• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Orifice plate cavitation mechanism and its influencing factors

    2010-11-02 13:35:34WanzhengAITianmingDING
    Water Science and Engineering 2010年3期

    Wan-zheng AI*, Tian-ming DING

    Marine College of Zhejiang Ocean University, Zhoushan 316000, P. R. China

    1 Introduction

    The orifice plate energy dissipater has the advantages of a simple layout, economy, and high energy efficiency (He and Zhao 2010). The energy dissipation efficiency of the orifice plate and its cavitations are a pair of contradictions. Orifice plates with high efficiency of energy dissipation often have a high risk of cavitation damage. Cavitation can lead to structural damage of buildings and reduce spillway tunnel discharge capacity (Rahmeyer 1988;Plesst and Zwick 1977; Zhang and Chai 2001; Neppiras 1984). Cavitation can be divided into four categories: wavering cavitation, fixed cavitation, vortex cavitation, and oscillation cavitation (Knapp et al. 1970). Oscillation cavitation and vortex cavitation are the main forms of orifice plate cavitation (Xu et al. 1988). The study of cavitation has been mainly focused on model tests in the past and some useful conclusions have been obtained. Many studies have concluded that the orifice plate critical cavitation number decreases with the increase of the contraction ratio (Xu et al. 1988; Russell and Ball 1967). The successful application of the orifice plate energy dissipater in the Xiaolangdi Project in China has proved that installing orifice plates in tunnels, as shown in Fig. 1, where D and d are the diameters of the channel and orifice plate, T and b are the thicknesses of the orifice plate and anti-vortex ring, r is the radius of the round corner of the orifice plate, β is the slope angle at the top of the orifice plate, and θ is the slope angle of the anti-vortex ring, is an effective way to dissipate flow energy (Chen et al. 2006). However, orifice plate cavitation is a very complex problem, and there has been little research on the orifice plate cavitation mechanism and its influencing factors, especially on the principle of cavitation caused by pressure fluctuation.Based on a summary of previous results, this paper attempts to further reveal the mechanism of the orifice plate cavitation and to analyze factors that affect its cavitation in view of gas bubble dynamics.

    Fig. 1 Orifice plate with anti-vortex ring

    2 Orifice plate cavitation mechanism

    In low-pressure conditions, the motion equation of a gas nucleus developing into a gas bubble is as follows (Huang and Han 1992):

    If ?f ?R= 0, we can obtain the critical radius of the gas nucleus:

    Fig. 2 Flow around orifice plate

    If R=Rcand f( R , t )= 0, we can obtain the critical pressure of the gas nucleus:

    Figs. 3 and 4 can be obtained at the normal temperature whenγ=4/3,σ≈ 0.072 8 N m, and pv≈ 2 452 Pa, and the following can be observed: Rcand pcincrease with τ0, that is to say, Rcand pcincrease with p1and R0; and if τ0→∞,pc→pv. Therefore, many researchers regard pvas the critical pressure of incipient cavitation. In fact, if τ0is large enough, there is a little deviation between pvand pc, but if τ0is small, there is a large deviation between pvand pc, and it is not accurate to regard pvas the critical pressure of incipient cavitation under this condition. Integrating Eq. (1), the following equation can be given:

    Fig. 3 Rc-τ0 curve

    Fig. 4 pc-τ0 curve

    The simulation results of Eq. (6)are shown in Fig. 5, which reflect the relationship between U and R at the normal temperature when p∞= 600 Pa , and p1= 4 500 Pa or 3 500 Pa.

    Fig. 5 U- R curve

    Fig. 5 shows that, in the initial phase, the development velocity of the gas nucleus increases with its radius. When the gas nucleus radius develops into the critical radius, the development velocity of the gas nucleus has a small peak value. At this time, cavitation begins to occur. The critical radii of the gas nucleus, whenp1= 4 500 Pa , are 9.18 × 10-5m,7.97 × 10-5m, and 6.82 × 10-5m, respectively corresponding to initial radii of 5 × 10-5m, 4.5 ×10-5m, and 4 × 10-5m; and the critical radii of the gas nucleus, whenp1= 3500 Pa , are 8.44 × 10-5m, 7.23 × 10-5m, and 6.27 × 10-5m, respectively corresponding to initial radii of 5 ×10-5m, 4.5 × 10-5m, and 4 × 10-5m. If the gas nucleus inflation continues, the development velocity of the gas nucleus reaches a small valley value. After that, the development velocity of the gas nucleus increases with the radius and at last stabilizes at a certain value. For the gas nucleus with the same initial radius, if the initial pressure of the gas nucleus is larger, its inflation velocity at a critical radius is also larger. For the gas nucleus with the same initial pressure, if the initial radius of the gas nucleus is larger, its inflation velocity at a critical radius is also larger. If F( R , p∞- pv)= U , we obtain the development time of the gas nucleus from the initial radius to the critical radius:

    The range of the initial radius of the gas nucleus is 2× 10-6m to 50× 10-6m in normal flow (Ni 1999). At this range, if gas nuclei can develop into gas bubbles, the following conditions must be met: p∞≤ pcand p1> p∞- pv+ 2σR0. Table 1 shows the development time of the gas nucleus under the conditions of σ≈ 0.072 8 N m, pv≈ 2 452 Pa, γ=4/3,and R0ranging from 0.05× 10-6m to 50× 10-6m.

    Table 1 Development time of gas nucleus from initial radius to critical radius for different initial parameters

    From Table 1 we can observe the following: The development time of the gas nucleus from the initial radius to the critical radius is about 10-7-1 0-5s. Under the condition of the same p∞and R0, the gas nucleus with a larger p1will need less time to develop into the critical radius. Under the condition of the same p1and R0, the gas nucleus with a larger p∞will need a longer time to develop into the critical radius. Under the condition of the same p1and p∞, the gas nucleus with a larger R0will need a longer time to develop into the critical radius.

    Physical factors that affect the gas nucleus development include R0, p1, and p∞. R0and p1determine the initial state parameter τ0, that is to say, if R0and p1are determined,pcand Rcare also determined. If R0, p1, and p∞are determined, the development time of the gas nucleus from the initial radius to the critical radius is also determined.

    3 Factors affecting orifice plate critical cavitation number

    The formula for the critical cavitation number of the orifice plate is as follows:

    where u0is the average flow velocity in the tunnel. Cavitation is mainly affected by the flow velocity, viscosity, boundary conditions, and pressure. Therefore, the minimum pressure on the border can also be used to determine whether cavitation has occurred. The minimum pressure coefficient is defined as follows:

    where pminis the minimum pressure on the border. If cavitation occurs, the gas bubble is full of steam, and the pressure in the gas bubble is equal to saturated steam pressure pv. Also,cavitation begins to occur at the position of the minimum pressure; at this time, pminis equal to pv, providing the following equation:

    For an orifice plate shown in Fig. 1, the main geometry parameters that determine boundary conditions are the tunnel diameter D, the orifice plate diameter d, the thickness of the orifice plate T, and the radius for the round corner of the orifice plate r. Besides these geometry parameters, the other hydraulic parameters that affect critical cavitation number are the dynamic viscosity parameter μ, the average flow velocity in the tunnel u0, the deviation between the average pressure on the non-disturbed section and the minimum pressure on the boundary Δp. All the above parameters are written into a formula as follows:

    According to the dimensional analysis, D, u0, and ρ are three basic parameters of the above eight parameters. A non-dimensional equation can be obtained using the π theorem as follows:

    The above equation is changed as follows:

    Combing Eq. (10)with Eq. (14), Eq. (15)can be rewritten as

    In the above equation, d D is the contraction ratio, and T D and r D are parameters of the orifice plate geometry. From Eq. (15), the following conclusion can be obtained: the orifice plate critical cavitation number is closely related with the orifice plate geometry, contraction ratio, and Reynolds number. With the assumption that

    where ξ′ is a parameter regarding the orifice plate geometry, Eq. (15)can be rewritten as

    Li et al. (1997)regarded η as the main factor affecting the critical cavitation number of the orifice plate. They also provided an empirical formula for the orifice plate critical cavitation number according to hydraulic model experiments:

    where a, b, and c are determined by the orifice plate geometry. Because the flow passing through the orifice plate is turbulent flow, the boundary layer has fully developed in most cases, and the critical cavitation number changes little with the change of the Reynolds number. At this time, the critical cavitation number can be expressed as

    Most studies (Li et al. 1997; Takahashi et al. 2001)have regarded the critical cavitation number as varying with η by index relations. Thus, the critical cavitation number can be expressed as

    where m and n are determined by the orifice plate geometry parameters, excluding η. Eq. (21)shows that the larger the contraction ratio is, the smaller the orifice critical cavitation number is.

    4 Pressure fluctuation effect on orifice plate cavitation

    If we consider the effect of the flow fluctuation, we can obtain another equation about the cavitation number:

    where p′ is the pressure fluctuation. Under the condition of low pressure, the gas nucleus must have enough time tcto develop into a bubble. As the flows passing through the orifice plate have the characteristics of a large low-frequency fluctuation, the spectrum scope of the pressure fluctuation is about 0 to 5 Hz. Peak frequency, in general, is about 0 to 0.5 Hz. Thus,the time that flow fluctuation stays in the negative half-cycle of the fluctuation cycle will be longer than 10-2s. From Table 1 we can observe that gas nucleus development time from the gas nucleus to the gas bubble is about 10-7-1 0-5s. Therefore, the gas nucleus has sufficient time to develop into bubbles in the negative half-cycle of the fluctuation cycle.

    Characteristics of the flow fluctuation have important effects on the orifice plate cavitation. Under normal circumstances, cavitation will not occur when the cavitation number is larger than the critical cavitation number, i.e., when σt> σc. However, the critical cavitation number of the orifice plate computed through Eq. (8)is often larger. For example,if the flow fluctuation is in the negative half-cycle of a fluctuation cycle, the pressure fluctuation is a negative value in Eq. (22). At this time, the actual cavitation number computed through Eq. (22)is smaller than the critical cavitation number computed through Eq. (8). Only when the flow fluctuation is in the positive half-cycle of a fluctuation cycle can we find that the cavitation number calculated with Eq. (22)is larger than the critical cavitation number calculated with Eq. (8). Thus we assume there is no cavitation in the orifice plate flow.Therefore, if we consider the fluctuation effect on cavitation, we will find that cavitation occurs locally.

    Hu (1994)showed that, in flow fluctuation, the gas nucleus expands in a negative half-cycle at first and then is compressed in a positive half-cycle; compression and expansion of the gas nucleus appear alternately, which cause saturated gas in the flow to permeate into the gas nuclei through their side walls. In the turbulent shear flow, when cavitation begins,high-frequency components in the power spectrum of pressure fluctuation increase. In general,there is a predominant frequency. The fluctuation at the predominant frequency leads to the bubble oscillation. In the course of bubble rebounding, bubbles have a resonance movement because of the appearance and disappearance of compression in the bubble. In turn, resonance changes the pressure fluctuation. This phenomenon helps to produce a series of large and small fluctuations. These large and small fluctuations cannot be ignored; they will shorten the time the gas nucleus takes to develop into the gas bubble and cause cavitations to occur.

    The intense flow fluctuations through the orifice plate are caused by the orifice plate’s sudden enlargement and contraction and dramatic changes of streamlines. Fluctuation amplitude is closely related with orifice plate geometry and contraction ratio. Russell and Ball(1967)arrived at the following conclusions: when d D≤ 0.65, the pressure fluctuation coefficient is almost unchanged around 0.5; when 0.85≥d D>0.65, the pressure fluctuation coefficient increases with the contraction ratio of the orifice plate, with the peak pressure fluctuation coefficient reaching the value of 3 when d D= 0.85; and when d D > 0.85, the pressure fluctuation coefficient decreases with the increase of the contraction ratio. Taking into account the effects of pressure fluctuation, the critical cavitation number can be written as

    5 Model experiments on critical cavitation number of square orifice plate

    Model experiments were conducted in a decompression cabinet. The decompression cabinet was designed based on the principles of gravity similarity and cavitation number similarity. As presented in Tullis and Govindarajan (1973), the contraction ratio is the most important factor influencing the critical cavitation number of the orifice plate. Therefore, only the contraction ratio was considered in the model experiments. The models were designed as in Fig. 2. The orifice plate thickness T of each model was 0.01D. The other parameters of the models were arranged as in Table 2. The critical cavitation number of the orifice plate was calculated by Eq. (8), but p∞was divided into two parts as in Eq. (24):

    where puis the relative pressure in section 1, and pais the air pressure in the decompression cabinet. All experimental results are shown in Table 3. Fig. 6 can be drawn using the data in Table 3.

    Table 2 Model parameters

    Table 3 Experimental results

    Fig. 6 shows that the critical cavitation number of the orifice plate inversely varies with the contraction ratio. An approximate formula for the critical cavitation number of the square orifice plate can be obtained:

    In Eq. (25), the effects of Reynolds number, pressure fluctuation and orifice plate thickness are not considered. This expression is valid for T=0.01D,Re >105, and ηvalues from 0.6 to 0.8.

    6 Conclusions

    Fig. 6 σc- ηcurve

    (1)Critical radius and critical pressure increase with the initial state parameter τ0. That is to say, critical radius and critical pressure increase with the gas nucleus initial radius and its initial pressure.

    (2)The orifice plate cavitation is closely related with the gas nucleus distribution, the contraction ratio and geometry of the orifice plate. The larger the contraction ratio is, the smaller the critical cavitation number of the orifice plate is.

    (3)The gas nucleus has sufficient time to develop into bubbles in the negative half-cycle of flow fluctuation, so the characteristics of the flow fluctuation have a certain effect on cavitation. It is necessary to take into account the effect of pressure fluctuation when computing the orifice plate cavitation number.

    Chen, L., Wang, X. X., Wei, H., and Zhang, D. 2006. Prototype observation on cavitation for multi-orifice No.one bottom outlet Xiaolangdi Project. Journal of Water power, 32(2), 71-74. (in Chinese)

    He, N., and Zhao, Z. X. 2010. Theoretical and numerical study of hydraulic characteristics of orifice energy dissipater. Journal of Water Science and Engineering, 3(2), 190-199. [doi:10.3882/j.issn.1674-2370.2010.02.007]

    Hu, M. L. 1994. The influence of bubble vibration on the cavitation in turbulent shear flow. Journal of Hydrodynamics, Ser. A, 11(2), 182-189. (in Chinese)

    Huang, J. C., and Han, C. C. 1992. Influences of gas nucleus scale on cavitations. Applied Mathematics and Mechanics, 13(4), 359-367. [doi:10.1007/BF02451422]

    Li, Z. Y., Chen, X., and Chen, M. F. 1997. Study on hydraulic problems of spillway tunnels with orifices reformed from diversion tunnel. Journal of Hydraulic Engineering, 28(2), 1-14. (in Chinese)

    Knapp, R. T., Daily, J. W., and Hammitt, F. G. 1970. Cavitation. New York: McGraw-Hill.

    Neppiras, E. A. 1984. Acoustic cavitation: An introduction. Ultrasonics, 22(1), 25-28. [doi:10.1016/0041-624X(84)90057-X]

    Ni, H. G. 1999. Correction of incipient cavitations number for scale effect. Journal of Hydraulic Engineering,30(9), 28-32. (in Chinese)

    Plesst, M. S., and Zwick, S. A. 1977. Bubble dynamics and cavitation. Annual Review Fluid Mechanics, 9,145-185.

    Rahmeyer, W. 1988. Energy dissipation and limiting discharge with orifices. Journal of Transportation Engineering, 114(2), 232-235. [doi:10.1061/(ASCE)0733-947X(1988)114:2(232)]

    Russell, S. O., and Ball, J. W. 1967. Sudden-enlargement energy dissipater for Mica Dam. Journal of the Hydraulic Division, 93(4), 41-56.

    Takahashi, K., Matsuda, H., and Miyamoto, H. 2001. Cavitation characteristics of restriction orifices. CAV 2001: Fourth International Symposium on Cavitation. Pasadena: California Institute of Technology.

    Tullis, P. J., and Govindarajan, R. 1973. Cavitations and size scale effects for orifices. Journal of the Hydraulics Division, 99(3), 417-430.

    Xu, F. S, Yu, M. X., and Liu, S. J. 1988. The characteristics of cavitation and fluctuation for multi-orifices.Advances in Hydrodynamics, 3(3), 68-75. (in Chinese)

    Yang, Q., Zhang, J. M., Dai, G. Q., Wang, H. Y., and Cui, C. L. 2004. Effects of fluctuation pressure on cavitation. Journal of Sichuan University (Engineering Science Edition), 36(4), 19-23. (in Chinese)

    Zhang, Q. Y., and Chai, B. Q. 2001. Hydraulic characteristic of multistage orifice tunnels. Journal of Hydraulic engineering, 127(8), 663-670. [doi:10.1061/(ASCE)0733-9429(2001)127:8(663)]

    亚洲一区高清亚洲精品| 淫妇啪啪啪对白视频| 国产熟女午夜一区二区三区| 国产精品 国内视频| 女人久久www免费人成看片| 宅男免费午夜| 伊人久久大香线蕉亚洲五| 老熟妇仑乱视频hdxx| 老司机在亚洲福利影院| 午夜91福利影院| 国产成人免费无遮挡视频| 久久ye,这里只有精品| 最近最新中文字幕大全免费视频| 亚洲欧美日韩另类电影网站| 一本大道久久a久久精品| 夜夜躁狠狠躁天天躁| 国产精品欧美亚洲77777| 大片电影免费在线观看免费| x7x7x7水蜜桃| 精品无人区乱码1区二区| tocl精华| 在线观看免费日韩欧美大片| 中亚洲国语对白在线视频| 美女高潮到喷水免费观看| 人人妻人人爽人人添夜夜欢视频| 国产主播在线观看一区二区| 国产又爽黄色视频| 乱人伦中国视频| 亚洲av第一区精品v没综合| 久久久国产精品麻豆| 国产精品九九99| 亚洲精品美女久久av网站| 日韩欧美一区视频在线观看| 丁香欧美五月| 国产在线一区二区三区精| 每晚都被弄得嗷嗷叫到高潮| 天堂俺去俺来也www色官网| 国产精品一区二区精品视频观看| 757午夜福利合集在线观看| 久久精品国产综合久久久| 久久 成人 亚洲| 日日摸夜夜添夜夜添小说| 黄色怎么调成土黄色| 亚洲精品国产色婷婷电影| av网站在线播放免费| 人妻久久中文字幕网| 精品欧美一区二区三区在线| 自拍欧美九色日韩亚洲蝌蚪91| 最新在线观看一区二区三区| 精品一区二区三区四区五区乱码| 别揉我奶头~嗯~啊~动态视频| 男人操女人黄网站| 久久精品亚洲av国产电影网| 又大又爽又粗| 一区二区三区精品91| 欧美乱妇无乱码| 久久香蕉激情| 久久香蕉激情| 欧美日韩福利视频一区二区| 欧美日韩视频精品一区| 制服诱惑二区| 亚洲熟女精品中文字幕| 国产av又大| 国产欧美日韩一区二区精品| 一区在线观看完整版| 久久精品国产a三级三级三级| 12—13女人毛片做爰片一| 久久久久久免费高清国产稀缺| 亚洲三区欧美一区| 欧美日韩黄片免| 少妇粗大呻吟视频| 久久久久久人人人人人| 国产高清视频在线播放一区| 久久久久久人人人人人| 日韩欧美国产一区二区入口| 男人舔女人的私密视频| 99久久人妻综合| av线在线观看网站| 国产深夜福利视频在线观看| 国产在线一区二区三区精| 国产野战对白在线观看| 欧美精品高潮呻吟av久久| 午夜福利视频在线观看免费| 欧美在线黄色| 少妇被粗大的猛进出69影院| 国产视频一区二区在线看| 岛国在线观看网站| 制服人妻中文乱码| 最近最新中文字幕大全电影3 | 日韩三级视频一区二区三区| 国产欧美亚洲国产| 午夜福利免费观看在线| 19禁男女啪啪无遮挡网站| 久久久国产精品麻豆| 国产精品一区二区在线观看99| 视频区欧美日本亚洲| 极品教师在线免费播放| 久久精品国产亚洲av高清一级| 天天操日日干夜夜撸| 久久久久国内视频| 国产av又大| 无人区码免费观看不卡| 十分钟在线观看高清视频www| 大码成人一级视频| 夫妻午夜视频| 最新美女视频免费是黄的| 久久国产精品人妻蜜桃| 脱女人内裤的视频| 精品高清国产在线一区| netflix在线观看网站| 色婷婷久久久亚洲欧美| 九色亚洲精品在线播放| 欧美成人午夜精品| 精品国产超薄肉色丝袜足j| 亚洲精品中文字幕在线视频| ponron亚洲| 国产野战对白在线观看| 国产精品久久久久久精品古装| 热99国产精品久久久久久7| 欧美不卡视频在线免费观看 | 免费少妇av软件| 久久精品熟女亚洲av麻豆精品| 人妻 亚洲 视频| 亚洲精品久久成人aⅴ小说| 1024香蕉在线观看| 男女床上黄色一级片免费看| 99在线人妻在线中文字幕 | 久久久久久久久免费视频了| 国产激情欧美一区二区| 99国产精品99久久久久| 成人精品一区二区免费| 亚洲五月天丁香| 搡老熟女国产l中国老女人| 亚洲专区字幕在线| 九色亚洲精品在线播放| 黑人巨大精品欧美一区二区mp4| 变态另类成人亚洲欧美熟女 | 国产成人精品在线电影| 精品久久久久久久毛片微露脸| 精品免费久久久久久久清纯 | 欧美日韩瑟瑟在线播放| 亚洲一区中文字幕在线| 国产亚洲精品久久久久久毛片 | 中国美女看黄片| 视频区图区小说| 精品国产一区二区三区四区第35| 精品一区二区三卡| 国产欧美日韩一区二区三| 91精品三级在线观看| 久久国产精品大桥未久av| 满18在线观看网站| 亚洲国产欧美一区二区综合| 波多野结衣一区麻豆| 成人国语在线视频| 丰满迷人的少妇在线观看| 美女福利国产在线| 色老头精品视频在线观看| 动漫黄色视频在线观看| 国产深夜福利视频在线观看| 精品国产一区二区三区四区第35| 亚洲精品一二三| 久久久国产精品麻豆| 亚洲av日韩在线播放| 亚洲五月婷婷丁香| aaaaa片日本免费| 亚洲精品国产色婷婷电影| 精品高清国产在线一区| 欧美激情久久久久久爽电影 | 精品福利永久在线观看| 国产精品成人在线| 亚洲免费av在线视频| av一本久久久久| 一级毛片精品| www日本在线高清视频| 欧美成人午夜精品| 国产视频一区二区在线看| 好男人电影高清在线观看| 搡老岳熟女国产| 一二三四社区在线视频社区8| 欧美 日韩 精品 国产| 国产精品影院久久| 久久精品aⅴ一区二区三区四区| 中文字幕人妻丝袜一区二区| 中文字幕另类日韩欧美亚洲嫩草| 久久精品亚洲av国产电影网| 免费不卡黄色视频| 搡老乐熟女国产| 色综合婷婷激情| 又紧又爽又黄一区二区| 韩国精品一区二区三区| avwww免费| 女性生殖器流出的白浆| a级毛片在线看网站| 亚洲中文日韩欧美视频| 最新美女视频免费是黄的| 美国免费a级毛片| 黄网站色视频无遮挡免费观看| 日韩制服丝袜自拍偷拍| 国产精品久久久人人做人人爽| 90打野战视频偷拍视频| a级毛片在线看网站| 日本撒尿小便嘘嘘汇集6| 国产精品 欧美亚洲| 亚洲国产欧美网| 久久久精品区二区三区| 国产又爽黄色视频| 大香蕉久久网| а√天堂www在线а√下载 | 国产aⅴ精品一区二区三区波| 丝袜美足系列| 亚洲精品国产区一区二| 一a级毛片在线观看| 日韩熟女老妇一区二区性免费视频| 国产精品 国内视频| bbb黄色大片| 免费av中文字幕在线| 美国免费a级毛片| 亚洲精品中文字幕在线视频| 国产蜜桃级精品一区二区三区 | 国产激情欧美一区二区| 国产精品免费视频内射| videos熟女内射| 亚洲熟妇中文字幕五十中出 | 大陆偷拍与自拍| 国产精华一区二区三区| 国产精品亚洲av一区麻豆| 国产精品电影一区二区三区 | 免费观看人在逋| 亚洲熟女精品中文字幕| 夫妻午夜视频| 亚洲专区字幕在线| 久久久久久人人人人人| 国产一卡二卡三卡精品| 国产精品一区二区在线观看99| 久久性视频一级片| 成人三级做爰电影| 啦啦啦视频在线资源免费观看| 国产亚洲av高清不卡| 日韩成人在线观看一区二区三区| 五月开心婷婷网| 午夜福利在线观看吧| 成人国语在线视频| 啦啦啦在线免费观看视频4| 麻豆成人av在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲精品美女久久久久99蜜臀| 一级,二级,三级黄色视频| 精品久久久久久电影网| 窝窝影院91人妻| 黑人巨大精品欧美一区二区mp4| 巨乳人妻的诱惑在线观看| 色94色欧美一区二区| 久久精品亚洲av国产电影网| 亚洲精品国产一区二区精华液| 韩国av一区二区三区四区| 亚洲国产欧美日韩在线播放| 80岁老熟妇乱子伦牲交| 免费女性裸体啪啪无遮挡网站| x7x7x7水蜜桃| 精品少妇久久久久久888优播| 一边摸一边做爽爽视频免费| 色在线成人网| 久久久久久久午夜电影 | 1024视频免费在线观看| 中出人妻视频一区二区| 在线观看舔阴道视频| 欧美日韩亚洲高清精品| 亚洲久久久国产精品| 夜夜爽天天搞| 欧美另类亚洲清纯唯美| 男男h啪啪无遮挡| 少妇粗大呻吟视频| 99热只有精品国产| 亚洲精华国产精华精| 老司机福利观看| 精品国产国语对白av| 黑人巨大精品欧美一区二区蜜桃| 人人妻人人爽人人添夜夜欢视频| 久久天躁狠狠躁夜夜2o2o| 国产精品综合久久久久久久免费 | 香蕉丝袜av| 国产极品粉嫩免费观看在线| 黄色a级毛片大全视频| 亚洲中文字幕日韩| 欧美 亚洲 国产 日韩一| 黑人巨大精品欧美一区二区蜜桃| 亚洲精品美女久久久久99蜜臀| 超色免费av| www.熟女人妻精品国产| 在线十欧美十亚洲十日本专区| 天天躁狠狠躁夜夜躁狠狠躁| 大陆偷拍与自拍| 国产精品秋霞免费鲁丝片| 免费观看精品视频网站| 成人特级黄色片久久久久久久| 日韩欧美一区视频在线观看| а√天堂www在线а√下载 | 12—13女人毛片做爰片一| 国产欧美日韩精品亚洲av| 桃红色精品国产亚洲av| 丰满人妻熟妇乱又伦精品不卡| 亚洲专区国产一区二区| 一区二区日韩欧美中文字幕| 亚洲精品中文字幕一二三四区| 成年女人毛片免费观看观看9 | 乱人伦中国视频| 久久久久久久午夜电影 | 麻豆国产av国片精品| 夜夜躁狠狠躁天天躁| 动漫黄色视频在线观看| 国产精品免费一区二区三区在线 | 亚洲第一欧美日韩一区二区三区| 欧美 亚洲 国产 日韩一| 精品久久久久久,| 18禁美女被吸乳视频| 亚洲第一欧美日韩一区二区三区| 国产亚洲精品一区二区www | 无人区码免费观看不卡| 国产1区2区3区精品| 丰满饥渴人妻一区二区三| 国产淫语在线视频| 免费人成视频x8x8入口观看| 美女扒开内裤让男人捅视频| 国产乱人伦免费视频| av视频免费观看在线观看| 1024视频免费在线观看| 91大片在线观看| 不卡一级毛片| 欧美激情极品国产一区二区三区| 视频区图区小说| 色综合婷婷激情| 国产野战对白在线观看| 中文字幕人妻丝袜制服| 91麻豆av在线| 成年人午夜在线观看视频| 国产精品香港三级国产av潘金莲| av网站免费在线观看视频| 国产精品免费大片| 一级黄色大片毛片| 午夜福利,免费看| 日韩有码中文字幕| 精品高清国产在线一区| 十八禁高潮呻吟视频| 日韩欧美免费精品| 国产区一区二久久| 国产精品久久久久成人av| av在线播放免费不卡| 久久精品91无色码中文字幕| bbb黄色大片| 国产高清国产精品国产三级| 色老头精品视频在线观看| 成人特级黄色片久久久久久久| 亚洲成av片中文字幕在线观看| 欧美日韩福利视频一区二区| 黑人操中国人逼视频| 亚洲欧美色中文字幕在线| 交换朋友夫妻互换小说| 成人18禁在线播放| 不卡一级毛片| 国产午夜精品久久久久久| 精品国产一区二区久久| 亚洲一区二区三区不卡视频| 一级a爱片免费观看的视频| 一级片免费观看大全| 久久人妻av系列| 少妇粗大呻吟视频| 精品国产一区二区三区久久久樱花| 亚洲免费av在线视频| 亚洲国产精品合色在线| 国产蜜桃级精品一区二区三区 | 亚洲色图av天堂| 久久天堂一区二区三区四区| 中文欧美无线码| 99国产精品99久久久久| 午夜福利视频在线观看免费| 母亲3免费完整高清在线观看| 丰满迷人的少妇在线观看| 亚洲全国av大片| 亚洲av日韩在线播放| 国产高清国产精品国产三级| 老汉色∧v一级毛片| 90打野战视频偷拍视频| 十分钟在线观看高清视频www| 成年人午夜在线观看视频| 国产蜜桃级精品一区二区三区 | 黑人巨大精品欧美一区二区mp4| www.999成人在线观看| 精品无人区乱码1区二区| 99国产精品一区二区三区| 少妇被粗大的猛进出69影院| 制服诱惑二区| 色综合婷婷激情| 国产xxxxx性猛交| 最新的欧美精品一区二区| 日日摸夜夜添夜夜添小说| 国产成人系列免费观看| 18禁裸乳无遮挡免费网站照片 | 亚洲人成电影免费在线| 又黄又粗又硬又大视频| 国产91精品成人一区二区三区| 国产极品粉嫩免费观看在线| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美+亚洲+日韩+国产| 日韩大码丰满熟妇| 久久 成人 亚洲| 亚洲第一av免费看| 在线观看午夜福利视频| 人人妻人人添人人爽欧美一区卜| 亚洲专区中文字幕在线| 久久精品国产亚洲av高清一级| 正在播放国产对白刺激| 18禁观看日本| 中文字幕人妻丝袜制服| 国产片内射在线| 久久久久久久国产电影| 国产有黄有色有爽视频| 日韩欧美在线二视频 | 亚洲国产欧美一区二区综合| 国产成人av激情在线播放| 丝瓜视频免费看黄片| 男女下面插进去视频免费观看| 在线播放国产精品三级| 欧美+亚洲+日韩+国产| 母亲3免费完整高清在线观看| 50天的宝宝边吃奶边哭怎么回事| www.自偷自拍.com| 亚洲av欧美aⅴ国产| 啦啦啦在线免费观看视频4| 丁香欧美五月| 午夜精品在线福利| 99国产精品一区二区三区| 黄片小视频在线播放| 国产国语露脸激情在线看| 又黄又爽又免费观看的视频| 天堂√8在线中文| 色综合欧美亚洲国产小说| 国产无遮挡羞羞视频在线观看| 香蕉丝袜av| xxx96com| 极品少妇高潮喷水抽搐| 视频在线观看一区二区三区| 亚洲成人手机| 丰满的人妻完整版| 中文字幕人妻熟女乱码| 国产精品免费视频内射| 久久精品国产亚洲av香蕉五月 | 国产成+人综合+亚洲专区| 国产精品国产av在线观看| 亚洲人成电影免费在线| 又黄又爽又免费观看的视频| 啦啦啦 在线观看视频| 高清av免费在线| 男人操女人黄网站| 欧美人与性动交α欧美软件| 亚洲第一青青草原| 亚洲成国产人片在线观看| 亚洲欧美激情在线| 国产男女超爽视频在线观看| av一本久久久久| 女人高潮潮喷娇喘18禁视频| 欧美亚洲 丝袜 人妻 在线| 一本综合久久免费| 免费在线观看完整版高清| 亚洲成国产人片在线观看| 婷婷成人精品国产| 精品免费久久久久久久清纯 | 久热这里只有精品99| 无人区码免费观看不卡| 国产亚洲精品久久久久久毛片 | 一级毛片精品| 久久精品aⅴ一区二区三区四区| 三级毛片av免费| 亚洲成人免费电影在线观看| 国产av精品麻豆| 夜夜躁狠狠躁天天躁| 乱人伦中国视频| 国产一区二区三区在线臀色熟女 | 在线看a的网站| 精品国内亚洲2022精品成人 | 18禁美女被吸乳视频| 精品国内亚洲2022精品成人 | 国产伦人伦偷精品视频| 99精品在免费线老司机午夜| 久热这里只有精品99| 免费在线观看亚洲国产| 超碰97精品在线观看| 亚洲七黄色美女视频| 男男h啪啪无遮挡| 宅男免费午夜| av网站在线播放免费| 好男人电影高清在线观看| 亚洲人成电影观看| 欧美国产精品va在线观看不卡| 老汉色av国产亚洲站长工具| www.熟女人妻精品国产| 极品少妇高潮喷水抽搐| av福利片在线| 国产精品1区2区在线观看. | 午夜精品久久久久久毛片777| 国产精品免费视频内射| 一夜夜www| 真人做人爱边吃奶动态| 午夜福利,免费看| √禁漫天堂资源中文www| 亚洲成人免费av在线播放| 免费观看a级毛片全部| 精品少妇一区二区三区视频日本电影| 午夜福利免费观看在线| av国产精品久久久久影院| av视频免费观看在线观看| 精品久久蜜臀av无| 91字幕亚洲| 午夜精品在线福利| av免费在线观看网站| 狠狠婷婷综合久久久久久88av| 免费一级毛片在线播放高清视频 | 国产精品欧美亚洲77777| 午夜影院日韩av| 人人妻人人澡人人看| 国产亚洲一区二区精品| 欧美精品人与动牲交sv欧美| 美国免费a级毛片| 岛国毛片在线播放| 淫妇啪啪啪对白视频| 精品人妻在线不人妻| 久久久久国产一级毛片高清牌| 国产深夜福利视频在线观看| 如日韩欧美国产精品一区二区三区| 麻豆成人av在线观看| 高清黄色对白视频在线免费看| 亚洲一区二区三区不卡视频| 黄色视频,在线免费观看| 最近最新中文字幕大全电影3 | 久久精品亚洲精品国产色婷小说| 日韩熟女老妇一区二区性免费视频| 成人18禁高潮啪啪吃奶动态图| 少妇被粗大的猛进出69影院| 一级片'在线观看视频| 午夜免费成人在线视频| 欧美日韩福利视频一区二区| 精品国产超薄肉色丝袜足j| 亚洲一区二区三区欧美精品| 一边摸一边抽搐一进一出视频| 国产精品自产拍在线观看55亚洲 | 亚洲av美国av| 久久ye,这里只有精品| avwww免费| 校园春色视频在线观看| 国产在线观看jvid| 亚洲成a人片在线一区二区| 亚洲专区中文字幕在线| 久久久国产成人免费| 亚洲精品中文字幕在线视频| 这个男人来自地球电影免费观看| 欧美精品亚洲一区二区| 久久99一区二区三区| 欧美乱色亚洲激情| 国产一区二区三区在线臀色熟女 | 最新美女视频免费是黄的| 久久天堂一区二区三区四区| 成人18禁在线播放| 亚洲片人在线观看| 可以免费在线观看a视频的电影网站| 久久久国产欧美日韩av| 午夜老司机福利片| 美女视频免费永久观看网站| 亚洲熟女精品中文字幕| 国产精品久久久久久精品古装| 成人手机av| 黑人巨大精品欧美一区二区mp4| 交换朋友夫妻互换小说| 女性被躁到高潮视频| 国产成人精品久久二区二区91| 超碰成人久久| 中文字幕人妻丝袜制服| 亚洲午夜理论影院| 大陆偷拍与自拍| 91在线观看av| 丝袜美腿诱惑在线| 久久精品亚洲熟妇少妇任你| 天堂中文最新版在线下载| 91九色精品人成在线观看| 精品久久久久久久毛片微露脸| 亚洲午夜理论影院| 丝袜美腿诱惑在线| 欧美人与性动交α欧美软件| 亚洲欧美一区二区三区黑人| 在线十欧美十亚洲十日本专区| 日本a在线网址| 热99国产精品久久久久久7| 少妇裸体淫交视频免费看高清 | 国产99白浆流出| 99国产精品一区二区蜜桃av | 成人免费观看视频高清| 成人精品一区二区免费| 国产精品一区二区在线观看99| 色播在线永久视频| 黄色视频,在线免费观看| 午夜福利影视在线免费观看| 精品国产乱码久久久久久男人| 天天躁日日躁夜夜躁夜夜| 免费观看人在逋| 欧美日韩瑟瑟在线播放| 久久久久久久久久久久大奶| 侵犯人妻中文字幕一二三四区| 嫁个100分男人电影在线观看| 精品国产亚洲在线| 国产熟女午夜一区二区三区| 好男人电影高清在线观看| 免费在线观看亚洲国产| 波多野结衣av一区二区av| 国产亚洲欧美精品永久| 国产免费av片在线观看野外av| 久久国产精品人妻蜜桃| 99在线人妻在线中文字幕 |