• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical Simulation on the Process of Supercavity Development and the Planing State of Supercavitating Vehicle

    2010-06-07 07:52:16
    船舶力學(xué) 2010年6期
    關(guān)鍵詞:哈爾濱工業(yè)大學(xué)空泡水槽

    (School of Aeronautics,Harbin Institute of Technology,Harbin 150001,China)

    Numerical Simulation on the Process of Supercavity Development and the Planing State of Supercavitating Vehicle

    ZHOU Jing-jun,YU Kai-ping,ZHANG Guang

    (School of Aeronautics,Harbin Institute of Technology,Harbin 150001,China)

    In order to understand the evolution rule of the inner pressure of ventilated supercavity in its developing process as well as the cavity stability,unsteady three dimensional numerical simulations adopting the two-fluid multiphase flow model and DES(Detached Eddy Simulation Model)turbulence model are carried out.One method based on the relative motion and mesh deformation technology is adopted to investigate the planing state of supercavitating vehicle.The results show the method can predict the developing process of supercavity and its instability characteristic as well as the planing state of supercavitating vehicles.The numerical method can be used to further investigate the planing state and give some significant conclusions.

    ventilated supercavity;two fluid multiphase flow model;pitching motion

    Biography:ZHOU Jing-jun(1981-),male,doctor,P.h.D.,professor of Harbin Institute of Technology,

    E-mail:jingjun4866@163.com.

    1 Introduction

    Supercavity is achieved when an underwater vehicle travels at a sufficient high speed or by injecting the non-condensable gas.Even for vehicles designed to travel at natural supercavitating velocity,the drag must be firstly reduced by ventilated supercavitating to enable the vehicles to accelerate to the conditions at which the natural supercavity can be sustained.The ventilated cavitation[1]has been proved to be a significant drag-reduction way and receives growing research attentions among CFD practitioners.From the published literature,natural cavitation has been widely studied in homogeneous multiphase model[2-4]which ignores the interfacial dynamics,that is,there is assumed to be no-slip between constituents residing in the same control volume,and the rationality of using the homogeneous model has been verified quantitatively by experiments[5-6].For ventilated supercavitating,although many investigations have been done[7-9],there is few published literatures about the details of the gas leakage of supercavity.On the other hand,the research on the planing state of vehicle is very important to the stability and control of trajectory,although some related researches[10-12]have been done,there are no literatures that can be referred about true planing state.

    In this paper,the developing process of supercavity and the change law of inner pressure have been investigated to show the validity of the method on predicting ventilated supercavity.And then,by combining the numerical method and mesh deformation technology as well as motion equations of vehicles,the planing state is finally obtaioned.

    2 Numerical methods

    2.1 Basic governing equations

    The multiphase system investigated here is assumed to be isothermal in which the densities of the fluid are functions of pressure but not the temperature.Under this assumption,only continuity and momentum equations are solved,the energy equations are not considered.

    The basic approach adopted to simulate the ventilated cavitation flows consists of solving the standard 3-D Navier-Stokes equations,turbulence equations,the gas state equation and the volume fraction equation.

    The continuity equation for the single phase is:

    The momentum equation for the single phase is:

    The volume fraction equation is:

    The gas state equation is:

    where ρ is the density of air,P is the local pressure,T is the temperature which keeps constant in the simulations.Mαdescribes the interfacial forces acting on phase α from other phases.

    Formulas(1)~(4)are the whole governing equations.

    2.2 Turbulence model

    In this paper,in order to catch the detail of cavity developing process,DES turbulence model was used,and on the other hand,with considering the computational expense the SST turbulence model was used to predict vibration of the vehicle in the cavity.A simple introduction is given in the following to the both different turbulence models.

    2.3 DES turbulence model

    In order to improve the predictive capabilities of turbulence models in highly separated regions,Spalart[13]proposed a hybrid approach,which combines features of classical RANS for-mulations with elements of Large Eddy Simulations(LES)methods.The concept has been termed as Detached Eddy Simulation(DES)and is based on the idea of covering the boundary layer by a RANS model and switching the model to a LES mode in detached regions.Ideally,DES would predict the separation line from the underlying RANS model,but capture the unsteady dynamics of the separated shear layer by resolution of the developing turbulent structures.Compared to classical LES methods,DES saves orders of magnitude of computing power for high Reynolds number flows.Though this is due to the moderate costs of the RANS model in the boundary layer region,DES still offers some of the advantages of a LES method in separated regions.

    2.4 Numerical resolutions

    The simulations are based on three-dimensional calculations and a finite volume discretization of these equations is used.A solver of the coupled conservation equations of mass,momentum was adopted,with an implicit time scheme and multigrid technology.

    The transient term is performed with a second-order implicit scheme.

    where Φ stands for 1,u,v,or w and u,v,w are the three velocity components.

    The diffusive terms are calculated in a central manner.

    The advection schemes implemented can be cast in the form:

    where Φupis the value at the upwind node, is the vector from the upwind node to the ip and one high resolution scheme is adopted,which uses a special nonlinear recipe for β for at each node,computed to be as close to 1 as possible without introducing new extrema.The recipe for β is based on the boundedness principles used by Barth and Jesperson[14].

    3 Boundary conditions and physics models

    3.1 Boundary conditions

    Velocity components,volume fractions,turbulence intensity and length scale are specified at velocity inlet boundary and extrapolated at pressure outlet or opening boundaries.The mass inlet boundary is defined at the blowhole.Pressure distribution is specified at pressure outlet boundary and extrapolated at inlet boundaries.At walls,pressure and volume fractions are extrapolated and the no-slip boundary condition is specified.Some details can be seen in Fig.1.

    Fig.1 The boundary conditions

    3.2 Models in simulations

    In the simulations,two models are utilized which are demonstrated in Fig.2.Fig.2(a)is used to investigate the developing process of the ventilated cavity after the vehicle travels to 25m/s.And the other model is used to predict the planing state.Some details of computational conditions are in the Tab.1.

    Fig.2 The models adopted in simulations

    Tab.1 Details of computational conditions of different models

    4 The simulations results

    4.1 The simulating results of developing process of ventilated supercavity

    Fig.3 and Fig.4 show the developing process of ventilated supercavity and the change law of average pressure at curve 1 which is demonstrated in Fig.1(a).It can be seen that the cavity oscillates after the supercavity forms.The supercavity forms at the time of about 0.34s,the cavity shape is showed in Fig.3,thereafter,the self-oscillation occurs and the pressure in the cavity fluctuates violently.

    Fig.3 The cavity shape at different time in the developing process

    The shedding of cavity results in the instability of the cavity,and both phenomena interact with and affect each other.Cavity shape oscillations can occur in the cavity length and through the convection of waves on the cavity surface.The waves intersect at the rear of the cavity,leading to the shedding of cavity just like in the Fig.3 at the time of 0.604s.The natural cavitation number σvis 0.8,the ventilated cavitation number σ0is about 0.023 5,so β=σv/σ0=34>2.645.According to the conclusions in Ref.[15],when 1≤β<2.645,the cavity is stable.So,the results in this paper accords well with Paryshev’s results.

    4.2 The predictions of the planing state of supercavitating vehicles

    The characteristic of planing state of supercavitating vehicle is of important significance to the stability and control of trajectory.Here,we defined the planing state as with small little wet area or pitching angle and with small change amplitude of pitching angle,however.In this paper,the motion equations that control the gesture of vehicle in the longitudinal plane are derived and by adjusting the location of gravity center,the planing state is finally obtained.The initial state is with zero pitching angle and ventilated supercavity enveloped which is demonstrated in Fig.5.

    4.3 The motion equations

    The motion equations in the longitudinal plane are shown in the following,the coordinate system is built on the center of cavitator.

    Fig.4 The pressure evolution law in the developing process of cavtiy

    where,m is the mass of vehicle,u,v are the translational velocities of vehicle in the body coordinate,r is the pitching angular velocity.xgis the coordinate of gravity center in the direction of x in the body coordinate.Izis the moment of inertia of vehicle.Mzis calculated in simulations.

    The kinetic equations are as follows:

    In this paper,in order to investigate the planing state of the vehicle without considering any other velocity disturbance,we limit the center of cavitator traveling along the x direction in the ground coordinate,so we assume that:=25m/s,=0m/s,substitute them into equation(10)and combine with equation(9),we finally obtain the equation:

    In the following,the planing state is finally obtained by adjusting the location of gravity center xg·xg=0.43m and xg=0.23m.In both conditions,Iz=1.36kg·m2,the mass flow rate is 0.013 456kg/s.The initial state is the same which is shown in Fig.5.

    Fig.5 The initial state of pitching motion

    The results are shown in Fig.6.

    Fig.6 The final state when xg=0.43m

    In Fig.7,when xg=0.43m,it can be seen that the vehicle has a pitching angle of nearly 8 degrees when time is 0.27s,and when the drag also has a maximal value.The final state can be seen in Fig.6 which is not allowed for supercavitating vehicles.

    Fig.7 The change process of pitching angle and drag coefficient of vehicle when xg=0.43m

    Fig.8 shows the vehicle finally has the planing state when xg=0.23m.From Fig.8(a)and(b),it can be seen that when the time is about 0.17s the pitching angle has the biggest value and simultaneously the drag has the maximal value.And when the vehicle enters the planing state,the drag stabilizes gradually.The final planing state is shown in Fig.9.

    From the above conclusions,it can be seen that the numerical method in this paper can successfully predict the planing state of supercavitating vehicles and the location of gravity center seriously affects the gesture of vehicle.

    Fig.8 The change process of pitching angle and drag of vehicle when xg=0.23m

    Fig.9 The final planing state when xg=0.23m

    5 Conclusions

    In this paper,the two fluid multiphase model and DES turbulence model are used to predict the ventilated supercavity.

    Firstly,the developing process and the evolution law of supercavity at 25m/s are simulated.The results show that the shedding of cavity results in the pressure fluctuation in cavity,and both phenomena affect each other.The waves intersect at the rear of the cavity,leading to the shedding of cavity.The results show the capability of the numerical method in predicting the ventilated supercavity.

    Secondly,the planing state can be obtained using the method provided in this paper and the planing state of supercavitating vehicles is seriously affected by the location of gravity center.

    Finally,the numerical method in this paper still should be verified by experiments.Anyway,the accuracy of the method to predict the ventilated supercavity scale and hydrodynamics has been verified by the authors in this paper.

    [1]Reichardt H.The laws of cavitation bubbles at axially symmetrical bodies in a flow[R].Minintry of Aifcraft Production,Reports and Translations,1946:766.

    [2]Dellanoy Y,Kueny J L.Two-phase flow approach in unsteady cavitation modeling[C]//Cavitation and Multiphase Flow Forum,ASME.New York,ASME-FED,1990,98:153-158.

    [3]Coutier-Delgosha O,Reboud J L,Delannoy Y.Numerical simulations in unsteady cavitating flows[J].Numerical Methods Fluids,2003,42:527-548.

    [4]Song C,He J.Numerical simulation of cavitating flows by single-phase flow approach[C]//Proc.of 3rd International Symposiumon on Cavitation.Grenoble,1998:295-300.

    [5]Yoshinori Saito,Rieko Takami,Ichiro Nakamori.Numerical analysis of unsteady behavior of cloud cavitation around a NACA0015 foil[J].Comput Mech,2007,40:85-96.

    [6]Yoshihisa Takekoshi,Takafumi Kawamura.Comparison of cavitation models for simulation of cavitating flow over a hydrofoil[C]//Sixth International Symposium on Cavitation.Wageningen,Netherlands,2006:1-9.

    [7]Lindau J W,Kunz R F.High Reynolds number,unsteady,multiphase CFD modeling of cavitation flows[J].Journal of Fluids Engineering,2002,124:606-616.

    [8]Yi Shuqun,Zhang Minghui,Zhou Jianwei,Xu Mengmeng,Shong Zhiping,Shen Jiren.Experimental research about the effects of attack angle on supercavitation of restrained model during axial accelerating[J].Chinese Journal of Hydrodynamics,2010,25(3):292-298.

    [9]Zhang Jiazhong,Zhao Jing,Wei Yingjie,Wang Cong,Yu Kaiping.Re-entrant jet and its effect on the shape of ventilated supercavity[J].Journal of Ship Mechanics,2010,14(6):571-576.

    [10]Li Jitao,Hu Tianqun,He Yousheng.Experimental investigation of supercavitating vehicle motion with oscillatory mode[C]//Proceedings of the Seventh China National Conference on Experimental Fluid Mechanics,2007.

    [11]Lee Qitao,Xue Leiping,He Yousheng.Experimental study of ventilated supercavities with a dynamic pitching model[J].Journal of Hydrodynamics,Ser.B,2008,20(4):456-460.

    [12]Jiang Zenghui,Yu Kaiping,Wang Cong,Zhang Jiazhong,Huang Wenhu.Experimental research on hydrodynamic character of aft section of underwater supercavitating bodies[J].Engineering Mechanics,2008,25(3):26-30.(in Chinese)

    [13]Spalart P R,Jou W H,Strelets M,Allmaras S R.Comments on the feasibility of LES for wings,and on a hybrid RANS/LES approach[C]//1st AFOSR Int.Conf.On DNS/LES,Aug.4-8,1997.Ruston,LA.In Advances in DNS/LES,Liu C&Liu Z Eds.,Greyden Press,Colombus,OH,1997.

    [14]Barth T J,Jesperson D C.The design and application of upwind schemes on unstructured meshes[R].AIAA Paper 1989,89-0366.

    [15]Semenenko V N.Dynamic processes of supercavitation and computer simulation[C].VKI Special Course on Supercavitating Flows,Brussels:RTO2AVT and VKI,2001.RTO-EN-010(12).

    超空泡發(fā)展過程研究以及對(duì)兩種研究滑行力方法的評(píng)估

    周景軍,于開平,張 廣

    (哈爾濱工業(yè)大學(xué),哈爾濱 150001)

    采用兩流體模型以及DES湍流模型對(duì)通氣超空泡發(fā)展過程以及泡內(nèi)壓力變化規(guī)律進(jìn)行了三維數(shù)值仿真。模擬了兩種泄氣方式:回注射流和雙渦管泄氣方式。并基于文中數(shù)值方法預(yù)測(cè)通氣超空泡方面的能力,對(duì)兩種研究航行體滑行狀態(tài)的方法進(jìn)行了評(píng)估:一種方法是在水槽中的定軸俯仰運(yùn)動(dòng),另一種方法是類似于約束模實(shí)驗(yàn)的自由俯仰運(yùn)動(dòng),兩種方法都采用了網(wǎng)格變形技術(shù)。結(jié)果表明在相同條件下,后者可以很容易得到超空泡航行體的滑行狀態(tài)而前者較難獲取滑行狀態(tài),盡管在水槽中前者更易實(shí)現(xiàn)。文中的數(shù)值方法可以用來(lái)進(jìn)一步研究滑行狀態(tài)并給出一些有意義的結(jié)論。

    通氣超空泡;兩流體多相流模型;俯仰運(yùn)動(dòng)

    TV131.2

    A

    周景軍(1981-),男,哈爾濱工業(yè)大學(xué)教授,博士生;

    張 廣(1983-),男,哈爾濱工業(yè)大學(xué)博士生。

    TV131.2

    A

    1007-7294(2011)03-0199-08

    date:2010-11-15

    Supported by the major National Natural Science Foundation of China(Grant No.10832007)

    于開平(1968-),男,哈爾濱工業(yè)大學(xué)教授;

    猜你喜歡
    哈爾濱工業(yè)大學(xué)空泡水槽
    可升降折疊的飲水機(jī)水槽
    水下航行體雙空泡相互作用數(shù)值模擬研究
    《哈爾濱工業(yè)大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    為什么水槽管要做成彎曲狀
    《哈爾濱工業(yè)大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    《哈爾濱工業(yè)大學(xué)學(xué)報(bào)》征稿簡(jiǎn)則
    要挑好水槽,就看這里了!
    幸福(2016年6期)2016-12-01 03:08:13
    哈爾濱工業(yè)大學(xué)設(shè)計(jì)學(xué)系
    廚房水槽設(shè)計(jì)
    基于LPV的超空泡航行體H∞抗飽和控制
    日本三级黄在线观看| 日韩欧美一区二区三区在线观看| 可以免费在线观看a视频的电影网站| 国产午夜福利久久久久久| 91精品国产国语对白视频| 黄片播放在线免费| 美女高潮喷水抽搐中文字幕| 国产高清视频在线播放一区| 亚洲 欧美一区二区三区| 大型av网站在线播放| 乱人伦中国视频| 一级毛片高清免费大全| 91国产中文字幕| 精品一品国产午夜福利视频| 欧美不卡视频在线免费观看 | 免费在线观看亚洲国产| 日韩视频一区二区在线观看| 亚洲美女黄片视频| 在线观看66精品国产| 国产亚洲欧美精品永久| 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品综合一区在线观看 | 亚洲五月天丁香| 午夜a级毛片| 午夜两性在线视频| 一级毛片女人18水好多| aaaaa片日本免费| 他把我摸到了高潮在线观看| 又紧又爽又黄一区二区| 国产成人啪精品午夜网站| 波多野结衣一区麻豆| 1024视频免费在线观看| 久久久久久久精品吃奶| 国产主播在线观看一区二区| 亚洲国产高清在线一区二区三 | 色综合亚洲欧美另类图片| 女同久久另类99精品国产91| 亚洲色图av天堂| 成人欧美大片| 校园春色视频在线观看| 国产av又大| 亚洲狠狠婷婷综合久久图片| 国产精品一区二区三区四区久久 | 亚洲精品av麻豆狂野| 女人精品久久久久毛片| 国产精品久久视频播放| 久久久水蜜桃国产精品网| 久久精品国产清高在天天线| 日韩免费av在线播放| 欧美性长视频在线观看| 欧美最黄视频在线播放免费| 免费看十八禁软件| 欧美黑人精品巨大| www日本在线高清视频| 中文字幕高清在线视频| 中出人妻视频一区二区| 成年女人毛片免费观看观看9| 国产熟女午夜一区二区三区| 18禁美女被吸乳视频| 国产成年人精品一区二区| 人人妻人人爽人人添夜夜欢视频| 老汉色av国产亚洲站长工具| 美女大奶头视频| 99久久久亚洲精品蜜臀av| 手机成人av网站| 欧美 亚洲 国产 日韩一| 亚洲 欧美一区二区三区| 一级毛片女人18水好多| 在线播放国产精品三级| 精品久久蜜臀av无| 国产精品美女特级片免费视频播放器 | 国产精品 欧美亚洲| x7x7x7水蜜桃| 老司机午夜十八禁免费视频| 母亲3免费完整高清在线观看| 亚洲性夜色夜夜综合| 99精品欧美一区二区三区四区| 人人妻人人爽人人添夜夜欢视频| 婷婷精品国产亚洲av在线| 丝袜在线中文字幕| 免费在线观看视频国产中文字幕亚洲| 91老司机精品| 亚洲成国产人片在线观看| 国产精品久久视频播放| 亚洲av电影在线进入| 中文字幕人妻丝袜一区二区| 12—13女人毛片做爰片一| 看黄色毛片网站| 熟女少妇亚洲综合色aaa.| 久久精品91无色码中文字幕| 99热只有精品国产| 亚洲国产精品sss在线观看| 亚洲中文日韩欧美视频| www国产在线视频色| 99在线视频只有这里精品首页| 十八禁网站免费在线| 成人av一区二区三区在线看| 国内精品久久久久精免费| 正在播放国产对白刺激| 精品久久蜜臀av无| 国产精品久久久av美女十八| 一区二区三区激情视频| 欧美日韩精品网址| 国产精品1区2区在线观看.| 国产成人精品久久二区二区免费| 岛国在线观看网站| 黄色成人免费大全| 国产成人欧美| 精品电影一区二区在线| www.自偷自拍.com| 久久欧美精品欧美久久欧美| 久久国产精品男人的天堂亚洲| 99热只有精品国产| 十八禁网站免费在线| 91成年电影在线观看| 51午夜福利影视在线观看| 国产精品久久久久久人妻精品电影| 亚洲一码二码三码区别大吗| 啪啪无遮挡十八禁网站| 国产精华一区二区三区| 夜夜爽天天搞| 久久亚洲真实| 国产av又大| 日韩高清综合在线| 欧美乱妇无乱码| 国产麻豆成人av免费视频| 精品午夜福利视频在线观看一区| 国产精品 欧美亚洲| 国产成人免费无遮挡视频| 亚洲自偷自拍图片 自拍| 亚洲欧美激情在线| 午夜精品国产一区二区电影| www.自偷自拍.com| 午夜福利18| 久久人人精品亚洲av| 啦啦啦免费观看视频1| 日韩欧美三级三区| 亚洲熟妇中文字幕五十中出| 亚洲熟妇熟女久久| 久久精品人人爽人人爽视色| 亚洲精品美女久久av网站| 美女高潮到喷水免费观看| 少妇被粗大的猛进出69影院| 国产午夜精品久久久久久| 国产主播在线观看一区二区| 午夜福利欧美成人| 免费av毛片视频| 亚洲熟妇熟女久久| 国产精品精品国产色婷婷| 久久精品人人爽人人爽视色| 欧美日韩中文字幕国产精品一区二区三区 | 最近最新中文字幕大全电影3 | 国产三级黄色录像| 久久久精品欧美日韩精品| 极品教师在线免费播放| 男女之事视频高清在线观看| 日韩大码丰满熟妇| 可以在线观看的亚洲视频| 国产单亲对白刺激| 国产精品久久电影中文字幕| 天堂影院成人在线观看| 一级毛片精品| 午夜福利影视在线免费观看| 在线观看66精品国产| 久久人人精品亚洲av| 黄色视频不卡| 母亲3免费完整高清在线观看| 国产精品秋霞免费鲁丝片| 亚洲国产中文字幕在线视频| 国产精品电影一区二区三区| 国产熟女xx| 亚洲人成网站在线播放欧美日韩| 欧美+亚洲+日韩+国产| 美女高潮喷水抽搐中文字幕| 国产三级黄色录像| 满18在线观看网站| 国产亚洲av嫩草精品影院| 日本vs欧美在线观看视频| 狂野欧美激情性xxxx| 校园春色视频在线观看| 亚洲情色 制服丝袜| 国产精品1区2区在线观看.| 涩涩av久久男人的天堂| 国产私拍福利视频在线观看| 久久天堂一区二区三区四区| 欧美黑人欧美精品刺激| 日本免费a在线| 1024视频免费在线观看| 日本一区二区免费在线视频| 美女扒开内裤让男人捅视频| 久久人妻av系列| 丝袜美足系列| 欧美精品亚洲一区二区| 99久久久亚洲精品蜜臀av| 美女大奶头视频| 1024香蕉在线观看| 国产一区二区三区在线臀色熟女| 99国产精品一区二区蜜桃av| 嫁个100分男人电影在线观看| 女警被强在线播放| 午夜成年电影在线免费观看| 50天的宝宝边吃奶边哭怎么回事| netflix在线观看网站| 啦啦啦免费观看视频1| 1024香蕉在线观看| 亚洲人成77777在线视频| 人成视频在线观看免费观看| tocl精华| 两人在一起打扑克的视频| 国产片内射在线| 日日夜夜操网爽| 亚洲va日本ⅴa欧美va伊人久久| 欧美成人午夜精品| 午夜精品国产一区二区电影| 搡老岳熟女国产| 日本精品一区二区三区蜜桃| 亚洲精品国产精品久久久不卡| 亚洲av第一区精品v没综合| 国产成人影院久久av| 无人区码免费观看不卡| 亚洲欧美精品综合久久99| 亚洲av片天天在线观看| 黄色成人免费大全| 成人国产一区最新在线观看| av天堂在线播放| 久久中文看片网| 琪琪午夜伦伦电影理论片6080| 久久人妻福利社区极品人妻图片| av视频在线观看入口| 男人的好看免费观看在线视频 | 又黄又爽又免费观看的视频| 亚洲成人免费电影在线观看| 色哟哟哟哟哟哟| 国产野战对白在线观看| 国产免费av片在线观看野外av| 长腿黑丝高跟| 日韩视频一区二区在线观看| 日本a在线网址| 丝袜人妻中文字幕| 热99re8久久精品国产| 国产成人欧美在线观看| 国产精品永久免费网站| 免费一级毛片在线播放高清视频 | 久久久久九九精品影院| 欧美一级毛片孕妇| 久久精品亚洲精品国产色婷小说| 午夜视频精品福利| 男女床上黄色一级片免费看| 亚洲狠狠婷婷综合久久图片| 国产成人精品无人区| 国产色视频综合| 精品久久久久久成人av| 久热爱精品视频在线9| 国产蜜桃级精品一区二区三区| 国产精品自产拍在线观看55亚洲| 波多野结衣一区麻豆| 日韩欧美在线二视频| 岛国在线观看网站| avwww免费| av视频在线观看入口| 国产成人一区二区三区免费视频网站| 高清在线国产一区| 日日夜夜操网爽| 侵犯人妻中文字幕一二三四区| 巨乳人妻的诱惑在线观看| 欧美日韩乱码在线| 一级作爱视频免费观看| 亚洲精品国产色婷婷电影| 精品卡一卡二卡四卡免费| 日韩精品青青久久久久久| 久久久久久国产a免费观看| 午夜精品久久久久久毛片777| 夜夜躁狠狠躁天天躁| 亚洲精品在线美女| 久久中文看片网| 久久九九热精品免费| 中文字幕最新亚洲高清| 老熟妇乱子伦视频在线观看| 欧美日本亚洲视频在线播放| 成人免费观看视频高清| 久9热在线精品视频| 国产激情欧美一区二区| 亚洲国产欧美网| 少妇熟女aⅴ在线视频| 精品电影一区二区在线| 国产一区二区在线av高清观看| 欧美日韩福利视频一区二区| 啦啦啦观看免费观看视频高清 | 久久久国产精品麻豆| x7x7x7水蜜桃| 国产成人一区二区三区免费视频网站| av天堂久久9| av免费在线观看网站| 日本 av在线| 亚洲aⅴ乱码一区二区在线播放 | 日本欧美视频一区| 91av网站免费观看| 欧美日韩亚洲国产一区二区在线观看| 人妻丰满熟妇av一区二区三区| 国产熟女xx| 一进一出抽搐gif免费好疼| 久热这里只有精品99| 精品国产乱码久久久久久男人| 久久九九热精品免费| 久久久久久久久免费视频了| 一本大道久久a久久精品| 亚洲中文字幕一区二区三区有码在线看 | 久久午夜亚洲精品久久| 精品午夜福利视频在线观看一区| 99精品在免费线老司机午夜| 国产精品一区二区精品视频观看| 国产精品久久久久久亚洲av鲁大| bbb黄色大片| 人妻久久中文字幕网| 黑人操中国人逼视频| 国产一级毛片七仙女欲春2 | 色在线成人网| av有码第一页| 久久九九热精品免费| 黄色丝袜av网址大全| 中文字幕精品免费在线观看视频| 亚洲全国av大片| 亚洲av电影在线进入| 亚洲一卡2卡3卡4卡5卡精品中文| www.熟女人妻精品国产| 色婷婷久久久亚洲欧美| 日本五十路高清| 琪琪午夜伦伦电影理论片6080| 国产精品秋霞免费鲁丝片| 高潮久久久久久久久久久不卡| 免费无遮挡裸体视频| 丁香欧美五月| 91av网站免费观看| 精品无人区乱码1区二区| 亚洲国产日韩欧美精品在线观看 | 成年人黄色毛片网站| 级片在线观看| 欧美成人午夜精品| 美女午夜性视频免费| 亚洲无线在线观看| bbb黄色大片| 波多野结衣巨乳人妻| 男人舔女人的私密视频| 美女高潮到喷水免费观看| 97超级碰碰碰精品色视频在线观看| 免费观看精品视频网站| 久久香蕉精品热| 99热只有精品国产| 久久性视频一级片| 亚洲天堂国产精品一区在线| 亚洲专区国产一区二区| 午夜影院日韩av| 淫秽高清视频在线观看| 热99re8久久精品国产| 一级毛片精品| 午夜视频精品福利| 在线天堂中文资源库| 久久久国产成人免费| 人妻丰满熟妇av一区二区三区| 人人妻,人人澡人人爽秒播| 国产成人精品久久二区二区91| 黄色丝袜av网址大全| 国产精品免费视频内射| av欧美777| 国产精品 国内视频| 99久久综合精品五月天人人| 欧美性长视频在线观看| 97人妻精品一区二区三区麻豆 | 午夜福利高清视频| 女生性感内裤真人,穿戴方法视频| 成年人黄色毛片网站| 夜夜躁狠狠躁天天躁| 午夜精品国产一区二区电影| 在线天堂中文资源库| 操出白浆在线播放| 欧美一级a爱片免费观看看 | 免费看十八禁软件| 色尼玛亚洲综合影院| 国语自产精品视频在线第100页| 日本 av在线| 久久精品成人免费网站| www.熟女人妻精品国产| 麻豆久久精品国产亚洲av| 长腿黑丝高跟| 三级毛片av免费| 欧美乱码精品一区二区三区| 精品人妻1区二区| 亚洲九九香蕉| 欧美中文日本在线观看视频| 老司机深夜福利视频在线观看| 搡老岳熟女国产| 亚洲国产精品成人综合色| 欧美一级毛片孕妇| 9热在线视频观看99| 久久天堂一区二区三区四区| 亚洲一卡2卡3卡4卡5卡精品中文| 热re99久久国产66热| 亚洲伊人色综图| 极品教师在线免费播放| 中出人妻视频一区二区| 老司机在亚洲福利影院| 欧美午夜高清在线| 禁无遮挡网站| 啦啦啦韩国在线观看视频| 91字幕亚洲| av在线天堂中文字幕| 婷婷丁香在线五月| 少妇 在线观看| www.999成人在线观看| 亚洲成a人片在线一区二区| av电影中文网址| 久久狼人影院| 两性夫妻黄色片| 国产精品野战在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 日本 欧美在线| 色播在线永久视频| 亚洲第一av免费看| 亚洲人成电影观看| 国产成+人综合+亚洲专区| 国产免费av片在线观看野外av| 99在线视频只有这里精品首页| 精品卡一卡二卡四卡免费| 精品一品国产午夜福利视频| 在线观看免费日韩欧美大片| 99久久99久久久精品蜜桃| 在线观看一区二区三区| 好男人在线观看高清免费视频 | 免费在线观看日本一区| 日本五十路高清| 久久久久久久精品吃奶| 真人一进一出gif抽搐免费| 可以在线观看毛片的网站| 老汉色∧v一级毛片| 他把我摸到了高潮在线观看| 人人妻人人澡人人看| 一本大道久久a久久精品| 90打野战视频偷拍视频| 国产精品亚洲av一区麻豆| 久久国产精品影院| 亚洲精品粉嫩美女一区| 中文字幕色久视频| 久久久久久免费高清国产稀缺| 亚洲成av片中文字幕在线观看| 国产国语露脸激情在线看| 无限看片的www在线观看| 久久婷婷人人爽人人干人人爱 | 国产在线精品亚洲第一网站| 婷婷精品国产亚洲av在线| 国产成人影院久久av| 亚洲国产欧美网| 黄片小视频在线播放| 午夜老司机福利片| 777久久人妻少妇嫩草av网站| 欧美日韩中文字幕国产精品一区二区三区 | 国产黄a三级三级三级人| 日韩一卡2卡3卡4卡2021年| 又紧又爽又黄一区二区| 免费女性裸体啪啪无遮挡网站| 精品一区二区三区av网在线观看| 亚洲国产毛片av蜜桃av| 免费看十八禁软件| 香蕉久久夜色| 十八禁网站免费在线| 国产成人欧美在线观看| 国产视频一区二区在线看| 嫩草影院精品99| 在线播放国产精品三级| 久久国产精品男人的天堂亚洲| 一本久久中文字幕| 在线观看舔阴道视频| 国产蜜桃级精品一区二区三区| 国产成人一区二区三区免费视频网站| 欧美精品亚洲一区二区| 视频区欧美日本亚洲| 一级毛片女人18水好多| 久久精品国产清高在天天线| 国产亚洲欧美98| 亚洲 欧美 日韩 在线 免费| 少妇裸体淫交视频免费看高清 | 亚洲精品国产区一区二| 日本免费a在线| 日韩大尺度精品在线看网址 | 非洲黑人性xxxx精品又粗又长| 老熟妇乱子伦视频在线观看| 亚洲精品国产精品久久久不卡| 亚洲男人的天堂狠狠| 12—13女人毛片做爰片一| cao死你这个sao货| 91精品国产国语对白视频| av视频免费观看在线观看| 极品人妻少妇av视频| 黄色成人免费大全| 亚洲中文av在线| 午夜福利成人在线免费观看| 女人被躁到高潮嗷嗷叫费观| 免费人成视频x8x8入口观看| 看片在线看免费视频| 免费av毛片视频| 精品午夜福利视频在线观看一区| 亚洲国产欧美日韩在线播放| cao死你这个sao货| 亚洲中文日韩欧美视频| 亚洲成人国产一区在线观看| 亚洲成a人片在线一区二区| 九色亚洲精品在线播放| 黄色视频,在线免费观看| 中文字幕久久专区| 久久精品aⅴ一区二区三区四区| 极品人妻少妇av视频| 夜夜看夜夜爽夜夜摸| 亚洲av熟女| 亚洲午夜理论影院| 男女床上黄色一级片免费看| 欧美日韩亚洲国产一区二区在线观看| 免费看a级黄色片| 欧美色视频一区免费| 亚洲自偷自拍图片 自拍| 亚洲熟妇熟女久久| 国产高清videossex| 久久人人精品亚洲av| 久久香蕉激情| 久热爱精品视频在线9| 久久人妻福利社区极品人妻图片| 看片在线看免费视频| 一进一出好大好爽视频| 可以免费在线观看a视频的电影网站| 午夜福利高清视频| 一区二区三区精品91| 欧美不卡视频在线免费观看 | 欧美日本视频| 变态另类丝袜制服| 最近最新中文字幕大全电影3 | 国产免费男女视频| 国产午夜精品久久久久久| 两个人看的免费小视频| 国产蜜桃级精品一区二区三区| 午夜久久久在线观看| 国产xxxxx性猛交| 久久久国产成人精品二区| 大型黄色视频在线免费观看| 欧美成狂野欧美在线观看| 女同久久另类99精品国产91| 国产精品久久久久久人妻精品电影| 欧美乱色亚洲激情| 国产一区二区三区在线臀色熟女| 夜夜躁狠狠躁天天躁| 国产私拍福利视频在线观看| 法律面前人人平等表现在哪些方面| 亚洲国产毛片av蜜桃av| 久久久精品国产亚洲av高清涩受| 久久婷婷成人综合色麻豆| 丝袜人妻中文字幕| 97人妻天天添夜夜摸| 黄频高清免费视频| 欧美日本视频| 黄色视频,在线免费观看| 国产亚洲精品综合一区在线观看 | 两个人看的免费小视频| 午夜福利一区二区在线看| 成人亚洲精品av一区二区| 亚洲第一av免费看| 首页视频小说图片口味搜索| 最好的美女福利视频网| 日本一区二区免费在线视频| 亚洲精品中文字幕在线视频| av网站免费在线观看视频| 午夜影院日韩av| 国产成人av教育| 久久欧美精品欧美久久欧美| 国产精品美女特级片免费视频播放器 | 成年女人毛片免费观看观看9| 久久久久亚洲av毛片大全| 18禁黄网站禁片午夜丰满| ponron亚洲| 久99久视频精品免费| 少妇粗大呻吟视频| 亚洲色图 男人天堂 中文字幕| 欧美日韩黄片免| 青草久久国产| 黄网站色视频无遮挡免费观看| 免费看十八禁软件| 老司机在亚洲福利影院| 国产精品久久久久久人妻精品电影| 欧美性长视频在线观看| 中文字幕另类日韩欧美亚洲嫩草| 亚洲一区二区三区不卡视频| 免费看美女性在线毛片视频| 搞女人的毛片| 久久人妻熟女aⅴ| 女性被躁到高潮视频| 国产成人精品无人区| 国产精品乱码一区二三区的特点 | 9191精品国产免费久久| 国产一区二区三区在线臀色熟女| 精品卡一卡二卡四卡免费| 久久久久久大精品| 精品久久久精品久久久| 91av网站免费观看| 不卡av一区二区三区| 99国产精品一区二区蜜桃av| 岛国在线观看网站| 久久久久久久久久久久大奶| 亚洲精品一卡2卡三卡4卡5卡| 国产伦人伦偷精品视频| 免费在线观看视频国产中文字幕亚洲| 亚洲七黄色美女视频| 97人妻天天添夜夜摸| av超薄肉色丝袜交足视频| 亚洲色图av天堂| 中国美女看黄片| 日韩中文字幕欧美一区二区| 成年人黄色毛片网站| 老司机靠b影院| 精品国产一区二区久久|