• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Overview of Upheaval Buckling Theoretical Studies for Submarine Buried Pipeline

    2010-06-07 07:52:40LIUJun-jie,WANZheng-quan,QIEn-rong
    船舶力學(xué) 2010年6期
    關(guān)鍵詞:壓縮力天津大學(xué)工程學(xué)院

    Overview of Upheaval Buckling Theoretical Studies for Submarine Buried Pipeline

    Pipelines constitute a vital means of transporting and distributing liquids and gases such as oil,gas and water over large geographical areas.A pipeline containing hot oil(and possibly insulated in order to prevent the solidification of wax in the pipe)will expand longitudinally on account of the rise in temperature;and if such expansion is resisted,for example by frictional affects over a kilometer or so of pipeline;compressive axial stress will be set up in the pipe-wall.The compressive forces are frequently large enough to induce lateral buckling of untrenched pipelines,or vertical buckling of trenched pipelines.The recent growth in interest in high temperature pipelines in China and some failures in Bohai Gulf have led to an explosion of interest in these phenomena for Chinese ocean engineers.This paper describes the history of the theoretical studies on the submarine buried pipeline vertical buckling and the author’s experiences with this problem.

    submarine pipeline;trenched;buried;upheaval buckling

    Biography:GAO Xi-feng(1975-),male,Ph.D.,lecturer of Tianjin University;Corresponding author:LIU Run(1974-),female,Ph.D.,Professor,E-mail:liurun@tju.edu.cn.

    1 Introduction

    Since the early seventies of the last century pipelines have also become one of the main means of transporting oil and gas offshore in many parts of the world.To ensure minimal interference with other marine activities,such as fishing nets,ship anchors,etc and to ensure safety of the structure and the environmental,the pipelines are usually buried in a trench.The present paper will pay more attention on the pipeline vertical,upheaval buckling.The first paper on pipeline buckling in the open literature appeared in 1974.Palmer and Baldry[1]demonstrated that the constraint of expansion of a pipeline on account of raised internal pressure could induce buckling through a small-scale test.Hobbs[2-3]presented a summary of the basic models of buckling in a long pipeline in 1981 and 1984.An explosion of interest has been induced in pipelines thermal buckling in the early eighties of the last century as some upheaval buckling incidents occurred in the North Sea.As Guijt[4]pointed out that at least five upheaval buckling incidents occurred in the North Sea,three of which occurred in 1989,and all with significant cost penalties.The first incident,associated with Maersk Oilog Gas AS’Rolf pipeline,occurred in 1986[5].The cost of a failure in such a pipeline is so high,not only for repairs but also for lost production.Therefore from then on,the question of thermally induced buckling is of considerable economic importance,and a substantial literature has built up in the following 30 years.The papers presented at a special session of the 1990 Offshore Technology Conference are perhaps the best explanation that the pipeline buckling research is a hot topic in this area.The 22nd Annual OTC also implied that the subsea pipeline buckling researches reach to peak at that time.Century 90’s up to date,the theoretical and experimental studies on the subsea buried pipeline buckling are continued.The basic models presented by Hobbs[3]have been modified and refined with considering the pipeline imperfection[6-12]and the elastoplastic behaviour of buckling pipelines[13-14].Furthermore,the numerical method has been applied to analyze the pipeline buckling behavior[15-17].This paper describes its development,and its relation to today’s applications for upheaval studies.

    2 Theoretical solutions for perfect straight pipelines

    The compressive stress required to buckle a straight,pin-ended column(‘Euler buckling’)is inversely proportional to the square of the slenderness of the column;and it is obvious that all pipes are very slender over sufficiently large lengths.Submarine pipelines often carry products which are much hotter than the surrounding seawater.The potential thermal expansion is restrained by friction between the pipeline and the seabed,causing the development of large compressive axial forces in the line,which can lead to Euler buckling of the pipeline.Similar problems occurred in railway tracks more than 70 years ago,and the percipient analysis by Martinet and the extensive literature summarized by Kerr[18-19]are very closely related to the thermal buckling problems in pipelines.Hobbs[2-3]presented a summary of the basic models of buckling in a long pipeline(Ref.to Fig.1).

    In the model,denoting the cross-sectional area of the pipe by A,Young’s modulus by E,the coefficient of linear thermal expansion by α and the temperature change by ΔT.The force created by full restraint of thermal expansion is,

    If the axial strain ε is completely restrained,the axial compressive force generated and available to participate in buckling is,

    where υ is Poisson’s ratio,p is the internal pressure,and t and r are the pipe wall thickness and radius respectively.

    A linear differential equation has been established to describe the deflected shape of the buckled part of the pipeline which is treated as a beam column under uniform lateral load.It is assumed that the bending moment at the lift-off point is zero.In the notation of Fig.1,

    where m=w/EI,n2=P/EL and w is submerged weight of pipeline(including weight coat)per unit length.

    The equation is solved and the following results are obtained:

    where P is the axial load in the buckle and P0is the axial load away from the buckle(Fig.1),φ is the coefficient of friction between pipe and subgrade.

    The maximum amplitude of the buckle

    And the maximum bending moment,at x=0,is

    A further result of practical interest is the size of the slipping length adjacent to the buckle,

    Fig.2 is the vertical buckling result for a typical pipeline with a practical range of friction coefficients,0.2≤φ≤0.4,calculated by author with Hobbs’s model in Bohai Bay.The pipe has an outside diameter of 323.9mm,and a wall thickness of 12.7mm giving a design internal pressure 4.65MPa and design temperature rising 85℃.

    Fig.2 shows that there exists the largest ‘safe’temperature change to avoid vertical buckling in this particular pipeline is about 45℃if the coefficient of friction φ is taken as 0.4.The curves in Fig.2 look like U-shape,that is to say,there are two possible buckle lengths for one temperature change.Hobbs[3]explained that the equilibrium path from A to B is unstable,which is a consequence of the assumption of fully mobilized friction even for vanishingly small displacement.The equilibrium path from B to C describes the relationship between the temperature and the buckle length for a pipeline with small imperfection.The temperatures against length of buckle and amplitude curves are the classical results in pipeline thermal buckling analysis until now.Nonetheless,as Hobbs[3]remarked,the model no account has been taken of the initial out-of-straightness and further numerical work on the effects of initial imperfections would be valuable.

    3 Studies on imperfect pipelines

    Engineering practice shows that the in-situ shape of a buried pipeline in the field is far from being straight.The imperfections concerned may include a crest in the sea bed profile,or a prop,as when isolated rock is located immediately below the line or another pipeline is to be crossed.Other less obvious possibilities include the free span gap or trench step,or an angularly mismatched field joint.With the initial imperfection,the pipeline may develop initial deformation.Under the temperature rising,upheaval may take place in the pipeline because of the existence of initial imperfection.Many researches have been done on imperfect pipelines,such as,Taylor and Gan[20],Boer et al[21],Friedman[22],Richards and Andronicou[23],Ju and Kyriakides[24],Pedersen and Jensen[25],Ballet and Hobbs[6],Taylor and Tran[7-8],Maltby and Calladine[9],Croll[11],Hunt and Blackmore[12].Among them,Taylor and Gan[20],Taylor and Tran[7-8],Maltby and Calladine[9]and Hunt and Blackmore[6]should be mentioned.Taylor and Tran(1996)summarized three basic types of initial imperfection for subsea buried pipeline,which are illustrated in Fig.3.

    The initial imperfection is denoted by amplitude vomand wavelength L0or Lias shown.Whilst Liis determined from simple statics,L0is subject to individual engineering judgment.

    The physical problems together with the key conceptual and mathematical models for each type of initial imperfection have been set out based on a stress-free-when-initially-deformed datum in the paper.And all models presume system symmetry and seabed trench-bottom rigidity,together with relatively small deformations and linear elastic properties.Similar analysis to perfect pipeline,internally generated temperature and pressure rises over ambient suffered by the pipe,ΔT and p respectively,in terms of the so-called pre-buckling force P0can be calculated by Eq.(1)and Eq.(2).

    In the first case,so-called empathetic model,the pipeline remains in continuous contact with some vertical undulation in an otherwise idealized horizontal and straight line.The empathetic model employs idealized buckling mode to propose

    where v0denotes imperfection displacement above the horizontal datum surface at x,0<x<L0,with v0m=,in conjunction with the unique amplitude/wavelength relationship also originating from idealized studies:

    where w denotes the pipe’s submerged self-weight(or effective download)per unit length and I represents the pipe’s cross-sectional second moment of area.

    Presuming fully mobilized friction resistance to be developed,the model definition is completed by means of the longitudinal equilibrium and compatibility expressions:

    In accordance with the requirements of the potential energy theorem,the pipe buckling force Pein Eq.(11)can be obtained from

    where P denotes the idealized buckling force.

    In Eq.(12)Lsis the slip length and ufis the flexural end shortening

    From Eqs.(1),(2)and(11)~(15),the relationship between temperature and buckle amplitude can be obtained.

    The isolated prop alternatively features a sharp vertical irregularity such that voids exist to either side.The prop represents the undercrossing of a non-parallel pipe or the presence of an intervening rock;stop-start trenching procedures can also be responsible.Five key stages have been proposed in buckling development(Ref.to Fig.4).

    As the temperature of the pipeline rises due to routine operation,the initial span or imperfection wavelength Lisuffers a reduction as the pipeline tightens up under compressive action P.The wavelength L reduces to some specific value Luwhereupon the pipeline lifts off the prop.Post-upheaval buckling initially involves wavelength Lu<L<Li,with L>Liensuing if circumstances so dictate.The associated differential equation for the initial imperfection takes the form

    where Fiis the shear force acting at the crown.

    Computational manipulation with boundary conditions gives the vertical deflection vias

    In addition to the static determination of Liin terms of imperfection amplitude vi,equations for longitudinal equilibrium and compatibility together with an appropriate buckling/flexural expression are required for each of the phases(b),(d)and(e)shown in Fig.4.

    For phase(b)the buckling/flexural expression is

    And the differential equations for phase(e)are

    The general solution to the buckling/flexural expression takes the following form

    where the constants of integration c1and c2can be determined in accordance with the boundary conditions of each phase.

    The characteristic equation reveals the relationship between nL and Li/L,which can be obtained by the further computational manipulation.Model definition of each phase is completed by means of longitudinal equilibrium and compatibility expressions of similar form to Eqs.(11)and(12).

    The third case in Fig.3 occurs where the above voids become infilled with leaching sand and represents a special sub-case of the first.If marine conditions permit and particularly where continuous burial is involved,the prop-attendant voids discussed above can become infilled to the extent that the in-service,pre-buckling flexural stage is no longer effectively available.The post-upheaval buckling is divided into two stages.With L<Liin the early postbuckling phase,a vectorial equilibrium compatibility analysis is employed here by using the moment curvature relationship

    In addition to establishing the above upheaval model for imperfection pipelines,Taylor and Tran(1993)developed the buckle model for protected pipeline,such as trenching and burial,continuous or discrete,together with the employment of fixed anchorages.

    In all the calculations above,the buckle has been assumed to be completely symmetric.Ballet and Hobbs[6]investigated the possibility of asymmetric buckling in the prop case and found the results.Hunt and Blackmore[12]studied the effects of asymmetric bed imperfections,typified by a step and adopted a shooting method to solve the standard fourth-order linear ordinary differential equation.Comparison between two typical types,the prop and the step,implied that more profound destabilizing role can be attributed to the step than the prop.Maltby and Calladine[9]proposed a simple formula for the axial load at which the localization of buckling occurs based on sinusoidal imperfection assumption.

    where p is the compressive force in pipe,Q0is the maximum value of soil resistance per unit length,and Y0represents the amplitude of initial imperfection.

    Parametric studies of Empathetic models,employing the foregoing data in Bohai Bay,have been investigated with graphical comparison illustrated by Fig.5 for various initial imperfection amplitudes v0m,ranging from 50mm to 300mm.With regard to the respective temperature rise/buckling amplitude loci and the results given in Fig.5,it can be seen that only the relatively small imperfections typified by v0m=50 and 100mm display a maximum temperature together with the associated snap buckling phenomenon.The remaining four cases,v0m=150 to 300mm,generate stable post-buckling path.The safe temperature obtained by imperfect model is obviously lower than the one calculated by perfect model.

    4 The future

    The economic importance of submarine pipelines has greatly increased in recent years with the development of offshore oil and gas fields in many parts of the world.The vulnerability of pipelines to thermal stress is well documented in many case studies and review papers.Analysis and numerical modelling of pipelines upheaval buckling have progressed over the last thirty years,broadly from the classical analysis,to one covering initial imperfections,to one additionally covering material non-linearity,to one additionally including large pipe displacement and associated cover non-linearity.However,there are still some involved problems need to be dealt with.

    The trend for offshore oil and gas extraction to take place in deeper and more remote waters is leading to the construction of longer pipelines that operate at higher temperatures and pressures.In shallow water,it is common practice to bury a pipeline for protection from trawl gear and to prevent buckling.However,in deep water,there is no requirement for burial,and it is more cost-effective to simply lay pipelines on the seabed.Without the lateral restraint the horizontal snaking is dominant for pipeline to relieve the thermal stresses.Therefore,the studies of pipelines lateral thermal buckling and the soil lateral resistance will become a hot topic for unburied submarine pipeline.

    [1]Palmer A C,Baldry J A S.Lateral buckling of axially-compressed pipelines[J].Journal of Petroleum Technology,1974,26(11):1283-1284.

    [2]Hobbs R E.Pipeline buckling caused by axial loads[J].Journal of Constructional Steel Research,1981,1(2):2-10.

    [3]Hobbs R E.In-service buckling of heated pipelines[J].Journal of Transportation Engineering,ASCE,1984,110(2):175-189.

    [4]Guijt J.Upheaval buckling of offshore pipeline:overview and introduction[C]//In proceedings of the 22nd Annual OTC.Houston,Texas,1990:573-578.

    [5]Nielsen N J R,Lyngberg B,Pedersen P T.Upheaval buckling failures of insulated burial pipelines-a case story[C]//In proceedings of the 22nd Annual OTC.Houston,Texas,1990:581-592.

    [6]Ballet J P,Hobbs R E.Asymmetric effects of prop imperfections on the upheaval buckling of pipelines[J].Thin-Walled Structures,1992,13:355-373.

    [7]Taylor N,Tran V.Prop-imperfection subsea pipeline buckling[J].Marine Structures,1993,6:325-358.

    [8]Taylor N,Tran V.Experimental and theoretical studies in subsea pipeline buckling[J].Marine Structures,1996,9(2):211-257.

    [9]Maltby T C,Calladine C R.An investigation into upheaval buckling of buried pipelines--i.Experimental apparatus and some observations[J].International Journal of Mechanical Sciences,1995,37(9):943-963.

    [10]Maltby T C,Calladine C R.An investigation into upheaval buckling of buried pipelines--ii.Theory and analysis of experimental observations[J].International Journal of Mechanical Sciences,1995,37(9):965-983.

    [11]Croll J G A.A simplified model of upheaval thermal buckling of subsea pipelines[J].Thin-Walled Structures,1997,29(1-4):59-78.

    [12]Hunt G W,Blackmore A.Homoclinic and heteroclinic solutions of upheaval buckling[J].Phil.Trans.R.Soc.Lond.,1997,355(4):2185-2195.

    [13]Friedmann Y,Debouvry B.Analytical design method helps prevent buried pipe upheaval[J].Pipeline Industry,1992,11:63-68.

    [14]Villarraga J A,Rodríguez J F,Martínez C.Buried pipe modeling with initial imperfections[J].Journal of Pressure Vessel Technology,2004,126(5):250-257.

    [15]Zhou Z J,Murray D W.Behaviour of buried pipelines subjected to imposed deformations[C]//12th Int.Conference on Offshore and Arctic Engineering.ASCE,1993,II:115-122.

    [16]Pasqualino I P,Alves J L D,Battista R C.Failure simulation of a buried pipeline under thermal loading[C]//Proceedings of the 20th International Conference on Offshore Mechanics and Arctic Engineering(OMAE),2001,OMAE2001-4124.Rio De Janeiro,Brazil,2001.

    [17]Einsfeld R A,Murray D W,Yoosef-Ghodsi N.Buckling analysis of high-temperature pressurized pipelines with soilstructure interaction[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2003,25(2):164-169.

    [18]Kerr A D.On the stability of the railroad track in the vertical plane[J].Rail Int.,1974,5:131-142.

    [19]Kerr A D.Lateral buckling of railroad tracks due to constrained thermal expansion[M].Railroad Track Mechanics and Technology,Pergamon Press,Oxford,1978.

    [20]Taylor N,Gan A B.Submarine pipeline buckling imperfection studies[J].Thin-Walled Structures,1986,4:295-323.

    [21]Boer S,Hulsbergen C H,Richards D M,et al.Buckling considerations in the design of the gravel cover for a high temperature oil line[C]//Proc.18th OTC,1986,May,5294.Houston,Texas,1986:1-8.

    [22]Friedmann Y.Some aspects of the design of hot buried pipelines[C]//Offshore Oil and Gas Line Technology Conference,1986.Paris,France,1986:1-34.

    [23]Richards D M,Andronicou A.Seabed irregularity effects on the buckling of heated submarine pipelines[C]//WEMT Advances in Offshore Technology.Amsterdam,1986:250-265.

    [24]Ju G T,Kyriakides S.Thermal buckling of offshore pipelines[J].Journal of Offshore Mechanics and Arctic Engineering,1988,110(4):355-364.

    [25]Pedersen P T,Jensen J J.Upheaval creep of buried heated pipelines with initial imperfections[J].Marine Structures,1988,1:11-22.

    GAO Xi-feng1,LIU Run1,DU Zun-feng1,TAN Zhen-dong2
    (1 State Key Laboratory of Hydraulic Engineering Simulation and Safety,Tianjin University,Tianjin 300072,China;2 Military Transportation Institute of the General Logistics Department,Tianjin 300161,China)

    海底埋設(shè)管線屈曲劇變理論研究綜述

    高喜峰1,劉 潤1,杜尊峰1,譚振東2

    (1天津大學(xué) 水利工程仿真與安全國家重點(diǎn)實(shí)驗(yàn)室,天津300072;2總后軍事交通運(yùn)輸研究所,天津300161)

    海上生產(chǎn)的烴類必須在高溫高壓下運(yùn)輸以使流體舒緩而避免蠟組分的凝固。由于內(nèi)外壓差和溫差引起強(qiáng)制膨脹導(dǎo)致軸向壓縮力,此時(shí)便產(chǎn)生了海底管線的屈曲。此壓縮力既能引起管線在海床平面內(nèi)的側(cè)向屈曲,也能造成垂向屈曲。通常將管線埋于溝槽內(nèi)從而確保與其它海洋活動(dòng)的干擾最小化。在此情況下,側(cè)向土約束超過了由管線浮重造成的垂向隆起約束。因此,要特別注意挖溝埋設(shè)管線的垂向屈曲。最近對(duì)中國高溫管線和渤海灣幾起事故的關(guān)注引發(fā)中國海洋工程師對(duì)此現(xiàn)象的強(qiáng)烈興趣。文章綜述了海底埋設(shè)管線垂向屈曲的理論研究歷史,以及作者對(duì)此問題的一些經(jīng)驗(yàn)。希望海洋工程師能從本領(lǐng)域的文獻(xiàn)綜述和總結(jié)中受益。文中同時(shí)研究了管線的防護(hù)層設(shè)計(jì),最后明確了未來發(fā)展的方向。

    海底管線;溝槽;埋設(shè);屈曲劇變

    TE973

    A

    高喜峰(1975-),男,博士,天津大學(xué)建筑工程學(xué)院講師;

    譚振東(1979-),男,博士,總后勤部軍事交通運(yùn)輸研究所高級(jí)工程師。

    TE973

    A

    1007-7294(2011)06-0678-10

    date:2011-04-27

    Supported by China National Natural Science Foundation(No.40776055)and foundation of State Key Laboratory of Ocean Engineering(1002)

    劉 潤(1974-),女,博士,天津大學(xué)建筑工程學(xué)院教授;

    杜尊峰(1984-),男,博士,天津大學(xué)建筑工程學(xué)院講師;

    猜你喜歡
    壓縮力天津大學(xué)工程學(xué)院
    人工晶狀體的壓縮力評(píng)價(jià)
    福建工程學(xué)院
    福建工程學(xué)院
    《天津大學(xué)學(xué)報(bào)(社會(huì)科學(xué)版)》簡(jiǎn)介
    壓力襪的測(cè)試方法比較與分析
    世界上最硬的玻璃
    福建工程學(xué)院
    福建工程學(xué)院
    學(xué)生寫話
    環(huán)模秸稈壓塊機(jī)秸稈壓縮力試驗(yàn)研究
    国产高清不卡午夜福利| 内射极品少妇av片p| 欧美日韩综合久久久久久| 国产精品国产三级专区第一集| eeuss影院久久| 有码 亚洲区| 午夜免费鲁丝| 亚洲精品中文字幕在线视频 | 高清欧美精品videossex| 少妇裸体淫交视频免费看高清| av在线播放精品| 一本久久精品| 99热全是精品| 免费看av在线观看网站| 欧美高清性xxxxhd video| 久久久久久久亚洲中文字幕| 日韩一区二区视频免费看| 内射极品少妇av片p| 欧美亚洲 丝袜 人妻 在线| 久久人人爽人人爽人人片va| 人妻少妇偷人精品九色| 80岁老熟妇乱子伦牲交| 亚洲精品久久久久久婷婷小说| 日韩av免费高清视频| av国产久精品久网站免费入址| 熟妇人妻不卡中文字幕| 80岁老熟妇乱子伦牲交| 日本与韩国留学比较| 丰满乱子伦码专区| 国产精品一二三区在线看| 可以在线观看毛片的网站| 亚洲经典国产精华液单| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 80岁老熟妇乱子伦牲交| 国产精品福利在线免费观看| 搡老乐熟女国产| 丝袜脚勾引网站| 在线观看一区二区三区激情| 亚洲av日韩在线播放| 亚洲精品色激情综合| 欧美xxxx黑人xx丫x性爽| 亚洲精品国产av蜜桃| 久久久久久久久久成人| 欧美bdsm另类| 好男人视频免费观看在线| 日本三级黄在线观看| 国产精品一区二区三区四区免费观看| 日本wwww免费看| 亚洲欧美日韩卡通动漫| 久久久久久久久久久丰满| 女人久久www免费人成看片| 97人妻精品一区二区三区麻豆| 亚洲av一区综合| 超碰97精品在线观看| 日日摸夜夜添夜夜添av毛片| 哪个播放器可以免费观看大片| 成人漫画全彩无遮挡| 少妇熟女欧美另类| 午夜免费观看性视频| 永久免费av网站大全| 欧美精品国产亚洲| 水蜜桃什么品种好| 人妻一区二区av| 三级国产精品欧美在线观看| 免费不卡的大黄色大毛片视频在线观看| 欧美成人一区二区免费高清观看| 蜜桃久久精品国产亚洲av| 日日摸夜夜添夜夜添av毛片| 99热国产这里只有精品6| 午夜福利视频精品| 丝袜喷水一区| 国产永久视频网站| 一级二级三级毛片免费看| 国产视频内射| 99re6热这里在线精品视频| 街头女战士在线观看网站| 国产精品女同一区二区软件| 成人亚洲精品av一区二区| 免费大片黄手机在线观看| 亚洲天堂av无毛| 超碰av人人做人人爽久久| 日本黄色片子视频| 少妇高潮的动态图| 一级毛片 在线播放| av国产久精品久网站免费入址| 亚洲天堂国产精品一区在线| 欧美精品一区二区大全| 欧美性猛交╳xxx乱大交人| 久久人人爽人人片av| 18+在线观看网站| 国产极品天堂在线| 欧美激情在线99| 成年av动漫网址| 亚洲成色77777| 亚洲国产精品专区欧美| 中文乱码字字幕精品一区二区三区| 国产欧美日韩精品一区二区| 久久99蜜桃精品久久| 在线观看美女被高潮喷水网站| 干丝袜人妻中文字幕| 日韩国内少妇激情av| 3wmmmm亚洲av在线观看| 午夜福利视频1000在线观看| 成人午夜精彩视频在线观看| 免费观看a级毛片全部| av国产精品久久久久影院| 午夜精品国产一区二区电影 | 偷拍熟女少妇极品色| 国产视频内射| 一级毛片aaaaaa免费看小| 午夜免费观看性视频| 国产日韩欧美亚洲二区| 在线观看一区二区三区激情| 午夜视频国产福利| 精品熟女少妇av免费看| 久久久成人免费电影| 国产一区亚洲一区在线观看| 美女扒开内裤让男人捅视频| 亚洲国产中文字幕在线视频| 日本爱情动作片www.在线观看| 欧美 亚洲 国产 日韩一| 国产精品久久久久久精品古装| 亚洲精品一区蜜桃| 考比视频在线观看| 成人亚洲欧美一区二区av| 久久99精品国语久久久| 久久这里只有精品19| 日本猛色少妇xxxxx猛交久久| 丁香六月欧美| 久久久久国产精品人妻一区二区| 精品人妻一区二区三区麻豆| 国产av码专区亚洲av| 51午夜福利影视在线观看| 久久久精品国产亚洲av高清涩受| 成人影院久久| 一边摸一边抽搐一进一出视频| 熟妇人妻不卡中文字幕| 高清视频免费观看一区二区| 国产成人精品久久久久久| 亚洲国产av新网站| 伦理电影免费视频| 夜夜骑夜夜射夜夜干| 在线观看www视频免费| 在线观看一区二区三区激情| 亚洲成色77777| 亚洲天堂av无毛| 在线观看国产h片| 亚洲四区av| 免费看av在线观看网站| 久久精品熟女亚洲av麻豆精品| 久久久久久久久久久免费av| 两性夫妻黄色片| 多毛熟女@视频| 一本久久精品| 成年av动漫网址| www.av在线官网国产| 日韩大码丰满熟妇| av又黄又爽大尺度在线免费看| 亚洲国产欧美网| 国产精品蜜桃在线观看| 久久久欧美国产精品| 国产精品一区二区在线观看99| 免费人妻精品一区二区三区视频| 国产男女内射视频| 一本大道久久a久久精品| 国产 精品1| 丁香六月天网| 久久久国产精品麻豆| 如日韩欧美国产精品一区二区三区| 精品午夜福利在线看| 卡戴珊不雅视频在线播放| 婷婷色av中文字幕| 80岁老熟妇乱子伦牲交| 亚洲成人av在线免费| 69精品国产乱码久久久| 亚洲国产精品一区三区| 久久精品亚洲熟妇少妇任你| 狠狠精品人妻久久久久久综合| 黄片小视频在线播放| av网站免费在线观看视频| xxx大片免费视频| 欧美乱码精品一区二区三区| 亚洲av成人不卡在线观看播放网 | 精品久久久精品久久久| 久久久久久人妻| 男女床上黄色一级片免费看| 永久免费av网站大全| 18禁裸乳无遮挡动漫免费视频| 在线观看免费高清a一片| 久久久久久久国产电影| 国产精品二区激情视频| 麻豆av在线久日| 高清av免费在线| 欧美乱码精品一区二区三区| 在线亚洲精品国产二区图片欧美| 男人添女人高潮全过程视频| 国产成人精品久久久久久| 午夜激情久久久久久久| 在线 av 中文字幕| 日韩精品免费视频一区二区三区| 一级毛片黄色毛片免费观看视频| 亚洲免费av在线视频| 一本久久精品| 国产免费又黄又爽又色| 高清黄色对白视频在线免费看| 国产精品欧美亚洲77777| 老司机亚洲免费影院| 韩国精品一区二区三区| 国产成人精品福利久久| av免费观看日本| 综合色丁香网| 久久精品久久久久久久性| 高清视频免费观看一区二区| 只有这里有精品99| 国产精品一区二区在线不卡| 最近2019中文字幕mv第一页| 国产午夜精品一二区理论片| 日韩av不卡免费在线播放| 欧美少妇被猛烈插入视频| 亚洲欧美日韩另类电影网站| 赤兔流量卡办理| 免费高清在线观看视频在线观看| 久久久久人妻精品一区果冻| 超碰97精品在线观看| www.av在线官网国产| 国产一区二区在线观看av| 黑人猛操日本美女一级片| 国产色婷婷99| 波野结衣二区三区在线| 永久免费av网站大全| 在线观看国产h片| 天天躁夜夜躁狠狠躁躁| 亚洲av日韩精品久久久久久密 | 久热这里只有精品99| 婷婷色麻豆天堂久久| 性少妇av在线| 各种免费的搞黄视频| 日韩欧美精品免费久久| 青春草国产在线视频| av在线老鸭窝| 国产免费福利视频在线观看| 亚洲av福利一区| 久久精品亚洲熟妇少妇任你| 日韩电影二区| 汤姆久久久久久久影院中文字幕| 久久ye,这里只有精品| 亚洲熟女毛片儿| 欧美人与善性xxx| 精品国产乱码久久久久久小说| 日日摸夜夜添夜夜爱| 18禁观看日本| 99国产综合亚洲精品| 操美女的视频在线观看| 午夜激情av网站| 咕卡用的链子| 99热国产这里只有精品6| 91精品伊人久久大香线蕉| 在线观看人妻少妇| 一区二区三区精品91| 搡老乐熟女国产| 亚洲自偷自拍图片 自拍| 欧美老熟妇乱子伦牲交| 亚洲欧美成人综合另类久久久| 国产片特级美女逼逼视频| 久久毛片免费看一区二区三区| 免费人妻精品一区二区三区视频| 久久影院123| 老司机亚洲免费影院| 亚洲精品美女久久久久99蜜臀 | 香蕉丝袜av| 精品国产乱码久久久久久小说| 我要看黄色一级片免费的| 国产午夜精品一二区理论片| 国产熟女午夜一区二区三区| av卡一久久| 青春草国产在线视频| 日韩精品免费视频一区二区三区| 国产 一区精品| 久久久久久久久免费视频了| 涩涩av久久男人的天堂| 少妇精品久久久久久久| 亚洲精品自拍成人| 人人妻人人添人人爽欧美一区卜| 丝瓜视频免费看黄片| 国产成人精品在线电影| 亚洲美女视频黄频| 久热爱精品视频在线9| 亚洲成av片中文字幕在线观看| 日韩伦理黄色片| 一本大道久久a久久精品| 亚洲精华国产精华液的使用体验| 亚洲精品,欧美精品| 久久国产亚洲av麻豆专区| 人人妻,人人澡人人爽秒播 | h视频一区二区三区| 男的添女的下面高潮视频| 精品第一国产精品| 国产精品蜜桃在线观看| videosex国产| 久久久久视频综合| 亚洲精品成人av观看孕妇| 亚洲成av片中文字幕在线观看| 精品一区二区三区四区五区乱码 | 亚洲情色 制服丝袜| 久久久久久人人人人人| 黑丝袜美女国产一区| 国产精品免费大片| 久久久久久免费高清国产稀缺| 免费高清在线观看日韩| svipshipincom国产片| 热re99久久精品国产66热6| 19禁男女啪啪无遮挡网站| 爱豆传媒免费全集在线观看| 亚洲欧美精品综合一区二区三区| 99re6热这里在线精品视频| 国产精品 欧美亚洲| 丝袜喷水一区| xxx大片免费视频| 午夜福利视频在线观看免费| 国产成人免费观看mmmm| 人人妻,人人澡人人爽秒播 | 免费av中文字幕在线| 涩涩av久久男人的天堂| 最近最新中文字幕免费大全7| 久久久久久久国产电影| 欧美亚洲 丝袜 人妻 在线| 精品少妇久久久久久888优播| 国产精品一国产av| 亚洲一卡2卡3卡4卡5卡精品中文| 精品第一国产精品| 亚洲精品国产区一区二| 免费高清在线观看日韩| 一级片'在线观看视频| 婷婷成人精品国产| 久久人妻熟女aⅴ| 久久综合国产亚洲精品| 国产日韩欧美亚洲二区| 午夜日本视频在线| 久久精品久久精品一区二区三区| 亚洲国产毛片av蜜桃av| 亚洲一区二区三区欧美精品| 男男h啪啪无遮挡| 日韩一区二区视频免费看| 日韩伦理黄色片| 97人妻天天添夜夜摸| 性高湖久久久久久久久免费观看| 2018国产大陆天天弄谢| 中文字幕亚洲精品专区| 亚洲精品aⅴ在线观看| 一二三四中文在线观看免费高清| 天天躁狠狠躁夜夜躁狠狠躁| 精品亚洲成国产av| 另类精品久久| 国产一区二区激情短视频 | 亚洲精品国产区一区二| 亚洲国产精品一区二区三区在线| 精品第一国产精品| 少妇精品久久久久久久| 国产精品一国产av| 日本欧美国产在线视频| 久久av网站| 18禁裸乳无遮挡动漫免费视频| 丰满饥渴人妻一区二区三| 男女之事视频高清在线观看 | 狂野欧美激情性xxxx| 国产一级毛片在线| 免费女性裸体啪啪无遮挡网站| 精品少妇久久久久久888优播| 久久狼人影院| 国产黄频视频在线观看| 亚洲一区中文字幕在线| 永久免费av网站大全| av女优亚洲男人天堂| 精品免费久久久久久久清纯 | 国产片特级美女逼逼视频| 亚洲成色77777| 伦理电影免费视频| 欧美变态另类bdsm刘玥| 黄片播放在线免费| 亚洲精品美女久久久久99蜜臀 | 天天躁夜夜躁狠狠躁躁| 99热网站在线观看| 国产又爽黄色视频| 欧美少妇被猛烈插入视频| 考比视频在线观看| 久久人人爽av亚洲精品天堂| 精品少妇黑人巨大在线播放| av国产精品久久久久影院| 精品少妇黑人巨大在线播放| 亚洲国产中文字幕在线视频| 国产日韩欧美视频二区| 叶爱在线成人免费视频播放| 久久久久人妻精品一区果冻| 亚洲欧美色中文字幕在线| 观看av在线不卡| 九色亚洲精品在线播放| 色网站视频免费| 久久久久久久精品精品| 一级爰片在线观看| 视频区图区小说| 韩国av在线不卡| 免费观看av网站的网址| 日本av手机在线免费观看| 搡老岳熟女国产| 成人国产麻豆网| 久久人人爽人人片av| 国产成人精品无人区| av卡一久久| 99re6热这里在线精品视频| 欧美少妇被猛烈插入视频| 丰满饥渴人妻一区二区三| 又黄又粗又硬又大视频| 亚洲成人国产一区在线观看 | 中文字幕人妻丝袜制服| av在线老鸭窝| 久久午夜综合久久蜜桃| 国产99久久九九免费精品| 国产伦理片在线播放av一区| 18禁裸乳无遮挡动漫免费视频| 丝瓜视频免费看黄片| 69精品国产乱码久久久| 黄色视频在线播放观看不卡| 精品国产一区二区三区久久久樱花| 天堂8中文在线网| 日韩制服丝袜自拍偷拍| 久久精品亚洲av国产电影网| 丝袜脚勾引网站| av.在线天堂| 亚洲精品av麻豆狂野| kizo精华| 亚洲综合色网址| 日日啪夜夜爽| 午夜av观看不卡| 秋霞在线观看毛片| 大香蕉久久网| 国产成人精品久久二区二区91 | av不卡在线播放| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美一区二区三区久久| 午夜福利,免费看| 久久影院123| 国产不卡av网站在线观看| 大片电影免费在线观看免费| 国产在视频线精品| 日韩av不卡免费在线播放| 色婷婷久久久亚洲欧美| 人体艺术视频欧美日本| 9191精品国产免费久久| 亚洲人成77777在线视频| 中文字幕av电影在线播放| 国产成人一区二区在线| 搡老乐熟女国产| 亚洲,欧美精品.| 久久热在线av| 久久毛片免费看一区二区三区| 一级毛片电影观看| 国产又爽黄色视频| 国产精品人妻久久久影院| tube8黄色片| 成人国产av品久久久| 一二三四在线观看免费中文在| 大陆偷拍与自拍| 国产日韩一区二区三区精品不卡| 另类亚洲欧美激情| 高清av免费在线| 国产一区有黄有色的免费视频| 亚洲国产av新网站| 国产爽快片一区二区三区| 汤姆久久久久久久影院中文字幕| 亚洲欧美精品综合一区二区三区| 亚洲av欧美aⅴ国产| 欧美 亚洲 国产 日韩一| 国产精品av久久久久免费| 男男h啪啪无遮挡| 大香蕉久久网| 亚洲色图综合在线观看| 国产精品二区激情视频| 中国国产av一级| 国产又色又爽无遮挡免| 日本猛色少妇xxxxx猛交久久| 下体分泌物呈黄色| 国产又爽黄色视频| 国产97色在线日韩免费| 少妇精品久久久久久久| 亚洲精品乱久久久久久| 亚洲国产毛片av蜜桃av| 可以免费在线观看a视频的电影网站 | 下体分泌物呈黄色| 男的添女的下面高潮视频| 国产精品99久久99久久久不卡 | 精品少妇一区二区三区视频日本电影 | 国产黄色免费在线视频| 午夜激情av网站| 国产男女超爽视频在线观看| 久久99一区二区三区| 日本一区二区免费在线视频| 亚洲av综合色区一区| 国产精品国产三级专区第一集| 最近的中文字幕免费完整| 电影成人av| 久热爱精品视频在线9| 老鸭窝网址在线观看| 老司机影院成人| 欧美激情高清一区二区三区 | av视频免费观看在线观看| 日本猛色少妇xxxxx猛交久久| 国产xxxxx性猛交| 777米奇影视久久| 久久精品熟女亚洲av麻豆精品| 在线观看三级黄色| 日韩欧美一区视频在线观看| 国产精品人妻久久久影院| 国产精品麻豆人妻色哟哟久久| 一本—道久久a久久精品蜜桃钙片| 另类精品久久| 一区在线观看完整版| 蜜桃国产av成人99| 欧美精品一区二区免费开放| 狂野欧美激情性bbbbbb| 香蕉国产在线看| 中文字幕制服av| 少妇人妻 视频| 丝袜在线中文字幕| 欧美日韩一级在线毛片| 日日啪夜夜爽| 一级片'在线观看视频| 精品人妻在线不人妻| 国产亚洲最大av| 亚洲国产精品999| 校园人妻丝袜中文字幕| 久久久欧美国产精品| 国产成人欧美在线观看 | 亚洲欧美日韩另类电影网站| 日韩人妻精品一区2区三区| 黄色视频在线播放观看不卡| 亚洲欧美精品自产自拍| 精品国产国语对白av| 欧美激情高清一区二区三区 | 国产伦人伦偷精品视频| 久久精品久久精品一区二区三区| 亚洲成人手机| 欧美亚洲日本最大视频资源| 99热国产这里只有精品6| 狠狠精品人妻久久久久久综合| 男人操女人黄网站| 中文字幕制服av| 亚洲伊人久久精品综合| 人人澡人人妻人| 国产野战对白在线观看| 爱豆传媒免费全集在线观看| 国产xxxxx性猛交| 嫩草影视91久久| 1024香蕉在线观看| 91aial.com中文字幕在线观看| 高清黄色对白视频在线免费看| 亚洲av福利一区| 国产精品一二三区在线看| 男女免费视频国产| 国产男女超爽视频在线观看| 欧美国产精品一级二级三级| 精品国产超薄肉色丝袜足j| 美女脱内裤让男人舔精品视频| 成人漫画全彩无遮挡| 欧美在线黄色| 久久精品久久久久久噜噜老黄| 侵犯人妻中文字幕一二三四区| 亚洲在久久综合| 伦理电影免费视频| 国产日韩欧美在线精品| 99精品久久久久人妻精品| 97精品久久久久久久久久精品| 国产成人精品久久二区二区91 | 欧美久久黑人一区二区| 免费少妇av软件| 国产麻豆69| 纯流量卡能插随身wifi吗| 午夜日本视频在线| 久久久久网色| 九色亚洲精品在线播放| 成年美女黄网站色视频大全免费| 大片免费播放器 马上看| 欧美老熟妇乱子伦牲交| 日韩av免费高清视频| 精品人妻一区二区三区麻豆| 亚洲色图 男人天堂 中文字幕| 一级黄片播放器| 中文天堂在线官网| 无限看片的www在线观看| 人人妻人人澡人人爽人人夜夜| 欧美久久黑人一区二区| 免费看不卡的av| 国产亚洲欧美精品永久| av在线app专区| 最黄视频免费看| 韩国高清视频一区二区三区| 日韩av不卡免费在线播放| 无限看片的www在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲,一卡二卡三卡| 欧美老熟妇乱子伦牲交| 伦理电影免费视频| 久久精品aⅴ一区二区三区四区| 一本—道久久a久久精品蜜桃钙片| 飞空精品影院首页| 大香蕉久久成人网| 99久国产av精品国产电影| 欧美最新免费一区二区三区| av卡一久久| 19禁男女啪啪无遮挡网站| 中国国产av一级| 亚洲人成网站在线观看播放| 自拍欧美九色日韩亚洲蝌蚪91| 人人妻,人人澡人人爽秒播 | 久久狼人影院| e午夜精品久久久久久久|