• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experiments and numerical simulations on transport of dissolved pollutants around spur dike

    2010-11-02 13:34:46LipingCHENJunchengJIANG
    Water Science and Engineering 2010年3期

    Li-ping CHEN*, Jun-cheng JIANG

    College of Urban Construction and Safety Engineering, Nanjing University of Technology,Nanjing 210009, P. R. China

    1 Introduction

    A spur dike may be defined as a structure extending outward from the bank of a stream for the purpose of deflecting the current away from the bank to protect it from erosion. Flow separation around a spur dike and circumfluence downstream occur because the streamline is compressed and velocity increases (Duan et al. 2010; Cui et al. 2008; Hua et al. 2008).Pollutant transport around the spur dike is highly three-dimensional. There is no doubt that a three-dimensional hydrodynamic water quality model is needed to simulate pollutant transport around a spur dike. Mayerle et al. (1995)and Tang et al. (2007)assumed hydrostatic pressure distribution to simulate flow in the vicinity of a spur dike. The hydrostatic pressure distribution assumption is not reliable for computation of flow fields around a spur dike because the water surface curve around a spur dike changes significantly. Wu and Yuan (2007)and Ai and Jin(2008)developed non-hydrostatic models for free surface flows. In computational fluid dynamics, the VOF (volume of fluid)method is a numerical technique for tracking and locating the free surface. The method is based on the idea of the so-called fraction function. The equation of fraction function cannot be directly solved easily, since the fraction function is discontinuous. Nevertheless, some attempts have been made. The most popular approach to the equation of fraction function is the so-called geometrical reconstruction, originating in the works of Hirt and Nichols (1981). Approaches to the geometrical reconstruction have developed rapidly (Ubbink and Issa 1999; Sussman and Puckett 2000; Francois et al. 2006;Zou and Zheng 2008; Caboussat et al. 2008; Dolbow et al. 2008; Afkhami et al. 2009; Raessi et al. 2010; Larmaei and Mahdi 2010). The VOF method was used in the simulation of a spillway tunnel (Sha et al. 2006). Fu et al. (2006)used the VOF method to calculate the flow field of Acipenser sinensis’s spawning site downstream of the Gezhouba Dam in China. A three-dimensional large eddy simulation model of unsteady hydraulic jumps and pressure fluctuations was established by adopting an improved VOF free-surface tracking method (Qin et al. 2010).

    In the VOF method, the geometrical reconstruction is inefficient. The basic differencing schemes are not good for interface flow. The reason is that the low-order scheme causes serious numerical diffusion around the interface and the high-order scheme causes unphysical oscillations. The normalized variable diagram (NVD)bounded differencing scheme was introduced by Leonard (1988). Based on NVD, the switch between the second-order upwind and the central and first-order upwind differencing (SOUCUP)(Zhu and Rodi 1991)and the combination of a second- and third-order interpolation profile applied in the context of the normalized variable formulation (STOIC)(Darwish 1993)differencing schemes were proposed. In these differencing schemes, the switch between the basic schemes causes an unsteady-state solution. Jasak et al. (1999)modified the normalized variable in terms of gradients of the dependent variable to propose the Gamma bounded differencing scheme. In the Gamma scheme, a smooth transition between upwind differencing and central differencing is realized, but the calculations for gradients of the dependent variable increase the computational cost.

    In this study, the compressive VOF scheme was developed by introducing an artificial compressive term into the VOF equation. The derivation of the three-dimensional transient compressive pollutant transport model (CPTM)is based on the compressive VOF scheme. The difference between the CPTM and the general water quality models is that the CPTM takes into account the effect of the water-air interface on pollutant transport. Based on the NVD and the cubic equation (CE), this study developed the CE bounded differencing scheme. Without reconstructing the interface, the computational efficiency of the compressive VOF with the CE differencing scheme is very high. For the calibration and validation of the CPTM, laboratory experiments were carried out in a straight rectangular flume with a non-submerged spur dike.On the basis of comparison between the simulations and experiments, the flow structure and pollutant transport features around a non-submerged spur dike were obtained.

    2 Model development

    2.1 Continuity equation and momentum equation of computational cell

    The VOF method offers ideas that can be used in two-phase flows. The fraction of volume occupied by water in a computational cell is usually denoted by α. If α=1, the liquid phase, i.e. water, occupies the computational cell. If α=0, the gas phase, i.e. air,occupies the computational cell. If 0<α<1, the computational cell is partially filled and has an air-water interface. In each computational cell, the volume fractions of all phases sum to unity. If β=1-α, the density ρ and velocity uiof the computational cell are defined as

    where ραand ρβare the densities of water and air, respectively; uαiand uβiare the velocities of water and air, respectively; and the subscript i equals to 1, 2, or 3, representing the three directions in the Cartesian coordinate system.

    The continuity equation of the computational cell is calculated according to the mass conservation theorem:

    Utilizing Eq. (1)and Eq. (2), Eq. (3)reduces to

    The momentum equations of the liquid phase and the gas phase in a computational cell are written as follows:

    where μαand μβare the turbulent dynamic viscosities of water and air, respectively; pαand pβare the pressures of water and air, respectively; and giis the gravity acceleration component. It is assumed that

    where p is the pressure of the computational cell.

    Eq. (5)is added to Eq. (6), and the momentum equation of the computational cell is formulated as

    2.2 Compressive VOF model equations

    According to the mass conservation theorem, the differential equations of α in tensor form can be written as follows:

    Utilizing Eq. (1)and Eq. (2), Eq. (10)becomes:

    2.3 Transport equation of dissolved pollutant

    The transport equation for a dissolved pollutant in water is

    where C is the concentration of the dissolved pollutant, SCis a source term for the biochemical process, Dmis the turbulent dispersion coefficient, and σCis the turbulent Schmidt number relating the turbulent diffusivity of the dissolved pollutant to the eddy viscosity νt. A value of σC=1 was used in this study.

    Utilizing Eq. (1)and Eq. (2), Eq. (12)is written as follows:

    Eq. (4), Eq. (9), Eq. (11), and Eq. (13)constitute the system of equations describing dissolved pollutant transport.

    Turbulence is accounted for by adopting the standard k-ε model (Markatos 1986). The governing equations for the turbulent kinetic energy k and the dissipation rate ε are

    3 CE differencing scheme

    The finite volume method (FVM)of discretization was applied. Free surface flow and the transport of dissolved pollutants are bounded; that is, the water and air at the free surface are immiscible and the dissolved pollutant in the water cannot pass through the water-air interface. Therefore, it is necessary to consider the boundedness of free surface flow and dissolved pollutant transport. The bounded differencing scheme based on CE was developed in this study.

    Fig. 1 Differencing schemes in NVD

    Then,

    The role of the K coefficient can be seen in Fig. 1(b). The larger the value of K, the more blending will be introduced. At the same time, the transition between UD and CD will be smoother. An upper limit on K comes from the accuracy requirement. For good resolution, K should ideally be kept within the range of 0.1 ≤K ≤0.5.

    4 Numerical simulation and experiment

    4.1 Physical model

    Simulations and a series of experiments were performed on a non-submerged spur dike in a laboratory flume. The flume was 0.4 m wide, 0.4 m deep, 14.0 m long, and had a 3 700 bed slope. The mean flow depth was 0.087 m. The spur dike was rectangular, 0.1 m long, 0.1 m high, and 0.015 m wide, and was installed in the middle of the flume. Spur dike models were angled at 60ο, 90ο, and 120οupstream in the experiments.

    The computational zone was 3.0 m long, 0.4 m wide, and 0.2 m high. The coordinates of the computational and experimental zones are shown in Fig. 2. The bottom of the flume was at z = 0. The dumping point was at x = 0.1 m and y = 0.05 m on the free surface. The sampling cross sections were at x = 1.12 m and x = 1.27 m. The sampling sites at each cross section were y = 0.01 m, y = 0.09 m, and y = 0.17 m, respectively. The heights of sampling sites were all z = 0.04 m. A laser doppler velocimeter was used to measure velocity.

    Fig. 2 Coordinates of computational and experimental zones

    4.2 Conditions for simulations

    The length and height of the computational zone were set at 3.0 m and 0.2 m, respectively.Through multiple computations, it was found that the length of the vortex behind the spur dike increased only 0.2%, while there was a 40% increase in the length of the computational zone.The increase of the height of the computational zone had no influence on the water surface curve.

    The computational zone was anomalous because of the existence of the spur dike. In the mesh generation, the computational zone was divided into five blocks as shown in Fig. 3, and the structure grid was adopted. The numbers of nodes in x, y, and z directions were 120, 27, and 40, respectively.

    Fig. 3 Mesh around spur dike

    As for boundary conditions, the top and bottom of the computational zone were regarded as atmospheric pressure and a no-slip boundary, respectively. The inlet boundary was composed of the water flow inlet and air inlet. The water discharge was 0.003 6 m3/s at the inlet. The air velocity at the inlet was set at zero. The k and ε at the inlet boundary were evaluated according to empirical formulas. The gradients of all physical quantities at outlet cross sections were assumed to be zero.

    The relative tolerance limits the relative improvement from initial to final solution. In the experiments in this study, the relative tolerances for all physical quantities were set at 10-5to force the solution to converge.

    4.3 Results and analysis

    For the physical model, the computer used in this study was the dual-core Intel Pentium 4 CPU (3.00 GHz). The computational times for one second of flow with the CE differencing scheme and the Gamma differencing scheme are, respectively, 568 s and 694 s. The computational efficiency of the CE differencing scheme is higher than for the Gamma differencing scheme.

    The calculated velocity fields at plane z = 0.02 m around spur dikes angled at 60ο(Case 1),90ο(Case 2)and 120ο(Case 3)are shown in Fig. 4. It can be seen that there is a large vortex behind each spur dike.

    Fig. 4 Velocity distribution at plane z = 0.02 m in three cases

    A comparison of the vortex lengths behind the spur dike in three cases is shown in Table 1.In Case 2, the vortex length caused by the spur dike at a 90οangle is the longest. In Case 3,water flow around the spur dike with a 120οangle forms the shortest vortex.

    Table 1 Comparison of vortex lengths behind spur dike

    The small relative errors between the calculated and experimental data indicate that the models proposed in this study are applicable to the flow around spur dikes.

    The water level around the spur dike in Case 2 for longitudinal section y = 0.05 m is shown in Fig. 5. The simulation is in good agreement with the experiment. The water level around the spur dike changes severely, and the free surface at the tip of the spur dike rises and then drops sharply.

    At the cross section around the spur dike, the water level of the main flow is higher than that of the back flow. The water surface curve at the cross section x = 1.05 m in Case 2 is shown in Fig. 6. The water surface opposite of the spur dike is higher than that on the same side of the spur dike. Similarly, free surfaces around the spur dike in Case 1 and Case 3 have the same rule as in Case 2. The drops of the water level along the longitudinal profile y = 0.05 m and the maximum differences of the water level at the cross section x = 1.05 m in three cases are compared in Table 2. The changes of the water level in Case 2 are more obvious than in Case 1 and Case 3.

    Fig. 5 Water surface curve along longitudinal profile y = 0.05 m

    Table 2 Water level comparison

    For water flow, there are three reasons for errors between calculations and experiments.The first one is that water occasionally flows over the brim and above the spur dike in experiments. However, there is no water above the spur dike in these calculations. The second one is that the computational zone around the spur dike is anomalous. Thirdly, coarse meshes in block 1 and block 2 cause errors. Subdivision of meshes around the spur dike can reduce error but increases computational cost.

    Fig. 7 shows the secondary vortical flow at a cross section (x = 1.05 m)in three cases.The secondary vortical flow in Case 2 is the most significant because the streamline is severely compressed.

    Fig. 7 Secondary vortical flow at cross section x = 1.05 m

    4.4 Results and analysis of dissolved pollutant transport

    The dissolved pollutant transport experiments were conducted under the same flow conditions as the flow velocity measurement experiments. A quantity of 50 mL of dissolved pollutant (rhodamine B)was instantaneously dumped into the flume with an initial concentration of C0= 2 g/L . A spectral photometer was used to measure the pollutant concentration.

    Fig. 8 shows the results of the simulation of rhodamine B concentration transport around the spur dike in Case 1. Case 2 and Case 3 have similar patterns of concentration transport.

    Fig. 8 Simulation of rhodamine B concentration transport around spur dike in Case 1

    Fig. 8 shows that the front edge of the rhodamine B cloud arrives at the tip of the spur dike at two seconds and then flows around the spur dike following the main flow. There is a concentration tail behind the rhodamine B cloud. Two concentration centers arise downstream of the spur dike and a dead water zone appears at the fourth second. At the same time, the concentration tail stretches. The concentration center in the dead water zone disappears quickly because of exchange with the main flow. Between the third and sixth seconds the shape of the pollutant cloud changes continually. At the sixth second, the pollutant cloud passes through the spur dike and enters the circumfluence zone. The pollutant remains in the circumfluence zone for a long time due to the weak exchange with the main flow.

    Fig. 9 is the pollutant concentration as a function of time at the cross section x0L0=12 10 in three cases, where x0is the distance between the sampling transection and the spur dike,and L0is the length of the spur dike.

    As shown in Fig. 9, the pollutant concentration at y L0= 17 10 in Case 1 is lower than in Case 2 and Case 3 in the first ten seconds, because this sampling site is at the edge of the pollutant cloud. After the concentration center leaves the x0L0= 12 10 cross section, the concentration at y L0= 17 10 decays sharply in all three cases. The concentration at y L0= 110 increases slowly and then decreases. In Case 1, the concentration at y L0=9 10 decays from the maximum value and then rises significantly because of back flow. According to the rise of concentration at y L0= 9 10 in Fig. 9, less pollutant with back flow passes through y L0= 9 10 with the increase of the spur dike angle.

    Fig. 9 Rhodamine B concentration as function of time at cross section x0 L0 =12 10

    During dissolved pollutant transport, the errors between experiments and calculations are caused by dumping behavior. In calculations, the pollutant has no velocity relative to the water.However, the pollutant has velocity relative to the water for the sudden dumping in experiments. A new device for dumping should be designed in future studies to reduce error.

    Fig. 10 is the pollutant concentration as a function of time at the cross section x0L0= 27 10 in three cases. After falling from the maximum concentration, as the spur dike angle increases, the concentration fluctuation at y L0= 17 10 tends to increase in the experiments. The reason for concentration fluctuation is that the pollutant carried by the small corner vortex is discontinuous. The maximum concentration at y L0= 110 in Case 3 is higher than in other cases. The difference between concentrations at y L0= 110 and at y L0= 9 10 increases with the spur dike angle. In Case 1, the maximum concentration is slightly higher at y L0= 9 10 than at y L0= 110. However, in Case 2, the maximum concentration at y L0= 9 10 is less than at y L0= 110. In Case 3, the maximum concentration at y L0= 9 10 is much less than at y L0= 110. Before the pollutant carried by back flow passes through y L0= 9 10, much pollutant carried by back flow enhances the concentration at y L0= 110 in Case 3.

    5 Conclusions

    Based on the compressive VOF scheme, the water quality model CPTM was developed.Without reconstructing the interface, the compressive VOF scheme with the bounded differencing scheme CE can effectively simulate the free surface and highly three-dimensional flow around a spur dike. Spur dikes with different angles create different flow patterns. The vortex length caused by a spur dike with a 90οangle is the longest. Water flow around the spur dike with a 120οangle forms the shortest vortex. The water level shows a steep change around the spur dike.

    The different three-dimensional flow patterns around the spur dike determine the different transport features of dissolved pollutants. The decay of the pollutant is highest in the main flow. The rise and decay rates of the concentration in the circumfluence zone are proportional to the velocity of back flow.

    The concentration of fluctuation behind the spur dike becomes intensive with the increase of the spur dike angle. The reason for concentration fluctuation is that the pollutant carried by the small corner vortex is discontinuous. It is concluded that the small corner vortex increases with the spur dike angle.

    Afkhami, S., Zaleski, S., and Bussmann, M. 2009. A mesh-dependent model for applying dynamic contact angles to VOF simulations. Journal of Computational Physics, 228(15), 5370-5389. [doi:10.1016/j.jcp.2009.04.027]

    Ai, C. F., and Jin, S. 2008. Three-dimensional non-hydrostatic model for free-surface flows with unstructured grid. Journal of Hydrodynamics, Ser. B, 20(1), 108-116. [doi:10.1016/S1001-6058(08)60035-9]

    Caboussat, A., Francois, M. M., and Glowinski, R. 2008. A numerical method for interface reconstruction of triple points within a volume tracking algorithm. Mathematical and Computer Modelling, 48(11-12),1957-1971. [doi:10.1016/j.mcm.2008.05.009]

    Cui, Z. F., Zhang, X. F., and Feng, X. X. 2008. Numerical simulation on scour around spur-dike by 3D turbulent model. Journal of Hydrodynamics, Ser. A, 23(1), 33-41. (in Chinese)

    Darwish, M. S. 1993. A new high-resolution scheme based on the normalize variable formulation. Numerical Heat Transfer, Part B, 24(3), 353-371. [doi:10.1080/10407799308955898]

    Dolbow, J., Mosso, S., Robbins, J. and Voth, T. 2008. Coupling volume-of-fluid based interface reconstructions with the extended finite element method. Computer Methods in Applied Mechanics and Engineering, 197(5), 439-447. [doi:10.1016/j.cma. 2007.08.010]

    Duan, J. G., He, L., Fu, X. D., and Wang, Q. Q. 2010. Mean flow and turbulence around experimental spur dike. Advances in Water Resources, 32(12), 1717-1725. [doi:10.1016/j.advwatres.2009.09.004]

    Francois, M. M., Cummins, S. J., Dendy, E. D., Kothe, D. B., Sicilian, J. M., and Williams, M. W. 2006. A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework. Journal of Computational Physics, 213(1), 141-173. [doi:10.1016/j.jcp.2005.08.004]

    Fu, X. L., Li, D. M., and Chen, Y. B. 2006. Flow field calculation and analysis of Acipenser Sinensis’s spawning site in Gezhouba downstream. Advances in Water Science, 17(5), 700-704. (in Chinese)

    Hirt, C. W., and Nichols, B. D. 1981. Volume of fluid (VOF)method for the dynamics of free boundaries.Journal of Computational Physics, 39(1), 201-225. [doi:10.1016/0021-9991(81)90145-5]

    Hua, Z. L., Xing, L. H., and Gu, L. 2008. Application of a modified quick scheme to depthaveraged k-ε turbulence model based on unstructured grids. Journal of Hydrodynamics, Ser. B, 20(4), 514-523. [doi:10.1016/S1001- 6058(08)60088-8]

    Jasak, H., Weller, H. G. and Gosman, A. D. 1999. High resolution NVD differencing scheme for arbitrarily unstructured meshes. International Journal for Numerical Methods in Fluids, 31(2), 431-449.[doi:10.1002/(SICI)1097-0363(19990930)31:2<431::AID-FLD884>3.3.CO;2-K]

    Larmaei, M. M., and Mahdi, T. 2010. Simulation of shallow water waves using VOF method. Journal of Hydro-environment Research, 3(4), 208-214. [doi:10.1016/j.jher.2009.10.010]

    Launder, B. E., and Spalding, D. B. 1990. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 81(3), 269-289.

    Leonard, B. P. 1988. Simple high-accuracy resolution program for convective modeling of discontinuities.International Journal for Numerical Methods in Fluids, 8(10), 1291-1318. [doi:10.1002/fld.1650081013]

    Markatos, N. C. 1986. The mathematical modeling of turbulence flows. Applied Mathematical Modelling,10(3), 190-220. [doi:10.1016/0307-904X(86)90045-4]

    Mayerle, R., Wang, S. S. Y., and Toro, F. M. 1995. Verification of a three-dimensional numerical model simulation of the flow in the vicinity of spur dikes. Journal of Hydraulic Research, 33(2), 243-256.[doi:10.1080/ 00221689509498673]

    Qin, L., Tian, H. J., and Zhao, H. 2010. Large eddy simulation of flow fluctuating pressure based on an improved VOF free surface track method. Journal of Hydroelectric Engineering, 29(3), 92-96. (in Chinese)

    Raessi, M., Mostagnimi, J., and Bussmann, M. 2010. A volume-of-fluid interfacial flow solver with advected normals. Computers and Fluids, 39(8), 1401-1410. [doi:10.1016/j.compfluid. 04.010]

    Sha, H. F., Wu, S. Q., and Chen, Z. W. 2006. 3D numerical simulation for spillway tunnel. Advances in Water Science, 17(4), 507-511. (in Chinese)

    Sussman, M., and Puckett, E. G. 2000. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows. Journal of Computational Physics, 162(2), 301-337.[doi:10.1006/jcph.2000.6537]

    Tang, X. L., Ding, X., and Chen, Z. C. 2007. Experimental and numerical investigations on secondary flows and sedimentations behind a spur dike. Journal of Hydrodynamics, Ser. B, 19(1), 23-29. [doi:10.1016/S1001-6058(07)60023-7]

    Ubbink, O., and Issa, R. I. 1999. A method for capturing sharp fluid interfaces on arbitrary meshes. Journal of Computational Physics, 153(1), 26-50. [doi:10.1006/jcph.1999.6276]

    Wu, C. H., and Yuan, H. L. 2007. Efficient non-hydrostatic modelling of surface waves interacting with structures. Applied Mathematical Modelling, 31(4), 687-699. [doi:10.1016/j.apm.2005.12.002]

    Zhu, J., and Rodi, W. 1991. Low dispersion and bounded convection scheme. Computer Methods in Applied Mechanics and Engineering, 92(1), 87-96. [doi:10.1016/0045-7825(91)90199-G]

    Zou, J. F., and Zheng, Y. 2008. Application of bounded and compressed VOF method to interfacial flow.Journal of Zhejiang University (Engineering Science), 42(2), 253-258. (in Chinese)

    制服人妻中文乱码| 免费不卡黄色视频| 丝袜人妻中文字幕| 国产精品一国产av| 久久久精品国产亚洲av高清涩受| 日本wwww免费看| 日韩制服骚丝袜av| 日本vs欧美在线观看视频| 爱豆传媒免费全集在线观看| 最新在线观看一区二区三区 | 操美女的视频在线观看| 色综合欧美亚洲国产小说| 中文字幕最新亚洲高清| av在线播放精品| 亚洲欧美一区二区三区久久| 欧美国产精品va在线观看不卡| 亚洲五月色婷婷综合| 亚洲av在线观看美女高潮| 80岁老熟妇乱子伦牲交| 国产女主播在线喷水免费视频网站| 成人国语在线视频| 久久久久久久精品精品| 欧美日韩黄片免| 久久亚洲国产成人精品v| a级毛片在线看网站| 色综合欧美亚洲国产小说| 中文字幕精品免费在线观看视频| 亚洲国产看品久久| 肉色欧美久久久久久久蜜桃| 亚洲精品乱久久久久久| 一本大道久久a久久精品| av在线app专区| 亚洲精品美女久久av网站| 国产一区二区三区av在线| 国产视频首页在线观看| 亚洲精品成人av观看孕妇| 两个人免费观看高清视频| 满18在线观看网站| 欧美日韩亚洲国产一区二区在线观看 | 在线观看国产h片| 午夜激情av网站| 国产精品香港三级国产av潘金莲 | 国产亚洲一区二区精品| 亚洲,欧美精品.| 一级片免费观看大全| 色综合欧美亚洲国产小说| 欧美精品啪啪一区二区三区 | 久久亚洲国产成人精品v| 汤姆久久久久久久影院中文字幕| 高潮久久久久久久久久久不卡| 黄网站色视频无遮挡免费观看| 欧美老熟妇乱子伦牲交| 免费高清在线观看视频在线观看| av国产精品久久久久影院| 亚洲精品国产区一区二| 老汉色av国产亚洲站长工具| 日韩一卡2卡3卡4卡2021年| 久久精品aⅴ一区二区三区四区| 亚洲国产精品999| 欧美日韩综合久久久久久| 伊人亚洲综合成人网| 大片电影免费在线观看免费| 亚洲欧美日韩另类电影网站| 午夜福利,免费看| 大话2 男鬼变身卡| 久久天躁狠狠躁夜夜2o2o | 69精品国产乱码久久久| 成人手机av| 国产一区二区在线观看av| 国产人伦9x9x在线观看| 又黄又粗又硬又大视频| 悠悠久久av| 久久亚洲精品不卡| 天天添夜夜摸| 久9热在线精品视频| 色综合欧美亚洲国产小说| av国产精品久久久久影院| 热99国产精品久久久久久7| 中文字幕高清在线视频| 国产免费视频播放在线视频| 老司机深夜福利视频在线观看 | 亚洲国产欧美网| 下体分泌物呈黄色| 自线自在国产av| 欧美激情 高清一区二区三区| 大话2 男鬼变身卡| 又大又黄又爽视频免费| 久久热在线av| 99国产精品99久久久久| 亚洲国产精品成人久久小说| 欧美日韩黄片免| av欧美777| 丝袜美腿诱惑在线| 国产成人一区二区三区免费视频网站 | 国产亚洲欧美精品永久| 热re99久久国产66热| 国产精品一二三区在线看| av天堂在线播放| 欧美日本中文国产一区发布| 国产成人精品无人区| xxx大片免费视频| 欧美国产精品va在线观看不卡| av在线老鸭窝| 波野结衣二区三区在线| 国产黄频视频在线观看| 伦理电影免费视频| 亚洲 欧美一区二区三区| 精品国产超薄肉色丝袜足j| 亚洲精品久久成人aⅴ小说| 高清黄色对白视频在线免费看| 99久久精品国产亚洲精品| 成人影院久久| 国产高清国产精品国产三级| 国产精品熟女久久久久浪| 亚洲av综合色区一区| 少妇精品久久久久久久| 国产免费现黄频在线看| 一区二区三区精品91| 亚洲av成人精品一二三区| av网站在线播放免费| 啦啦啦视频在线资源免费观看| 久久久久网色| 蜜桃国产av成人99| 日韩电影二区| 久久国产精品大桥未久av| 国产黄频视频在线观看| 黑人猛操日本美女一级片| 亚洲国产最新在线播放| 久久精品久久久久久久性| 国产野战对白在线观看| 国产欧美亚洲国产| 欧美亚洲 丝袜 人妻 在线| 少妇的丰满在线观看| 免费在线观看日本一区| 2021少妇久久久久久久久久久| 晚上一个人看的免费电影| 1024香蕉在线观看| 亚洲精品日韩在线中文字幕| 国产精品人妻久久久影院| 国产成人免费无遮挡视频| 欧美日韩国产mv在线观看视频| 久热爱精品视频在线9| 久久精品aⅴ一区二区三区四区| 国产一区二区三区综合在线观看| 人成视频在线观看免费观看| 午夜av观看不卡| svipshipincom国产片| 在现免费观看毛片| 亚洲精品一区蜜桃| 日韩,欧美,国产一区二区三区| 一级,二级,三级黄色视频| 极品人妻少妇av视频| 国产高清videossex| 一本大道久久a久久精品| 久久人人97超碰香蕉20202| 99国产精品免费福利视频| 麻豆av在线久日| 中文字幕色久视频| 少妇猛男粗大的猛烈进出视频| 亚洲精品国产区一区二| 亚洲第一青青草原| 亚洲人成电影观看| 国产成人精品久久二区二区免费| 考比视频在线观看| 国产成人av教育| 老司机亚洲免费影院| 久久天堂一区二区三区四区| 免费不卡黄色视频| 久久久久国产精品人妻一区二区| 99精国产麻豆久久婷婷| 中文字幕最新亚洲高清| av天堂在线播放| 母亲3免费完整高清在线观看| 亚洲精品久久久久久婷婷小说| 亚洲精品国产色婷婷电影| 久久久久久人人人人人| 免费观看人在逋| 久久久久精品国产欧美久久久 | 午夜免费成人在线视频| 免费看十八禁软件| 亚洲中文日韩欧美视频| 一区二区日韩欧美中文字幕| 性少妇av在线| 国产亚洲av高清不卡| 日韩熟女老妇一区二区性免费视频| 又粗又硬又长又爽又黄的视频| 妹子高潮喷水视频| 成年美女黄网站色视频大全免费| 亚洲,一卡二卡三卡| 国产精品久久久av美女十八| 精品熟女少妇八av免费久了| 又紧又爽又黄一区二区| 亚洲,欧美,日韩| e午夜精品久久久久久久| 亚洲精品第二区| 国产亚洲欧美在线一区二区| 国产视频首页在线观看| 国产野战对白在线观看| 香蕉国产在线看| av不卡在线播放| 亚洲成人国产一区在线观看 | 精品一品国产午夜福利视频| 少妇人妻久久综合中文| 国产视频一区二区在线看| 夫妻性生交免费视频一级片| 人人妻人人添人人爽欧美一区卜| 精品视频人人做人人爽| 久久久精品国产亚洲av高清涩受| 另类精品久久| 欧美xxⅹ黑人| 亚洲中文日韩欧美视频| a级片在线免费高清观看视频| 国产麻豆69| 亚洲精品一卡2卡三卡4卡5卡 | 人成视频在线观看免费观看| 黄色毛片三级朝国网站| 国产精品国产av在线观看| bbb黄色大片| 欧美日韩精品网址| 夫妻性生交免费视频一级片| 久久影院123| 日本五十路高清| 大香蕉久久成人网| 中文乱码字字幕精品一区二区三区| 十八禁网站网址无遮挡| 大片电影免费在线观看免费| 丁香六月天网| 日韩伦理黄色片| 亚洲欧美一区二区三区国产| 亚洲欧美一区二区三区黑人| 国产免费一区二区三区四区乱码| 成年人免费黄色播放视频| 中文精品一卡2卡3卡4更新| 国产精品久久久久久精品古装| 亚洲欧美一区二区三区黑人| 真人做人爱边吃奶动态| 免费在线观看完整版高清| 最新在线观看一区二区三区 | 中国美女看黄片| 午夜日韩欧美国产| 深夜精品福利| 欧美精品av麻豆av| 国产在线观看jvid| 亚洲av成人精品一二三区| 秋霞在线观看毛片| 亚洲七黄色美女视频| xxxhd国产人妻xxx| 1024香蕉在线观看| 日韩av免费高清视频| 国产爽快片一区二区三区| 亚洲精品自拍成人| 国产精品久久久久成人av| 中文字幕人妻丝袜一区二区| 久久午夜综合久久蜜桃| 免费少妇av软件| 操出白浆在线播放| 一区二区三区激情视频| 在线看a的网站| 亚洲中文日韩欧美视频| 在线精品无人区一区二区三| 久久ye,这里只有精品| 亚洲欧美色中文字幕在线| 亚洲人成电影免费在线| 亚洲五月色婷婷综合| 狠狠婷婷综合久久久久久88av| 人人妻人人添人人爽欧美一区卜| 欧美激情 高清一区二区三区| 777米奇影视久久| 亚洲 国产 在线| 久久99精品国语久久久| 水蜜桃什么品种好| 久久精品国产亚洲av高清一级| 少妇猛男粗大的猛烈进出视频| 国产一卡二卡三卡精品| 国产成人啪精品午夜网站| 97在线人人人人妻| 视频区图区小说| 国产精品国产三级国产专区5o| 国产免费福利视频在线观看| 日韩免费高清中文字幕av| 欧美日本中文国产一区发布| 免费久久久久久久精品成人欧美视频| 一级黄片播放器| 国产精品国产av在线观看| 亚洲熟女精品中文字幕| 美国免费a级毛片| 在线天堂中文资源库| www.熟女人妻精品国产| 青春草视频在线免费观看| 色婷婷av一区二区三区视频| 丝瓜视频免费看黄片| 国产精品一国产av| 国产精品一二三区在线看| 天天操日日干夜夜撸| 午夜91福利影院| 黄色视频不卡| av国产精品久久久久影院| 熟女av电影| 亚洲国产中文字幕在线视频| 美女中出高潮动态图| 操美女的视频在线观看| 乱人伦中国视频| 最黄视频免费看| 天堂俺去俺来也www色官网| 亚洲黑人精品在线| 欧美性长视频在线观看| 一级毛片黄色毛片免费观看视频| 一本综合久久免费| 大陆偷拍与自拍| 亚洲色图综合在线观看| 久久久久精品人妻al黑| 我的亚洲天堂| 国产欧美日韩精品亚洲av| 久久ye,这里只有精品| 在线观看免费视频网站a站| 狂野欧美激情性xxxx| 乱人伦中国视频| 99热国产这里只有精品6| 另类精品久久| 亚洲熟女精品中文字幕| 亚洲精品中文字幕在线视频| 一区在线观看完整版| 一区二区三区激情视频| 只有这里有精品99| 午夜两性在线视频| 久久精品成人免费网站| 亚洲五月色婷婷综合| 国产精品 国内视频| 超碰成人久久| 成年美女黄网站色视频大全免费| 又黄又粗又硬又大视频| 肉色欧美久久久久久久蜜桃| 欧美性长视频在线观看| 亚洲av日韩在线播放| 亚洲精品国产av成人精品| 黑丝袜美女国产一区| 亚洲中文日韩欧美视频| 波野结衣二区三区在线| 国产免费一区二区三区四区乱码| 99精国产麻豆久久婷婷| 亚洲精品国产av成人精品| 一级片'在线观看视频| videos熟女内射| 99久久精品国产亚洲精品| 欧美+亚洲+日韩+国产| 中文字幕人妻熟女乱码| 国产欧美日韩一区二区三区在线| 国产极品粉嫩免费观看在线| 韩国精品一区二区三区| 性少妇av在线| 国产精品麻豆人妻色哟哟久久| 精品久久久久久电影网| 极品少妇高潮喷水抽搐| 一本—道久久a久久精品蜜桃钙片| 久久精品国产a三级三级三级| 免费在线观看黄色视频的| 午夜视频精品福利| 亚洲av成人精品一二三区| 成年av动漫网址| 视频区图区小说| 伊人久久大香线蕉亚洲五| 久久精品久久久久久噜噜老黄| 久久久久久人人人人人| 久久久精品国产亚洲av高清涩受| 新久久久久国产一级毛片| 国产成人91sexporn| 丝瓜视频免费看黄片| 亚洲av成人精品一二三区| 亚洲av综合色区一区| 欧美成狂野欧美在线观看| 久久久精品区二区三区| 欧美成狂野欧美在线观看| 欧美日韩黄片免| 一区在线观看完整版| 飞空精品影院首页| 一区二区av电影网| 在线观看人妻少妇| 欧美日韩亚洲国产一区二区在线观看 | 国产精品av久久久久免费| 色播在线永久视频| 香蕉丝袜av| 免费在线观看视频国产中文字幕亚洲 | 视频在线观看一区二区三区| 欧美成人午夜精品| 欧美成狂野欧美在线观看| 欧美亚洲日本最大视频资源| 欧美日韩一级在线毛片| 老熟女久久久| 日韩中文字幕视频在线看片| 人妻 亚洲 视频| 多毛熟女@视频| 亚洲人成网站在线观看播放| 天堂8中文在线网| 欧美日本中文国产一区发布| 精品卡一卡二卡四卡免费| 大陆偷拍与自拍| 欧美人与性动交α欧美软件| 美女大奶头黄色视频| 久热爱精品视频在线9| 18在线观看网站| 日韩中文字幕欧美一区二区 | 免费黄频网站在线观看国产| 色综合欧美亚洲国产小说| 久久亚洲精品不卡| 9色porny在线观看| 女性生殖器流出的白浆| 午夜福利影视在线免费观看| 精品福利永久在线观看| 天堂俺去俺来也www色官网| 午夜av观看不卡| 纯流量卡能插随身wifi吗| 国产精品秋霞免费鲁丝片| videos熟女内射| xxx大片免费视频| 久热这里只有精品99| 中国国产av一级| 一二三四社区在线视频社区8| 中文字幕av电影在线播放| 久久国产精品大桥未久av| 中文字幕精品免费在线观看视频| 电影成人av| 日韩中文字幕欧美一区二区 | 晚上一个人看的免费电影| 国产成人影院久久av| 真人做人爱边吃奶动态| 精品一区二区三卡| 国产有黄有色有爽视频| 99国产精品99久久久久| 男女床上黄色一级片免费看| 又粗又硬又长又爽又黄的视频| 亚洲专区国产一区二区| 国产熟女欧美一区二区| 久久午夜综合久久蜜桃| 男女午夜视频在线观看| 亚洲美女黄色视频免费看| 9热在线视频观看99| 国产精品九九99| 欧美另类一区| 好男人电影高清在线观看| 嫁个100分男人电影在线观看 | 777久久人妻少妇嫩草av网站| 在线天堂中文资源库| 99久久99久久久精品蜜桃| 日本a在线网址| 欧美精品亚洲一区二区| 如日韩欧美国产精品一区二区三区| 欧美日韩亚洲高清精品| 亚洲伊人久久精品综合| avwww免费| 成人18禁高潮啪啪吃奶动态图| 成年人免费黄色播放视频| 咕卡用的链子| 日韩av不卡免费在线播放| 亚洲av综合色区一区| 久久久精品国产亚洲av高清涩受| 精品一区二区三卡| 黄片播放在线免费| 国产av精品麻豆| 9热在线视频观看99| 国产精品偷伦视频观看了| 成年av动漫网址| 日韩中文字幕视频在线看片| kizo精华| 国产成人a∨麻豆精品| 日本a在线网址| 久久人人爽人人片av| 美女主播在线视频| 国产亚洲精品第一综合不卡| svipshipincom国产片| 十八禁网站网址无遮挡| 最近手机中文字幕大全| 亚洲一区二区三区欧美精品| 国产爽快片一区二区三区| 国产一区亚洲一区在线观看| 久久亚洲国产成人精品v| 国产1区2区3区精品| 国产亚洲精品久久久久5区| 久久久久国产精品人妻一区二区| 精品国产乱码久久久久久小说| 丝袜喷水一区| 国产日韩一区二区三区精品不卡| 国产精品九九99| 日本欧美国产在线视频| 久久九九热精品免费| av天堂在线播放| www.精华液| 久久久久精品人妻al黑| 99国产精品一区二区三区| 十八禁人妻一区二区| 自线自在国产av| 又粗又硬又长又爽又黄的视频| 欧美黄色片欧美黄色片| 国产免费一区二区三区四区乱码| a级毛片在线看网站| 久久久久久人人人人人| 成人三级做爰电影| 久久久久精品人妻al黑| 久久精品亚洲熟妇少妇任你| 欧美精品一区二区免费开放| 国产亚洲精品第一综合不卡| av天堂久久9| 午夜福利免费观看在线| 午夜激情av网站| 精品熟女少妇八av免费久了| 男人添女人高潮全过程视频| 脱女人内裤的视频| 久久99一区二区三区| 性色av一级| 日韩制服骚丝袜av| 午夜免费男女啪啪视频观看| 精品卡一卡二卡四卡免费| 老鸭窝网址在线观看| 性色av一级| 日韩大片免费观看网站| 国产成人一区二区在线| 我要看黄色一级片免费的| 十八禁人妻一区二区| 人人妻,人人澡人人爽秒播 | 波多野结衣av一区二区av| 久久影院123| 最近中文字幕2019免费版| 狂野欧美激情性bbbbbb| 国产麻豆69| 国产午夜精品一二区理论片| 精品卡一卡二卡四卡免费| 久久天躁狠狠躁夜夜2o2o | 亚洲精品国产一区二区精华液| 亚洲精品美女久久av网站| 欧美国产精品va在线观看不卡| 欧美成狂野欧美在线观看| tube8黄色片| 精品一区二区三区av网在线观看 | a级毛片在线看网站| 午夜精品国产一区二区电影| www.精华液| 亚洲av日韩精品久久久久久密 | 久久中文字幕一级| 欧美成人午夜精品| 日韩大片免费观看网站| 国产精品二区激情视频| av不卡在线播放| 亚洲天堂av无毛| 巨乳人妻的诱惑在线观看| 欧美日韩视频高清一区二区三区二| 你懂的网址亚洲精品在线观看| 久久精品久久久久久久性| 中文字幕色久视频| 日韩,欧美,国产一区二区三区| 亚洲一区中文字幕在线| 欧美日韩一级在线毛片| 久久久精品免费免费高清| 99久久综合免费| 18在线观看网站| 国产亚洲精品第一综合不卡| 黄片播放在线免费| 亚洲av日韩在线播放| 亚洲国产成人一精品久久久| √禁漫天堂资源中文www| 波野结衣二区三区在线| 亚洲三区欧美一区| 久久久久视频综合| 黄色视频不卡| 久热爱精品视频在线9| 操美女的视频在线观看| av视频免费观看在线观看| 亚洲国产最新在线播放| 中文欧美无线码| 日韩视频在线欧美| 午夜福利视频精品| 日韩大码丰满熟妇| 国产精品麻豆人妻色哟哟久久| 久久青草综合色| 亚洲国产欧美一区二区综合| 国产深夜福利视频在线观看| 亚洲国产精品一区三区| 在线看a的网站| 好男人电影高清在线观看| 久久ye,这里只有精品| 肉色欧美久久久久久久蜜桃| 晚上一个人看的免费电影| svipshipincom国产片| 国产av精品麻豆| 国产精品久久久久久精品古装| 2018国产大陆天天弄谢| 精品久久久久久久毛片微露脸 | 亚洲少妇的诱惑av| 人人妻人人添人人爽欧美一区卜| 亚洲av欧美aⅴ国产| 日本五十路高清| 人人妻人人添人人爽欧美一区卜| 精品福利永久在线观看| 精品人妻1区二区| 午夜免费鲁丝| 精品福利永久在线观看| 97在线人人人人妻| 久久久久久久精品精品| 久久久亚洲精品成人影院| 丁香六月天网| 啦啦啦在线免费观看视频4| 麻豆av在线久日| 国产精品麻豆人妻色哟哟久久| 啦啦啦视频在线资源免费观看| 中国美女看黄片| 午夜影院在线不卡| 真人做人爱边吃奶动态| 一区二区三区精品91| 国产淫语在线视频| 91九色精品人成在线观看| 国产熟女午夜一区二区三区| 80岁老熟妇乱子伦牲交| 欧美人与性动交α欧美软件| 女警被强在线播放| 午夜福利,免费看| 老司机在亚洲福利影院| 成人国产av品久久久|