• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Application of artificial neural network to calculation of solitary wave run-up

    2010-11-02 13:34:44YouxingWEIDengtingWANGQingjunLIU
    Water Science and Engineering 2010年3期

    You-xing WEI*, Deng-ting WANG, Qing-jun LIU

    1. College of Harbour, Coastal and Offshore Engineering, Hohai University, Nanjing 210098, P. R. China

    2. River and Harbor Engineering Department, Nanjing Hydraulic Research Institute,Nanjing 210024, P. R. China

    1 Introduction

    Many researchers have focused on the study of solitary wave run-up because of its important practical significance in ocean engineering. Carrier and Greenspan (1958)first proposed the theoretical results for wave run-up of a non-breaking long wave on a flat sloping beach by solving the shallow water equations. Through the application of the Lagrange equation, Shuto (1967)obtained a run-up formula for a nonlinear long wave on a flat slope.Synolakis (1987)extended the analytical solution of Carrier and Greenspan (1958), and obtained a formula for estimation of solitary wave run-up. Titov and Synolakis (1998)studied the roughness effects on wave run-up through numerical methods. In order to examine the wave dispersion influence on solitary wave run-up, Zhang (1996)proposed a new solitary wave run-up model according to the nonlinear dispersion Boussinesq equation, and their results confirmed that the run-up estimated by the Boussinesq model was slightly larger than that obtained with the shallow water equations. In recent years, Hsiao et al. (2008)put forward a simple formula that can predict the maximum run-up of a breaking wave on a uniform beach over a wide range of the beach slope. Choi et al. (2008)presented that a parabolic cross-slope channel on the plane beach might cause the run-up intensification. Didenkulova and Pelinovsky (2008)proved the universality of a formula for calculation of the maximum run-up of a solitary wave on a beach under different incident wave conditions. They also studied the influence of the incident wave form on the extreme (maximal)characteristics of a wave at a beach, including run-up and run-down heights, run-up and run-down velocities, and the wave breaking parameter. Hsieh et al. (2007)developed a numerical model for experimental research on solitary wave running, shoaling and breaking on a sloping bed. To investigate the propagation and run-up of both non-breaking and breaking solitary waves, Mahdavi and Talebbeydokhti (2009)developed a force-muscle scheme model based on the non-linear shallow water equations. Hwang et al. (2007)investigated the evolution and run-up of breaking solitary waves on plane beaches. Que and Xu (2005)introduced a finite-volume kinetic Bhatnagar-Gross-Krook scheme as well as its applications to the study of roll and solitary waves. Nam and Haeng (2008)carried out numerical simulations of solitary wave propagation along a vertical wall and a sloping wall using the smoothed particle hydrodynamics (SPH)method.

    In contrast with the above research, artificial neural network technology has been rapidly developed and is widely used in coastal and marine engineering. Deo et al. (2001)and Mandal and Prabaharan (2010)discussed how to use neural networks in wave forecasting. Mase and Kitano (1999)proposed a neural network model to investigate the wave impact on composite breakwater superstructures. Based on previous studies, this paper presents a further study on the application of artificial neural networks to solitary wave run-up calculation.

    2 Back-propagation (BP)network and its Improvement

    2.1 Neural network

    The basic unit of the nervous system is a nerve cell which is also termed a neuron.Specific networks are composed of several parallel interconnected neuron models, and signal processing is achieved through interaction between neurons. The essence of neural networks demonstrates a functional relationship between input and output variables. Fig. 1 shows a single neuron with r input components.

    Fig. 1 Diagram of single neuron with r input components

    The neuron output can be expressed as

    The activation transfer function f is the core of neurons and networks. The problem-solving ability and effectiveness of the network are not only related to the network structure, but also dependent on the activation transfer function.

    2.2 BP network

    A BP network is a multi-layer network that generalizes the W-H learning rule and carries out weight training with the nonlinear differentiable function. It gradually approaches the goal through continuous calculation of network weight and bias variations using the gradient descent of error function. Generally, BP networks use an S-type activation transfer function for the hidden layer, while using a linear activation transfer function for the output layer. Fig. 2 shows the structure of a neural network model with r input components and a hidden layer,where W1and B1are, respectively, the weight vector and bias vector between the input layer and hidden layer; W2and B2are, respectively, the weight vector and bias vector between the hidden layer and output layer; f1and f2are the activation transfer functions of the hidden layer and output layer; s1and s2are the neuron numbers of the hidden layer and output layer; A1and A2are the output vectors of the hidden layer and output layer; and P is the input vector.

    Fig. 2 Diagram of neural network model with r input components and one hidden layer

    2.3 Improvement of BP network

    In order to speed up the training process and avoid local minimum values, the additional momentum method and the auto-adjusting learning factor are introduced into the BP network.

    2.3.1 Additional momentum method

    The additional momentum method is based on the BP method, the essence of which is to transfer the influence of the last weight variation through a momentum factor. It modifies each weight variation by adding an extra value that is proportional to the former one to produce a new weight variation according to the BP method.

    In this study, only the weight adjustment for W1was considered. The weight adjustment formula with the additional momentum factor is

    where Δωijis the weight variation corresponding to the ith neuron in the hidden layer and the jth input component (i =1, 2, … , s1and j =1, 2, … ,r ), Δbiand δiare, respectively,the bias variation and error term for the ith neuron in the hidden layer, pjis the jth input component, η ( k)is the learning factor for the kth training, and m is the momentum factor,which usually has a value of 0.95.

    2.3.2 Auto-adjusting learning factor

    It is not easy to determine an appropriate learning factor for a specific problem. A formula for determining the auto-adjusting learning factor (Cong 1998)is given as

    where Esis the sum of square errors between the calculation results and experimental values.The selection scope of the initial learning factor η(0)is arbitrary, and the error rate Reis determined as 1.04.

    The criterion of adjusting the learning factor is to check whether the weight variation correction value makes the error decrease. If it does, it indicates that the selected learning factor is small and the value can be increased by multipling an increasing factor, such as 1.05 in Eq. (3); if it does not, the value of the learning factor should be reduced by multipling a decreasing factor, such as 0.7 in Eq. (3).

    3 Artificial neural network calculation model of solitary wave run-up

    3.1 Model establishment

    When establishing a neural network model, theoretical analysis should be carried out first to determine the main factors influencing the solitary wave run-up, and then adequate experimental values must be obtained. Secondly, the parameters must be determined, which include the neurons of the input and output layers, the number of hidden layers and associated neurons, the initial weights, the activation transfer functions, the initial learning factor, the multiplication factors for auto-adjusting learning factor, the error rate, the momentum factor,and the anticipation error. The network is trained by inputting the experimental values as input layer and output layer neurons. After the network training, solitary wave run-up can be calculated with the obtained W1, W2, B1, and B2. A comparison between the experimental and calculation results should be carried out. If their correlation coefficient is too low,re-training of the network is needed until the experimental and calculation results achieve a better correlation. Fig. 3 illustrates the process of establishing a neural network model.

    Fig. 3 Flow chart of neural network establishment

    3.2 Setup of input layer, output layer, and hidden layer

    The largest solitary wave run-up is determined by the following equation (Shuto 1967):

    where Rmaxis the largest solitary wave run-up, H is the solitary wave height, d is the water depth in front of the slope, and β is the slope gradient.

    Based on the analysis, we selected two neurons for the input layer, H d and cotβ,and one neuron for the output layer, a dimensionless number Rmaxd. After many times of model training, we selected one hidden layer and five neurons for the hidden layer.

    3.3 Data sources

    For this study, 70 sets of experimental values were selected from the literature (Synolakis 1987; Hall and Watts 1953)to establish the neural network model, and 18 sets of experimental values were used to validate the applicability of the model. The experimental conditions are shown in Table 1 and Table 2.

    Table 1 Experimental values and conditions for establishment of neural network model

    Table 2 Experimental values and conditions for validation of neural network model

    3.4 Selection of initial weights and activation transfer functions

    Because the system is nonlinear, the training time, as well as whether the training result reaches the local minimum and whether the system converges is directly determined by initial weights. The components of initial weights are usually random values in the range of 0 to 1. They were selected as follows: the components of initial weight of W1and bias of B1were random values obtained using the nwtan.m function of the MATLAB toolbox; the components of initial weight of W2and bias of B2were random values obtained by the random function rands.

    The BP network established in this study used an S-type activation transfer function for the hidden layer, while using a linear activation transfer function for the output layer.

    3.5 Determination of other parameters

    Other parameters determined for the establishment of the neural network model in this paper were as follows: the initial learning factor η(0)= 0.05, the increasing factor for auto-adjusting learning factor Linc= 1.02, the decreasing factor for auto-adjusting learning factor Ldec= 0.75, the error rate Re= 1.05, the momentum factor m= 0.95, and the anticipation error Ea= 0.04.

    The Trainbpx.m function within the MATLAB toolbox was used to program, combining the advantages of the additional momentum method and the auto-adjusting learning factor.

    4 Comparisons

    4.1 Comparison between experimental values and calculation results by Synolakis formula

    In the process of derivation, Synolakis (1987)considered the angle β of the flat sloping beach and used the solitary wave theory to solve the basic shallow water equation, obtaining a maximum relative solitary wave run-up formula:

    Eq. (5)can be used under the conditions that H d ?0.288tan βand that the wave does not break.

    When wave breaking occurs, the calculation formula is

    Fig. 4 shows the comparison between the experimental values of wave run-up and the Synolakis formula calculation results. It can be seen from the figure that they have a good correlation, with a correlation coefficient of 0.963 5. However, there remains a problem when using the Synolakis formula: it is difficult to accurately determine whether solitary waves have broken on the slope or not. The existing numerical calculation and model test have addressed this problem (Grilli et al. 1994, 1997; Tanaka et al. 1987; Zelt 1991). In this study, it was assumed that when H d is greater than 0.5, the solitary wave breaks.

    4.2 Comparison between experimental values and neural network model calculation results

    Fig. 5 shows the comparison between the experimental data and neural network model calculation results. The training time of the neural network model is 309 265. It can be found from Fig. 5 that the calculation results of the neural network model are highly accurate, and have a good correlation with the experimental results, with a correlation coefficient of 0.996 5.

    Fig. 4 Comparison between experimental values of wave run-up and calculation results by Synolakis formula

    Fig. 5 Comparison between experimental values of wave run-up and calculation results by neural network model

    Using the neural network model, it is unnecessary to determine whether solitary waves have broken on the slope or not. However, it needs complete and accurate data. The model established in this study only considered the variables H d and cotβ, and therefore, was insubstantial. Under specific circumstances, fluid viscosity and bottom friction may have certain effect on solitary wave run-up. Teng et al. (2000)studied the maximum non-breaking solitary wave run-up on smooth and rough flat slopes through experiments. It was found that when the slope exceeded 20°, viscosity and roughness had little effect on the maximum solitary wave run-up, but when the slope did not exceed 20°, both factors had a significant effect on the run-up. According to their experimental results, the measured data of the maximum solitary wave run-up were always smaller than the prediction results without consideration of viscosity. Therefore, comprehensive experiments should be carried out to acquire adequate data, in order to obtain an optimal neural network model.

    5 Conclusions

    Application of artificial neural networks in solitary wave run-up calculation is presented in this paper. A BP network with one hidden layer was used and the model was improved by introducing the additional momentum method and the auto-adjusting learning factor. There are two neurons in the input layer, H d and cotβ, and five neurons in the hidden layer in the network, and the neuron of the output layer is a dimensionless number Rmaxd. The calculated results of solitary wave run-up by this neural network model and the experimental results have a good correlation; therefore, the neural network model can be used for solitary wave run-up calculation and analysis.

    It is necessary to point out that the neural network model is established based on the finite amplitude wave theory. As the offshore wave is random, nonlinear, and clustered, a large number of observations must be conducted to establish a neural network model with greater practical applicability. On the other hand, as a limited number of data were used in this study,considering the limitations of the original trial data, the neural network model established in this paper is not suitable for a complex terrain. The neural network model has the potential to be optimized if additional experimental data are acquired.

    Finally, the method of neural network modeling can be further popularized and has the potential to be applied to many other aspects of coastal and ocean engineering, such as tidal prediction and wave force calculation.

    Carrier, G. F., and Greenspan, H. P. 1958. Water waves of finite amplitude on a sloping beach. Journal of Fluid Mechanics, 4(1), 97-109. [doi:10.1017/S0022112058000331]

    Choi, B. H., Pelinovsky, E., Kim, D. C., Didenkulova, I., and Woo, S. B. 2008. Two- and three-dimensional computation of solitary wave run-up on non-plane beach. Nonlinear Processes in Geophysics, 15(3),489-502. [doi:10.5194/npg-15-489-2008]

    Cong, S. 1998. MATLAB Toolbox for the Neural Network Theory and Application. Hefei: University of Science and Technology of China Press. (in Chinese)

    Deo, M. C., Jha, A., Chaphekar, A. S., and Ravikant, K. 2001. Neural network for wave forecasting. Ocean Engineering, 28(7), 889-898. [doi:10.1016/S0029-8018(00)00027-5]

    Didenkulova, I. I., and Pelinovsky, E. N. 2008. Run-up of long waves on a beach: The influence of the incident wave form. Oceanology, 48(1), 1-6. [doi:10.1007/s11491-008-1001-y]

    Grilli, S. T., Subramanya, R., Svendsen, I. A., and Veeramony, J. 1994. Shoaling of solitary waves on plane beaches. Journal of Waterway, Port, Coastal and Ocean Engineering, 120(6), 609-628. [doi:10.1061/(ASCE)0733-950X (1994)120:6(609)]

    Grilli, S. T., Svendsen, I. A., and Subramanya, R. 1997. Breaking criterion and characteristics for solitary waves on slopes. Journal of Waterway, Port, Coastal and Ocean Engineering, 123(3), 102-112.[doi:10.1061/(ASCE)0733-950X(1998)124:6(329)]

    Hall, J. V. Jr., and Watts, J. W. 1953. Laboratory Investigation of the Vertical Rise of Solitary Waves on Impermeable Slopes. Washington, D. C.: Army Coastal Engineering Research Center.

    Hsiao, S. C., Hsu, T. W., Lin, T.-C., and Chang, Y. H. 2008. On the evolution and run-up of breaking solitary waves on a mild sloping beach. Coastal Engineering, 55(12), 975-988. [doi:10.1016/j.coastaleng.2008.03.002]

    Hsieh, C. M., Hwang, R. R., Peng, Y. F., Yang, W. C., and Chern, M. Y. 2007. Numerical simulations of solitary wave running and breaking on a slopping bed. Proceedings of the Seventeenth (2007)International Offshore and Polar Engineering Conference, 2321-2326. Lisbon: International Society of Offshore and Polar Engineering.

    Hwang, K. S., Chang, Y. H., Hwung, H. H., and Li, Y. S. 2007. Large scale experiments on evolution and run-up of breaking solitary waves. Journal of Earthquake and Tsunami (JET), 1(3), 257-272.[ doi:10.1142/S1793431107000158]

    Mahdavi, A., and Talebbeydokhti, N. 2009. Modeling of non-breaking and breaking solitary wave run-up using force-muscle scheme. Journal of Hydraulic Research, 47(4), 476-485. [doi:10.3826/jhr.2009.3542]

    Mandal, S., and Prabaharan, N. 2010. Ocean wave prediction using numerical and neural network models.Open Ocean Engineering Journal, 3, 12-17. [doi:10.2174/1874835X01003010012]

    Mase, H., and Kitano, T. 1999. Prediction model for occurrence of impact wave force. Ocean Engineering,26(10), 949-961. [doi:10.1016/S0029-8018(98)00037-7]

    Nam, H. K., and Haeng, S. K. 2008. Numerical simulation on solitary wave propagation and run-up by SPH method. KSCE Journal of Civil Engineering, 12(4), 221-226. [dio:10.1007/s12205-008-0221-y]

    Que, Y. T., and Xu, K. 2005. The numerical study of roll-waves in inclined open channels and solitary wave run-up. International Journal of Numerical Methods in Fluids, 50(9), 1003-1027. [doi:10.1002/fld.1102]

    Shuto, N. 1967. Run-up of long waves on a sloping beach. Coastal Engineering, 10, 23-38.

    Synolakis, C. E. 1987. The run-up of solitary waves. Journal of Fluid Mechanics, 185, 523-545.[doi:10.1017/S002211208700329X]

    Tanaka, M., Dold, J. W., Lewy, M., and Peregrine, D. H. 1987. Instability and breaking of a solitary wave.Journal of Fluid Mechanics, 185, 235-248. [doi:10.1017/S002211208700315X]

    Teng, M. H., Feng, K., and Liao, T. I. 2000. Experimental study on long wave run-up on plane beaches. Chung,J. S., Frederking, R. M. W., Saeki, H., and Koterayama, W., eds., Proceedings of the Tenth International Offshore and Polar Engineering Conference (Vol. 3), 660-664.

    Titov, V. V., and Synolakis, C. E. 1998. Numerical modeling of tidal wave run-up. Journal of Waterway, Port,Coastal and Ocean Engineering, 124(4), 157-171. [doi:10.1061/(ASCE)0733-950X(1998)124:4(157)]

    Zelt, J. A. 1991. The run-up of non-breaking and breaking solitary waves. Coastal Engineering, 15(3),205-246. [doi:10.1016/0378-3839(91)90003-Y]

    Zhang, J. E. 1996. Run-up of Ocean Waves on Beaches. Ph. D. Dissertation. California: California Institute of Technology.

    亚洲中文字幕一区二区三区有码在线看| 亚洲av成人精品一区久久| 国产精品电影一区二区三区| 熟女电影av网| 免费av毛片视频| or卡值多少钱| 美女内射精品一级片tv| 欧美精品国产亚洲| 亚洲精品影视一区二区三区av| 麻豆国产av国片精品| 日日摸夜夜添夜夜爱| 偷拍熟女少妇极品色| 18禁在线无遮挡免费观看视频 | 两个人视频免费观看高清| av视频在线观看入口| 国产成人影院久久av| 狂野欧美白嫩少妇大欣赏| 亚洲av电影不卡..在线观看| 国产av麻豆久久久久久久| 亚洲欧美日韩东京热| 国产一级毛片七仙女欲春2| av中文乱码字幕在线| 国产蜜桃级精品一区二区三区| 精品久久久久久久久av| 一个人观看的视频www高清免费观看| av视频在线观看入口| 国内精品宾馆在线| 九九爱精品视频在线观看| 免费一级毛片在线播放高清视频| 国产精品亚洲一级av第二区| 深夜a级毛片| 亚洲一级一片aⅴ在线观看| 亚洲国产欧洲综合997久久,| 99国产精品一区二区蜜桃av| 久久人人爽人人片av| 久久久久久久久久久丰满| 欧美潮喷喷水| 国产精品亚洲一级av第二区| 少妇被粗大猛烈的视频| 亚洲精品国产成人久久av| 69av精品久久久久久| 1024手机看黄色片| 最新在线观看一区二区三区| 免费黄网站久久成人精品| 成人精品一区二区免费| 日本熟妇午夜| 一区二区三区高清视频在线| 日韩欧美一区二区三区在线观看| 99九九线精品视频在线观看视频| 成人性生交大片免费视频hd| 级片在线观看| 亚洲欧美日韩东京热| 老熟妇仑乱视频hdxx| 美女免费视频网站| 舔av片在线| 夜夜夜夜夜久久久久| 别揉我奶头 嗯啊视频| 精品久久久久久久人妻蜜臀av| 国产白丝娇喘喷水9色精品| 男人舔奶头视频| 色吧在线观看| 一区二区三区免费毛片| 久久午夜亚洲精品久久| 国内久久婷婷六月综合欲色啪| 波多野结衣巨乳人妻| 国产精品1区2区在线观看.| 老司机福利观看| 又爽又黄无遮挡网站| 日韩欧美国产在线观看| 亚洲色图av天堂| 老熟妇乱子伦视频在线观看| 村上凉子中文字幕在线| 搡老妇女老女人老熟妇| 日韩 亚洲 欧美在线| 午夜久久久久精精品| 国产伦一二天堂av在线观看| 国产高清不卡午夜福利| 久久精品久久久久久噜噜老黄 | 中文亚洲av片在线观看爽| 人人妻人人澡欧美一区二区| 亚洲国产欧洲综合997久久,| 天天躁日日操中文字幕| 久久草成人影院| 欧美最黄视频在线播放免费| 白带黄色成豆腐渣| av中文乱码字幕在线| 日本 av在线| 哪里可以看免费的av片| 卡戴珊不雅视频在线播放| 国产精品一二三区在线看| 久久精品国产鲁丝片午夜精品| 99久久精品一区二区三区| 国产精品一区二区三区四区免费观看 | 欧美成人精品欧美一级黄| 精品人妻一区二区三区麻豆 | 国产黄片美女视频| 日本免费一区二区三区高清不卡| 国产精品国产三级国产av玫瑰| 亚洲国产欧洲综合997久久,| 一个人观看的视频www高清免费观看| 少妇熟女欧美另类| 天堂av国产一区二区熟女人妻| 日韩国内少妇激情av| 波野结衣二区三区在线| 亚洲精品一区av在线观看| 免费电影在线观看免费观看| 久久6这里有精品| 欧美xxxx性猛交bbbb| 中文在线观看免费www的网站| 久久久欧美国产精品| 三级男女做爰猛烈吃奶摸视频| 此物有八面人人有两片| 五月玫瑰六月丁香| 卡戴珊不雅视频在线播放| 热99re8久久精品国产| 中文字幕人妻熟人妻熟丝袜美| 久久精品国产亚洲av涩爱 | 欧美日韩国产亚洲二区| 免费观看在线日韩| 久久婷婷人人爽人人干人人爱| 成人特级av手机在线观看| 嫩草影院入口| 亚洲av不卡在线观看| 国产色婷婷99| 成人亚洲欧美一区二区av| 亚洲精品在线观看二区| 色哟哟·www| 夜夜爽天天搞| 欧美中文日本在线观看视频| 真人做人爱边吃奶动态| 亚洲av二区三区四区| 国产精品久久久久久亚洲av鲁大| 日韩三级伦理在线观看| 一夜夜www| 别揉我奶头~嗯~啊~动态视频| 国产91av在线免费观看| 久久久久免费精品人妻一区二区| 老熟妇仑乱视频hdxx| 久久精品国产亚洲av香蕉五月| 亚洲最大成人av| 春色校园在线视频观看| 亚洲精品乱码久久久v下载方式| 免费av观看视频| 亚洲欧美精品自产自拍| 亚州av有码| 丝袜美腿在线中文| 成人鲁丝片一二三区免费| 联通29元200g的流量卡| 亚洲精品一卡2卡三卡4卡5卡| 亚洲自拍偷在线| 国产精品一区二区三区四区久久| 97热精品久久久久久| 亚洲欧美精品综合久久99| 看黄色毛片网站| 精品熟女少妇av免费看| 我的女老师完整版在线观看| 男人的好看免费观看在线视频| 国产乱人偷精品视频| 黄色配什么色好看| 少妇人妻一区二区三区视频| 91久久精品国产一区二区成人| 91精品国产九色| 国产成人freesex在线 | 精品久久久久久成人av| 赤兔流量卡办理| 日韩欧美 国产精品| 国产精品久久久久久精品电影| 69人妻影院| 可以在线观看的亚洲视频| 亚洲av第一区精品v没综合| 桃色一区二区三区在线观看| 联通29元200g的流量卡| 看片在线看免费视频| 级片在线观看| 国产精品福利在线免费观看| 少妇高潮的动态图| 搞女人的毛片| 最近的中文字幕免费完整| 久久国内精品自在自线图片| 在线播放国产精品三级| 白带黄色成豆腐渣| 午夜a级毛片| 最近中文字幕高清免费大全6| 热99re8久久精品国产| 午夜精品一区二区三区免费看| .国产精品久久| 成人国产麻豆网| 嫩草影院新地址| 欧美色欧美亚洲另类二区| 久久久久久久久中文| 久久精品人妻少妇| 嫩草影院精品99| 久久人人爽人人片av| 午夜久久久久精精品| 婷婷精品国产亚洲av| 少妇人妻一区二区三区视频| 一个人免费在线观看电影| 久久久久性生活片| 尾随美女入室| 国产伦精品一区二区三区视频9| av视频在线观看入口| 精品99又大又爽又粗少妇毛片| 伊人久久精品亚洲午夜| avwww免费| 欧美成人a在线观看| 亚洲国产精品国产精品| 国内精品美女久久久久久| 国产成年人精品一区二区| 麻豆国产av国片精品| 成人一区二区视频在线观看| 亚洲真实伦在线观看| 18禁在线播放成人免费| 如何舔出高潮| 欧美日本视频| 热99在线观看视频| 麻豆成人午夜福利视频| 国产欧美日韩精品一区二区| 精品一区二区三区人妻视频| 美女xxoo啪啪120秒动态图| 女人被狂操c到高潮| 少妇熟女aⅴ在线视频| 精华霜和精华液先用哪个| 国产成人a∨麻豆精品| 别揉我奶头 嗯啊视频| 免费观看在线日韩| 精品久久久久久久久av| 国产麻豆成人av免费视频| 欧美高清成人免费视频www| 久久欧美精品欧美久久欧美| 欧美一区二区国产精品久久精品| 成人鲁丝片一二三区免费| 中文资源天堂在线| 亚洲国产精品sss在线观看| 天美传媒精品一区二区| 精品99又大又爽又粗少妇毛片| av福利片在线观看| 免费不卡的大黄色大毛片视频在线观看 | 久久久国产成人精品二区| 色5月婷婷丁香| 亚洲精品日韩av片在线观看| 性插视频无遮挡在线免费观看| 淫妇啪啪啪对白视频| 99久久久亚洲精品蜜臀av| 听说在线观看完整版免费高清| 国产成人影院久久av| 国产探花在线观看一区二区| 97人妻精品一区二区三区麻豆| 久久韩国三级中文字幕| 国产在视频线在精品| 精品一区二区三区视频在线观看免费| 国产精品一区二区三区四区久久| 麻豆精品久久久久久蜜桃| 亚洲无线观看免费| 人人妻,人人澡人人爽秒播| 国产精品女同一区二区软件| 国产久久久一区二区三区| 成人特级黄色片久久久久久久| 国国产精品蜜臀av免费| 国产v大片淫在线免费观看| 变态另类成人亚洲欧美熟女| 亚洲精品国产成人久久av| 国产麻豆成人av免费视频| 亚洲精华国产精华液的使用体验 | 亚洲av美国av| 日韩高清综合在线| 青春草视频在线免费观看| 大型黄色视频在线免费观看| 69人妻影院| 99热这里只有是精品在线观看| 两性午夜刺激爽爽歪歪视频在线观看| 国产精品国产三级国产av玫瑰| 最近的中文字幕免费完整| 亚洲,欧美,日韩| 菩萨蛮人人尽说江南好唐韦庄 | 欧美3d第一页| 久久久久国产精品人妻aⅴ院| 床上黄色一级片| 最近在线观看免费完整版| 亚洲无线观看免费| 老熟妇仑乱视频hdxx| 日本爱情动作片www.在线观看 | 自拍偷自拍亚洲精品老妇| 一级毛片久久久久久久久女| 久久久a久久爽久久v久久| 色哟哟哟哟哟哟| 亚洲性夜色夜夜综合| 特大巨黑吊av在线直播| 国产视频一区二区在线看| 国产成人福利小说| 久久精品国产99精品国产亚洲性色| 波野结衣二区三区在线| 长腿黑丝高跟| 如何舔出高潮| 在线天堂最新版资源| 国产一区二区亚洲精品在线观看| 亚洲中文日韩欧美视频| 蜜臀久久99精品久久宅男| av在线播放精品| 乱码一卡2卡4卡精品| 国产精品久久久久久亚洲av鲁大| 欧美成人一区二区免费高清观看| 亚洲中文日韩欧美视频| 免费电影在线观看免费观看| 韩国av在线不卡| 久久久久久九九精品二区国产| 成人午夜高清在线视频| 国产伦精品一区二区三区四那| 精华霜和精华液先用哪个| 男人的好看免费观看在线视频| 人人妻人人看人人澡| 国产高清激情床上av| 麻豆成人午夜福利视频| 亚洲成av人片在线播放无| 久久精品国产自在天天线| 亚洲av免费高清在线观看| av在线亚洲专区| 亚洲av.av天堂| 能在线免费观看的黄片| 网址你懂的国产日韩在线| 亚洲内射少妇av| 晚上一个人看的免费电影| 国产免费一级a男人的天堂| 免费观看人在逋| 国产aⅴ精品一区二区三区波| 国产爱豆传媒在线观看| 欧美成人a在线观看| 99精品在免费线老司机午夜| 国产一区二区在线观看日韩| 老司机午夜福利在线观看视频| 亚洲第一区二区三区不卡| 免费看美女性在线毛片视频| 人妻丰满熟妇av一区二区三区| 人人妻人人澡欧美一区二区| 高清毛片免费观看视频网站| 免费av观看视频| 日韩欧美一区二区三区在线观看| 久久久久性生活片| 成人亚洲欧美一区二区av| 露出奶头的视频| 日本三级黄在线观看| 成人av一区二区三区在线看| 乱人视频在线观看| 男女那种视频在线观看| 国产精品福利在线免费观看| av女优亚洲男人天堂| 国产精品电影一区二区三区| 我的女老师完整版在线观看| 麻豆av噜噜一区二区三区| 亚洲成人av在线免费| 色综合站精品国产| 又爽又黄a免费视频| 免费看a级黄色片| 国内精品宾馆在线| 波野结衣二区三区在线| 国产精品日韩av在线免费观看| 免费看av在线观看网站| 12—13女人毛片做爰片一| 麻豆国产av国片精品| 黄色一级大片看看| 噜噜噜噜噜久久久久久91| 观看免费一级毛片| 亚洲自拍偷在线| 给我免费播放毛片高清在线观看| av在线亚洲专区| 欧美精品国产亚洲| 亚洲美女搞黄在线观看 | 欧美xxxx黑人xx丫x性爽| 免费人成在线观看视频色| 久久精品夜夜夜夜夜久久蜜豆| 可以在线观看的亚洲视频| 国产精品1区2区在线观看.| 久久久精品欧美日韩精品| 99热这里只有是精品50| 色噜噜av男人的天堂激情| 午夜爱爱视频在线播放| 女同久久另类99精品国产91| 免费观看的影片在线观看| 大香蕉久久网| 亚洲无线在线观看| 精品久久久久久久久久久久久| 最好的美女福利视频网| 1024手机看黄色片| 亚洲经典国产精华液单| 久久综合国产亚洲精品| 国产在线精品亚洲第一网站| 亚洲欧美日韩无卡精品| 在现免费观看毛片| 免费无遮挡裸体视频| 久久久久久久午夜电影| 精品久久久久久久久久免费视频| 婷婷六月久久综合丁香| 老司机福利观看| 午夜福利在线在线| 51国产日韩欧美| 高清午夜精品一区二区三区 | 日本爱情动作片www.在线观看 | 一级a爱片免费观看的视频| 国产精华一区二区三区| 欧美激情久久久久久爽电影| 91久久精品国产一区二区三区| 亚洲av中文字字幕乱码综合| 波多野结衣高清作品| 欧洲精品卡2卡3卡4卡5卡区| 色在线成人网| 好男人在线观看高清免费视频| 欧美不卡视频在线免费观看| 最近视频中文字幕2019在线8| 亚洲在线自拍视频| 亚洲欧美成人综合另类久久久 | 亚洲18禁久久av| 成年免费大片在线观看| 国产高清视频在线播放一区| 亚洲五月天丁香| 国产探花极品一区二区| 嫩草影院精品99| 亚洲av成人精品一区久久| 亚洲18禁久久av| 一本精品99久久精品77| 国产蜜桃级精品一区二区三区| 如何舔出高潮| 蜜臀久久99精品久久宅男| 亚洲欧美中文字幕日韩二区| 全区人妻精品视频| 欧美在线一区亚洲| 成人永久免费在线观看视频| 久久久久久久午夜电影| 啦啦啦观看免费观看视频高清| 菩萨蛮人人尽说江南好唐韦庄 | 精品福利观看| 免费观看人在逋| 麻豆一二三区av精品| 亚洲一区高清亚洲精品| 不卡一级毛片| 午夜免费激情av| 亚洲经典国产精华液单| 卡戴珊不雅视频在线播放| 亚洲成av人片在线播放无| АⅤ资源中文在线天堂| 免费观看的影片在线观看| 身体一侧抽搐| 1024手机看黄色片| 久久精品91蜜桃| 99久久无色码亚洲精品果冻| 内射极品少妇av片p| 久久精品影院6| 国产精品一区二区免费欧美| 99热只有精品国产| 午夜久久久久精精品| avwww免费| 女人被狂操c到高潮| 波多野结衣高清无吗| 亚洲国产色片| 午夜福利在线观看免费完整高清在 | 亚洲综合色惰| 可以在线观看毛片的网站| 久久久精品欧美日韩精品| 亚洲国产精品合色在线| 久久国内精品自在自线图片| 日日啪夜夜撸| 成年av动漫网址| 亚洲精品色激情综合| a级一级毛片免费在线观看| 在线观看美女被高潮喷水网站| 久久久久国产网址| 春色校园在线视频观看| 日产精品乱码卡一卡2卡三| 一卡2卡三卡四卡精品乱码亚洲| 99热网站在线观看| 波多野结衣巨乳人妻| 69人妻影院| 国产精品久久久久久久电影| 美女 人体艺术 gogo| 少妇人妻一区二区三区视频| 最近最新中文字幕大全电影3| 亚洲成人精品中文字幕电影| 成人鲁丝片一二三区免费| 欧美又色又爽又黄视频| 国产精品嫩草影院av在线观看| 亚洲av二区三区四区| av卡一久久| 亚洲国产精品合色在线| 最近中文字幕高清免费大全6| 国产亚洲精品久久久久久毛片| 亚洲精品影视一区二区三区av| 国产毛片a区久久久久| 国产精品女同一区二区软件| 尾随美女入室| 午夜亚洲福利在线播放| 国产免费男女视频| 男女之事视频高清在线观看| 国产成人一区二区在线| 狂野欧美激情性xxxx在线观看| 国产av麻豆久久久久久久| 久久人人爽人人爽人人片va| 久久精品国产鲁丝片午夜精品| 香蕉av资源在线| 如何舔出高潮| 日韩中字成人| 国产91av在线免费观看| 草草在线视频免费看| 久久久久久久久久久丰满| 国产精品av视频在线免费观看| 蜜桃亚洲精品一区二区三区| 国产三级在线视频| 在线看三级毛片| 成人毛片a级毛片在线播放| 男人的好看免费观看在线视频| .国产精品久久| 一边摸一边抽搐一进一小说| 老熟妇乱子伦视频在线观看| 日韩av在线大香蕉| 色综合色国产| 毛片一级片免费看久久久久| 大香蕉久久网| 久久韩国三级中文字幕| 波野结衣二区三区在线| 午夜免费激情av| 亚洲中文字幕一区二区三区有码在线看| 在线观看午夜福利视频| 99视频精品全部免费 在线| 成人无遮挡网站| 国产视频一区二区在线看| 最近手机中文字幕大全| 久久精品91蜜桃| 午夜福利视频1000在线观看| 在线天堂最新版资源| 狂野欧美白嫩少妇大欣赏| 亚洲精品日韩在线中文字幕 | 中出人妻视频一区二区| 国产午夜精品久久久久久一区二区三区 | 国产精品女同一区二区软件| 伦精品一区二区三区| 日韩欧美免费精品| 欧美激情久久久久久爽电影| 18禁在线无遮挡免费观看视频 | 欧美性感艳星| 欧美+日韩+精品| 欧美性感艳星| 久久鲁丝午夜福利片| 欧美激情在线99| 内射极品少妇av片p| 91久久精品国产一区二区成人| 日韩在线高清观看一区二区三区| 国产男人的电影天堂91| 国产在线精品亚洲第一网站| 精品乱码久久久久久99久播| 国内久久婷婷六月综合欲色啪| 日韩欧美三级三区| 大又大粗又爽又黄少妇毛片口| 99在线人妻在线中文字幕| 日日摸夜夜添夜夜添小说| 色哟哟·www| 在线国产一区二区在线| 搡老妇女老女人老熟妇| 亚洲av五月六月丁香网| 一个人观看的视频www高清免费观看| 欧美最新免费一区二区三区| 日本欧美国产在线视频| av.在线天堂| 日韩欧美精品免费久久| 夜夜看夜夜爽夜夜摸| 日韩亚洲欧美综合| 久久久久久九九精品二区国产| 三级毛片av免费| 精品人妻偷拍中文字幕| 午夜激情福利司机影院| 国产 一区精品| 日本在线视频免费播放| 国产精品av视频在线免费观看| 中文在线观看免费www的网站| 国产国拍精品亚洲av在线观看| 黄色欧美视频在线观看| 女生性感内裤真人,穿戴方法视频| 欧美日韩国产亚洲二区| 日日摸夜夜添夜夜爱| 黄色日韩在线| 国产精品女同一区二区软件| 国产毛片a区久久久久| 俺也久久电影网| 午夜福利高清视频| 能在线免费观看的黄片| 欧美日韩在线观看h| 蜜桃亚洲精品一区二区三区| 99热网站在线观看| 久久久精品大字幕| 国产国拍精品亚洲av在线观看| 波多野结衣巨乳人妻| 天美传媒精品一区二区| 小说图片视频综合网站| 99久久精品国产国产毛片| 亚洲一区二区三区色噜噜| 简卡轻食公司| av中文乱码字幕在线| 欧美3d第一页| 91麻豆精品激情在线观看国产| 美女被艹到高潮喷水动态| 亚洲av一区综合| 网址你懂的国产日韩在线| 国产精品嫩草影院av在线观看| 婷婷精品国产亚洲av在线| 亚洲人成网站在线播| 亚洲av免费在线观看| 亚洲人成网站在线观看播放| 午夜亚洲福利在线播放| 99视频精品全部免费 在线| 国产片特级美女逼逼视频| 欧美+亚洲+日韩+国产| 性欧美人与动物交配| 亚洲自偷自拍三级| av在线亚洲专区| 夜夜爽天天搞| 两个人的视频大全免费| a级毛色黄片| 久久99热这里只有精品18| 国产色婷婷99|