好收率得到產(chǎn)物47。
Oshima等[51]報(bào)道了鉻催化下苯基格氏試劑對(duì)48的碳鎂化反應(yīng)(Scheme 15),高選擇性的得到了順式碳鎂化產(chǎn)物;Otsuka等[52]報(bào)道了鈦催化下格氏試劑對(duì)50的碳鎂化反應(yīng)(Scheme 16),格氏試劑中的碳負(fù)離子進(jìn)攻51的4-位碳,區(qū)域選擇性好;Kambe等[54]報(bào)道了銀催化下格氏試劑對(duì)端位炔的碳鎂化反應(yīng)(Scheme 17),格氏試劑中碳負(fù)離子進(jìn)攻炔烴的端位碳,區(qū)域選擇性好的得到順式產(chǎn)物。
由于過(guò)渡金屬催化劑催化的碳鎂化反應(yīng)有很好的區(qū)域選擇性,因此碳鎂化反應(yīng)可應(yīng)用于有機(jī)合成中。Yoshida等[55]利用銅催化的碳鎂化反應(yīng)方便的合成了類Tamoxifen(Scheme 18),區(qū)域選擇性好的順式碳鎂化反應(yīng)在此合成中是關(guān)鍵步驟;Reider等[56]利用鎳催化的碳鎂化反應(yīng)高收率、高選擇性的合成了CDP840(Scheme 19); Hayashi等[34]利用鐵催化的碳鎂化反應(yīng)合成了四取代的烯烴(Scheme 20),區(qū)域選擇性好的得到順式碳鎂化產(chǎn)物,以良好收率得到四取代烯烴;Miginiac等[53]利用鈦催化的碳鎂化反應(yīng)合成了一系列的天然萜類化合物(Scheme 21),烯丙基格氏試劑與異戊二烯發(fā)生插入反應(yīng),區(qū)域選擇性好。
Scheme16
Scheme17
Scheme18
Scheme19
Scheme20
Scheme21
綜上所述,在過(guò)渡金屬催化下的格氏試劑可與烯烴、炔烴(炔醇)等含有碳-碳不飽和鍵的化合物發(fā)生加成反應(yīng),反應(yīng)的區(qū)域選擇性或立體選擇性可由所選擇的過(guò)渡金屬催化劑所調(diào)控,碳鎂化反應(yīng)后所得中間體為新的格氏試劑,可與多種親電試劑繼續(xù)發(fā)生反應(yīng)。當(dāng)該反應(yīng)用于有機(jī)合成時(shí),可一步構(gòu)建多取代的烯烴,烯丙醇,烯丙胺等重要合成中間體,可以預(yù)期該反應(yīng)的應(yīng)用將越來(lái)越廣泛。隨著金屬有機(jī)化學(xué)研究的不斷進(jìn)展,新的催化劑和配體不斷涌現(xiàn),在這些新的催化條件下,研究碳鎂化反應(yīng)的選擇性并提高碳鎂化反應(yīng)的收率將成為研究的熱點(diǎn),同時(shí)如何將該反應(yīng)更好的應(yīng)用于全合成也將是一個(gè)十分重要的研究課題。
[1] 麻生明. 金屬參與的現(xiàn)代有機(jī)合成反應(yīng)[M].廣州:廣東科技出版社,2001.
[2] Wakefield B J. Organomagnesium Methods in Organic Synthesis[M].Asevier,London,1995.
[3] Marek I, Chinkov N, Banon-Tenne D. In Metal-catalyzed Cross-Coupling Reactions[M].2nd edn.Chap.7,Wiley-VCH,Weinheim,2004.
[4] Fallis A G, Forgione P. Metal mediated carbometallation of alkynes and alkenes containing adjacent heteroatoms[J].Tetrahedron,2001,57:5899-5913.
[5] Fang G H, Yan Z J, Yang J Deng M Z. The first preparation of 4-substituted 1,2-oxaborol-2(5H)-ols and their palladium-catalyzed cross-coupling with aryl halides to prepare stereodefined 2,3-disubstituted allyl alcohols[J].Synthesis,2006,7:1148-1154.
[6] Fuson R C, Porter H D. The addition of Grignard reagents to the olefin,bidiphenyleneethylene[J].J Am Chem Soc,1948,70:895-897.
[7] Fuson R C, DeWald H A, Gaertner R. The addition of Grignard reagents to the dibiphenylenepolyenes[J].J Org Chem,1951,16:21-32.
[8] Fuson R C, Mumford F E. The addition of Grignard reagents to benzofulvenes[J].J Org Chem,1952,17:255-261.
[9] Fuson R C, York O Jr. The addition of Grignard reagents to 1,2,3,4-tetraphenylfulvene[J].J Org Chem,1953,18:570-574.
[10] Richey H G Jr, Rothman A M. Intramolecular cyclizations of acetylenic grignard reagents[J].Tetrahedron Lett,1968,9:1457-1460.
[11] Kandil S A, Dessy R E. Intramolecular organometal-acetylene and acetylene-acetylene interactions.Routes to benzylidenefluorene and C4ring systems[J].J Am Chem Soc,1966,88:3027-3034.
[12] Hill E A. Rearrangements in organomagnesium chemistry[J].J Organomet Chem,1975,91:123-271.
[13] Felkin H, Umpleby J D, Hagaman E,etal. Duality of mechanism in the addition of allylic Grignard reagents to carbon-carbon double bonds.The stereoselective cyclisation of 2,7-octadienylmagnesium bromide tocis-(2-vinylcyclopentyl)-methylmagnesium bromide[J].Tetrahedron Lett,1972,13:2285-2288.
[14] Oppolzer W, B?ttig K. Total synthesis of (±)-Δ9(12)-capnellene via iterative intramolecular type-I-“Magnesium-ene” reactions[J].Tetrahedron Lett,1982,23:4669-4672.
[15] Oppolzer W, Pitteloud R. Short and selective total synthesis of (±)-khusimone via an intramolecular type Ⅱ “magnesium-ene” reaction[J].J Am Chem Soc,1982,104:6478-6479.
[16] Oppolzer W, Pitteloud R, Strauss H F. Intramolecular type-Ⅱ “metallo-ene” reactions of (2-alkenylallyl)magnesium chlorides:regio- and stereochemical studies[J].J Am Chem Soc,1982,104:6476-6477.
[17] Dzhemilev U M, Vostrikova O S, Sultanov R M. New reationα-olefins with diethylmagnesium catalyzed by biscyclopenta dienylzircnium chloride[J].Chem Abstr,1983,98:160304d.
[18] Dzhemilev U M, Vostrikova O S, Sultanov R M,etal. Regioselective carbomagnesiation of functionally substituted mono-,di- and tri-olefins catalyzed by Cp2ZrCl2[J].Chem Abstr,1985,102:165971e.
[19] Dzhemilev U M, Vostrikova O S. Some novelties in olefin carbometallation assisted by alkyl-magnesium and -aluminium derivatives and catalyzed by zirconium and titanium complexes[J].J Organomet Chem,1985,285:43-51.
[20] Hoveyda A H, Xu Z M. Stereoselective formation of carbon-carbon bonds through metal catalysis.The zirconium-catalyzed ethylmagnesation reaction[J].J Am Chem Soc,1991,113:5079-5080.
[21] Hoveyda A H, Xu Z M, Morken J P,etal. Stereoselective zirconium-catalyzed ethylmagnesation of homoallylic alcohols and ethers.The influence of internal Lewis bases on substrate reactivity[J].J Am Chem Soc,1991,113:8950-8952.
[22] Hoveyda A H, Morken J P, Houri A F,etal. On the mechanism of the zirconium-catalyzed carbomagnesation reaction.Efficient and selective catalytic carbomagnesiation with higher alkyls of magnesium[J].J Am Chem Soc,1992,114:6692-6697.
[23] Houri A F, Didiuk M T, Xu Z M,etal. Zirconium-catalyzed ethylmagnesation of hydroxylated terminal alkenes:A catalytic and diastereoselective carbon-carbon bond-forming reaction[J].J Am Chem Soc,1993,115:6614-6624.
[24] Hoveyda A H, Morken J P. Regio- and stereoselective carbon-carbon bond formation through transition metal catalysis.The influence of catalyst chirality on selective ethylmagnesation of chiral,nonracemic alcohols and ethers[J].J Org Chem,1993,58:4237-4244.
[25] Morken J P, Didiuk M T, Hoveyda A H. Zirconium-catalyzed asymmetric carbomagnesation[J].J Am Chem Soc,1993,115:6997-6998.
[26] Morken J P, Didiuk M T, Visser M S,etal. Zirconium-catalyzed kinetic resolution of pyrans[J].J Am Chem Soc,1994,116:3123-3124.
[27] Houri A F, Xu Z M, Cogan D A,etal. Cascade catalysis in synthesis.An enantioselective route to sch 38516(and fluvirucin B1) aglycon macrolactam[J].J Am Chem Soc,1995,117:2943-2944.
[28] Visser M S, Hoveyda A H. Zirconocene-catalyzed kinetic resolution of dihydrofurans[J].Tetrahedron,1995,51:4383-4394.
[29] Visser M S, Harrity J P A, Hoveyda A H. Zirconium-catalyzed kinetic resolution of cyclic allylic ethers.An enantioselective route to unsaturated medium ring systems[J].J Am Chem Soc,1996,118:3779-3780.
[30] Heron N M, Adams J A, Hoveyda A H. Stereoselective heteroatom-assisted allylic alkylation of cyclic ethers with Grignard reagents.A convenient route to enantiomerically pure carbocycles[J].J Am Chem Soc,1997,119:6205-6206.
[31] Adams J A, Heron N M, Koss A M,etal. Stereoselective chelate-controlled addition of Grignard reagents to unsaturated medium-ring heterocycles[J].J Org Chem,1999,64:854-860.
[32] Nakamura M, Hirai A, Nakamura E. Iron-catalyzed olefin carbometalation[J].J Am Chem Soc,2000,122:978-979.
[33] Zhang D H, Ready J M. Iron-catalyzed carbometalation of propargylic and homopropargylic alcohols[J].J Am Chem Soc,2006,128:15050-15051.
[34] Yamagami T, Shintani R, Shirakawa E,etal. Iron-catalyzed arylmagnesiation of aryl(alkyl)acetylenes in the presence of anN-heterocyclic carbene ligand[J].Org Lett,2007,9:1045-1048.
[35] Alexakis A, Cahiez G, Normant J F. Organocuivreux vinyliques:Ⅸ.Addition de derives organiques du cuivre sur l′acetylene[J].J Organomet Chem,1979,177:293-298.
[36] Xie M H, Sun Y, Zhang W,etal. Stereoselective synthesis of allylic amines by one-pot tandem reaction of acetylenic sulfone,Grignard reagent,andN-tosylimine[J].Synth Commun,2008,38:3785-3796.
[37] Jousseaume B, Duboudin J G. Reactions d′addition d′organomagnesiens aux alcoolsα-acetyleniques[J].J Organomet Chem,1975,91:C1-C3.
[38] Duboudin J G, Jousseaume B. Reactifs de grignard vinyliquesγ-fonctionnels:Ⅰ.Reactivite des organomagnesiens vis-a-vis d′alcoolsα-acetyleniques en presence d′halogenures cuivreux[J].J Organomet Chem,1979,168:1-11.
[39] Duboudin J G, Jousseaume B. Synthesis and intramolecular cyclisation of gem vinylic di-Grignard reagents[J].Synth Commum,1979,9:53-56.
[40] Lu Z, Ma S M. Studies on the Cu(Ⅰ)-catalyzed regioselective anti-carbometallation of secondary terminal propargylic alcohols[J].J Org Chem,2006,71:2655-2660.
[41] Ma S, Lu Z. Copper(Ⅰ)-mediated highly stereoselective syn-carbometalation of secondary or tertiary propargylic Alcohols with primary Grignard reagents in toluene with a high linear regioselectivity[J].Adu Synth Catal,2006,348:1894-1898.
[42] Okada K, Oshima K, Utimoto K. Allylmagnesation and diallylation of acetylenic compounds catalyzed by manganese salts[J].J Am Chem Soc,1996,118:6076-6077.
[43] Yorimistu H, Tang J, Okada K,etal. Manganese-catalyzed phenylation of acetylenic compounds with a phenyl Grignard reagent[J].Chem Lett,1998:11-12.
[44] Nishimae S, Inoue R, Shinokubo H,etal. Manganese(Ⅱ) chloride-catalyzed alkylmagnesation of 2-alkynylphenyl[J].Chem Lett,1998:785-786.
[45] Duboudin J G, Jousseaume B. Nouvelle méthode d′obtention sélective d′alcènes trisubstitués[J].J Organomet Chem,1972,44:C1-C3.
[46] Duboudin J G, Jousseaume B. Isomerisation thermique des bromures de diphenyl-1,2 propenylmagnesium-1(E) et (Z) en presence de complexes du nickel[J].J Organomet Chem,1975,96:C47-C49.
[47] Duboudin J G, Jousseaume B. Reactivite des organomagnesiens vis-a-vis de composes acetyleniques en presence du complexe de nickel (PPh3)2NiCl2[J].J Organomet Chem,1978,162:209-222.
[48] Terao J, Tomita M, Singh S P,etal. Nickel-catalyzed regioselective carbomagnesation of methylenecyclopropanes through a site-selective carbon-carbon bond cleavag[J].Angew Chem Int Ed,2010,49:144-147.
[49] Nishikawa T, Kakiya H, Shinokubo H,etal. Novel [2+2+2] annulation of 1,6-diynes mediated by methallylchromate or methallylmagnesium chloride under CrCl3catalysis[J].J Am Chem Soc,2001,123:4629-4630.
[50] Nishikawa T, Shinokubo H, Oshima K. Cyclization of 1,6-enynes with allylic chromate species[J].Org Lett,2002,4:2795-2797.
[51] Murakami K, Ohmiya H, Yorimitsu H,etal. Chromium-catalyzed arylmagnesiation of alkynes[J].Org Lett,2007,9:1569-1571.
[52] Akutagawa S, Otsuka S. Metal-assisted terpenoid syn thesis.Ⅰ.Regioselective isoprene insertion into an allyl-magnesium bond and the applications to synthesis of natural terpenoids[J].J Am Chem Soc,1975,97:6870-6871.
[53] Barbot F, Miginiac P. Sur la reactivite des organomagnesiens derivant de l′addition d′organomagnesiens allyliques sur l′isopren[J].J Organomet Chem,1978,145:269-276.
[54] Fujii Y, Terao J, Kambe N. Silver-catalyzed carbomagnesiation of terminal aryl and silyl alkynes and enynes in the presence of 1,2-dibromoethane[J].Chem Commun,2009:1115-1117.
[55] Itami K, Kamei T, Yoshida J. Diversity-oriented synthesis of tamoxifen-type tetrasubstituted olefins[J].J Am Chem Soc,2003,125:14670-14671.
[56] Houpis I N, Lee J, Dorziotis I,etal. Ni-catalyzed nucleophilic conjugate additions of Grignard and organozincate reagents to substituted 4-vinylpyridines.General synthesis of phosphodiesterase Ⅳ inhibitors[J].Tetrahedron,1998,54:1185-1195.