• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Finite Element Analysis of Delamination Initiation and Growth in E-Glass/Epoxy Reinforced Laminated Beams under Axial Impact

    2010-06-07 07:53:28CAIZhongyunMOJianhuiTANGWenyongWANGGangZHANGShengkunStateKeyLaboratoryofOceanEngineeringShanghaiJiaoTongUniversityShanghai0040ChinaChinaClassificationSocietyBeijing00007China
    船舶力學(xué) 2010年6期
    關(guān)鍵詞:上海交通大學(xué)船級(jí)社軸向

    CAI Zhong-yun,MO Jian-hui,TANG Wen-yong,WANG Gang,ZHANG Sheng-kun( State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 0040,China; China Classification Society,Beijing 00007,China)

    Finite Element Analysis of Delamination Initiation and Growth in E-Glass/Epoxy Reinforced Laminated Beams under Axial Impact

    CAI Zhong-yun1,MO Jian-hui2,TANG Wen-yong1,WANG Gang2,ZHANG Sheng-kun1(1 State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;2 China Classification Society,Beijing 100007,China)

    The initiation and growth of delamination in E-glass/epoxy reinforced laminated beams subjected to axial impact were investigated numerically.Introducing a mixed failure mode which was made up of quadratic nominal stress criterion and BK(Benzeggagt-Kenane)fracture criterion,a finite element model with the cohesive element which was employed to simulate the intra-laminar failure area was established by the commercial software ABAQUS/Explicit.The results show the delamination location and its growth in terms of beam’s ply sequence and impact velocity.An experimental setup was used to investigate the dynamic response and failure behavior of the laminated beams.A good agreement was obtained between numerical simulation and experimental results.

    laminated beam;delamination;dynamic response;axial impact;finite element method;ABAQUS

    Biography:CAI Zhong-yun(1978-),Male,Ph.D.student of Shanghai Jiao Tong University;Corresponding author

    E-mail:wytang@sjtu.edu.cn.

    1 Introduction

    Due to the high specific stiffness,strength and high fracture strength,fiber reinforced plastic(FRP)laminated composite materials have been increasingly used in modern industrial fields,such as aircraft,civil engineering and marine industry.These materials have high strength-to-weight and stiffness-to-weight ratios.However,laminated composites are susceptible to cause damage in form of matrix cracking,delamination and fiber breakage under impact load like drop tools during their service time.Delaminations are generated by matrix cracks,which are the initial damage[1].In the presence of delamination,the properties of laminated materials may be significantly degenerated,which can result in a severe failure of structure.Therefore,it is particularly important to investigate the mechanism of damage behavior to FRP laminated materials.

    Many researchers have made effort to investigate the damage mechanism of laminated composites under impact load.Elder et al[2]reviewed methods for predicting the delamination,including finite element method,boundary element method and cohesive fracture model based on linear elastic fracture mechanics(LEFM).Early research[3-5]focused on finite element method and Collombet et al[5]presented two approaches for modeling damage phenomena:a.averaging models and the contact technique;b.simple criteria for determining damage initiation and growth.Mohammadi et al[6]presented a discrete element method based on contact and a re-mesh method to model an individual crack.Renard et al[7]introduced an intermediate scale between ‘micro’ and ‘macro’,called the ‘meso’ scale,which considered the ply as the basic entity for the description of laminated structures.The continuum damage mechanics model was employed to construct the damage surface[8],and the model has been implemented in a commercial explicit element code[9].Yang et al[10]investigated the delamination growth based on the variational principle of moving boundary and Griffith criteria.Borg et al[11]analyzed delamination initiation and growth by using a discrete cohesive crack model which was derived postulating the existence of a maximum load surface which limited the adhesive forces in the process zone of the crack.

    Failure criteria and contact mechanism have been noticed for many researchers in recent studies.Narayana et al[12]established a new failure criterion based on initial failure mechanism,which can be concluded that influence of shear stress on the failure of the lamina is of little consequence as far as prediction of strength in laminates.Luo et al[13]employed maximum stress and quadratic stress failure criteria in three failure modes and the results showed that the shape of impact mass should be considered as an important parameter.Tay et al[14]used the element-failure method and the micromechanics-based failure criterion SIFT to model the damage and its development.Contact mechanism is unnecessary to be defined in this method.Zhang et al[15]brought forward an approach based on contact constraint introduced by penalty function method and the damage areas were considered as cohesive zone.Then the damage model was implemented into a commercial finite element package,ABAQUS,via its user subroutine VUINTER.A linearized contact law has been well applied to the impact analysis and parametric study on contact coefficient and exponent of the contact law was performed by Choi[16].

    Experimental investigation is another important approach to study the damage mechanism for laminated composites under impact load by three common impact setups:drop weight impact machine,pendulum impactor and gas-gun impactor.Zhou[17]studied thick glass fiber reinforced laminates of various dimensions subjected to impact with a flat-ended impactor and the influence on impact behavior was found to be generally dependent on the impact force or incident kinetic energy level.Techniques such as cross-sectional fractography,scanning acoustic microscopy and scanning electron microscopy were employed by Sohn et al[18]to assess the internal damage and the results showed that laminates experienced various types of fracture.The effect of ply-up sequence has been studied by Mili[19]and Belingardi[20].The energy absorption capability has been studied with respect to the different ply-ups and it points out that it has no sensitivity to strain-rate effect by the force-displacement curves which are obtained during the conducted tests.Hou et al[21]verified a new delamination criterion by ex-periment results,with consideration of both the inter-laminar shear and through-thickness compression stresses.The investigation conducted by Aslan et al[22]was concerned with evaluation of the in-plane dimensional effect of laminates with(0/90/0/90)soriented cross-ply and three different geometrical dimensions.

    The work mentioned above has also considered the damage of laminated plates subjected to transverse impact load.Slender beams as common structural components applied in various engineering fields may be easily buckled and damaged under static or dynamic axial load.Kenny et al[23]presented a numerical investigation for dynamic buckling of an elastic slender beam with initial geometric imperfections modeled by the finite difference and finite element methods.By using a horizontal linear bearing impact setup,Zhang[24]performed the analysis of dynamic damage behavior of FRP laminated beams under axial impulse caused by pendulum impactor,and the results showed that delamination and matrix crack were the primary damage mechanism.

    This paper is concerned with dynamic response and damage behavior of E-glass/epoxy reinforced laminated beams under the axial impact.Based on Hashin’s stress failure criterion[25]and BK(Benzeggagt-Kenane)fracture criterion[26],a mixed failure criterion was employed to determine the initial crack and delamination growth.A 3-Dimentional finite element model was established in ABAQUS/Explicit,where the failure field was modeled by cohesive elements.With a gas-gun impactor test system,the dynamic response and damage behavior were investigated experimentally.Compare the time-history curves of strain records and the residual deformations,good agreements were obtained between numerical simulation and experimental observation.The effect of ply sequence and impact velocity were considered principally in the investigation.

    2 Numerical model

    Finite element method(FEM)was made a wide application in mechanics analysis of structure strength,response and buckling in different materials.Based on appropriate failure criteria,the failure behavior of orthotropic materials can be investigated correctly.

    The FRP laminated beam can be considered as a stack of homogeneous,orthotropic laminas with different ply-up sequence.The delamination may occur at interface between any individual neighboring laminas which can be tied together using a ‘sliding contact interface’[15].The interface behaves as an entity with large stiffness but no thickness that can be modeled by cohesive element with traction-separation damage description[26].

    The numerical simulation of dynamic response and damage behavior of laminated composite beams are performed using the finite element package ABAQUS/Explicit.The whole beam is considered as an elastic entity and each lamina is discretized into a 100×4 model(see Fig.2)used by 8-node,quadrilateral,first-order interpolation,stress/displacement continuum shell element with reduced integration named SC8R included in ABAQUS.The impact beam is modeled as a homogeneous property block with an initial velocity.The impact block has a same cross-section to the laminated beam,and the general contact interaction is defined between the beam and block’s surfaces.

    The 8-node three-dimensional cohesive element COH3D8 in ABAQUS is used to model the initiation and growth of delamination between laminas of the beam.We observed experimentally that the mid-plane and the second interface from bottom surface of the beam were sensitive to damage under axial impact.Based on experimental result,the correlative interfaces were modeled as cohesive elements in numerical simulation.

    The time-history strain records,damage initiation and growth were obtained in order to compare with the experimental results.A valuable conclusion was found after the comparison.

    3 Failure criterion

    Fiber breakage,matrix cracking and delamination are three common failure modes in the laminated composites subjected to dynamic load.In our case,no fiber breakage was observed for all beams after impact.We present in the following paragraphs the failure criteria developed for modeling of matrix cracking and delamination.In fact,delaminations were generated by matrix cracks in interfaces,which were the initial damage[1].A mixed failure criterion,which was made up of quadratic nominal stress criterion and BK(Benzeggagt-Kenane)fracture criterion,was used to model damage initiation in numerical simulation.

    3.1 Quadratic nominal stress criterion

    The cohesive element in ABAQUS was used to model interaction surface between two fiber plies.The nominal traction stress at this surface includes tn,tsand ttwhich represent the normal and the two shear tractions,respectively(Fig.3).

    Damage is assumed to initiate when a quadratic interaction function involving the nominal stress ratios reaches a value of one.This criterion can be represented as[26]

    For the current laminated beam subjected to axial impact,the whole beam can be considered as an one-dimensional model,so the normal and one shear stress are ignored as described by the differential equations in Ref.[24].The failure criteria can be described by Ref.[25],

    3.2 BK(Benzeggagh-Kenane)fracture criterion

    The nominal traction stress at the interaction surface,tn,tsand tt,we define the respective critical strain energy release rateandas follows,which indicate the fracture ModeⅠ,Ⅱ and Ⅲ:

    The delamination of laminated materials is not determined by one fracture mode,it is reasonable to calculate a mixed strain energy release rate.In order to accurately account for the variation of fracture toughness as a function of mode ratio in epoxy composites,the mixedmode criterion proposed by Benzeggagh and Kenane is used here[27].

    where GS=Gs+Gt,GT=Gn+GS,η is a fitting parameter in equation and its value lies on the material property and can be obtained from Mixed-Mode Bending(MMB)tests[27].

    In the above expression the quantities Gn,Gsand Gtrefer to the work done by the traction and its conjugate relative displacement in the normal,the first,and the second shear directions respectively.The quantitiesandrefer to the critical fracture energies required to cause failure in the normal,and the first shear directions respectively.In our simulation,the values ofand η are specified as 120J/m2,1 200J/m2and η=2.6.

    3.3 Mixed-mode failure criterion[26]

    Fig.4 shows the traction on the vertical axis,the magnitudes of the normal and the shear separations along the two horizontal axes.The unshaded triangles in the two vertical coordinate planes represent the response under pure normal and pure shear deformation,respectively.All intermediate vertical planes that contain the vertical axis represent the damage response under mixed mode conditions with different mode mixes.The dependence of the damage evolution data on the mode mix can be defined either in tabular form or,in the case of an energybased definition,analytically.

    4 Results discussion

    The name of beams groups A and B represents the experimental test and numerical simulation.Each group has two kinds of beam with different ply-up sequence.The geometric and material properties of beams are listed in Tab.1 and Tab.2.

    Tab.1 Geometric properties of the laminated beams

    Tab.2 The material property of 45°ply-up sequence

    4.1 Strain records

    4.1.1 Strain record curves analysis of[(±45)3]sply-up

    Fig.5 shows typical time-history of strain values recorded under low impact velocity by two strain gauges mounted on beam’s top and bottom surfaces at the middle length of the beam.When a geometrically imperfect beam is impacted axially,it will vibrate in both axial and transverse directions[24].From Fig.5,we can see that the record curves of top and bottom are overlapped at the beginning,which indicates the beam experiences compressive strain.Subsequently,the curves are bifurcated because the stress wave propagates along the beam,and flexure strain occurs during compressive process.Compared with Fig.6,the same trend of strain record curves is observed in finite element analysis which illustrates that the value of stiffness is low in[(±45)3]sply-up sequence and the beam is sensitive to flexure deformation.

    The model of numerical simulation is idealization and the imperfection during manufacture process has been ignored.

    4.1.2 Strain analysis of[(0)6]sply-up

    Figs.7-8 show the experimental and numerical results of beam with[(0)6]sply sequence under low speed axial impact.The curves are overlapped during the first half sine wave due to both top and bottom surfaces experience compressive strain because of larger value of stiffness contrast to the results of[(±45)3]sply sequence.Then,the beam vibrates in compressive and flexure deformation and the vibration diminishes gradually due to the damping effect.

    4.2 Damage analysis

    The damage of transverse impacted FRP laminate composites with delamination,fiber breakage and matrix crack mainly occurs at the contact area of the impacted region[1,18].Under axial impact,the damage may occur at the location along the beam length and through the beam thickness that varies depending on the lay-up configurations[24].The beams with initial geometric imperfections deform transversely and axially under axial impact,and the maximum bending strains occur at the outer plies and shear stain mainly takes place at mid-plane due to the higher order shear deformation theory.From the experimental results for all beams,damage in form of delamination dominates beam’s failure behavior and differs in ply-up sequence.The following paragraphs present the details of damage behavior of beams under axial impact according to different ply-up sequence.

    4.2.1 Damage analysis of beams with[(±45)3]sply-up

    Beams in groups A1 and B1 have low value of material stiffness due to lay up sequence of[(±45)3]s.The maximum flexure deformation occurs at outer plies that induce matrix cracking at that location.Fig.9 shows the residual deformation and damage form of beam A1 after axial impact velocity 11.7m/s.From the figures it is seen that the damage occurs at the location of 1/4L and 1/2L from the fixed support end along the beam length.The damage in form of delamination is observed in beam’s mid-plane near to the fixed support end.The matrix crack is observed at top surface in 1/2L distance and bottom surface in 1/4L along the whole length that is induced by the maximum tension stain.The similar damage in form of delamination is also obtained in numerical simulation by finite element model(see Fig.10),and initial delamination occurs near to the fixed support end and extends towards the middle along beam’s length during the stress wave propagating.Matrix cracking is not considered because it is difficult to set up cohesive element between elements through the beam width at outer ply.

    4.2.2 Damage analysis of beams with[(0)6]sply-up

    Being different from the beams with [(±45)3]sply-up sequence which the damage in form of delamination and matrix cracking coexisted under axial impact,the damage form of delamination dominated over beams with[(0)6]sply-up sequence.

    Fig.11 shows the delamination form of beam A2 after axial impact velocity 23.7m/s.From the illustrated detail,we can see that the delamination appears in the middle surface at the impact side and extends approximatly 1/4L along the beam’s length.Then it is transfered to the neighbor interaction surfaces,and the delamination in the surface between plies 4 and 5 near to bottom extends to the fixed support end.

    The finite element analysis shows the same delamination form at the impact side and its growth between plies 4 and 5,see Fig.12.At the fixed-support end,delaminations do not occur in simulation model contrary to the experimental result as shown in Fig.11(B),where delamination occurs in interac

    tion surfaces close to beam’s bottom due to the refection of stress wave propagation.

    The laminated beam with[(0)6]sply-up sequence has considerable carrying capacity after damage occurs at the impact side,stress wave propagates along the beam and reflects at the fixed end in experimental investigation.The material properties are considered as linear elastic mode and the dynamic stiffness is not described accurately in numerical simulation.The impact energy is transfered to stain energy and is released when failure happened.

    5 Conclusions

    Dynamic response and damage behavior of E-glass/epoxy reinforced laminated slender beams with geometric imperfection under axial impact were investigated numerically.The time history strain records were used to analysis the dynamic response during the beam subject to impact.Employing mixed failure criteria based on quadratic nominal stress criterion and BK fracture criterion,the delamination phenomenon was modeled by cohesive element in a 3-D finite element model.Some valuable conclusions were obtained as follows:

    (1)Damage in form of delamination dominated the behavior of FRP laminated beams un-der axial impact.

    (2)Ply-up configuration is a key element that affects the material properties and damage behaviors.The delamination occurred near to fixed support end in beam with[(±45)3]sply-up sequence due to stress wave reflection under low impact velocity.For beam with[(0)6]sply-up sequence,delaminations occurred when impact velocity exceeded 20m/s,tremendous impact energy resulted in damage located in beam’s impact side.

    (3)Finite element method is a useful technique to simulate dynamic response and perform damage behavior analysis of laminated composite models due to the agreement of experimental results.Because of the complexity of damage behavior in laminated composite material,the parameters of cohesive elements and the material property in dynamic status should be seriously considered in numerical simulation.

    [1]Zhao G P,Cho C D.Damage initiation and propagation in composite shells subjected to impact[J].Composite Structures,2007,78:91-100.

    [2]Elder D J,Thomson R S,Nguyen M Q,et al.Review of delamination predictive methods for low speed impact of composite laminates[J].Composite Structures,2004,66:677-683.

    [3]Kwon Y M,Augunes H.Dynamic finite element analysis of laminated beams with delamination cracks using contactimpact conditions[J].Computers and Structures,1996,58:1161-1169.

    [4]Hsiao H M,Daniel I M.Strain rate behavior of composite materials[J].Composites Part B:Engineering,1998,29:521-533.

    [5]Collombet F,Lalbin X,Lataillade J L.Impact behavior of laminated composites:Physical basis for finite element analysis[J].Composites Science and Technology,1998,58:463-478.

    [6]Mohammadi S,Forouzan-Sepehr S,Asadollahi A.Contact based delamination and fracture analysis of composites[J].Thin-Walled Structures,2002,40:595-609.

    [7]Jacques Renard,Alain Thionnet.Damage in composites:From physical mechanisms to modeling[J].Composites Science and Technology,2005,66:642-646.

    [8]Li S,Zou Z,Reid S R.A continuum damage model for delaminations in laminated composites[J].Journal of the Mechanics and Physics of Solids,2003,51:333-356.

    [9]Johnson A F,Holzapfel M.Influence of delamination on impact damage in composite structures[J].Composites Science and Technology,2006,66:807-815.

    [10]Yang J H,Fu Y M.Delamination growth of laminated composite cylindrical shells[J].Theoretical and Applied Fracture Mechanics,2006,45:192-203.

    [11]Rikard Borg,Larsgunnar Nilsson,Kjell Simonsson.Modeling of delamination using a discretized cohesive zone and damage formulation[J].Composites Science and Technology,2002,62:1299-1314.

    [12]Narayana Naik G,Krishna Murty A V,Gopalakrishnan S.A failure mechanism based failure theory for laminated composites including the effect of shear stress[J].Composite Structures,2005,69:219-227.

    [13]Luo R K,Green E R,Morrison C J.An approach to evaluate the impact damage initiation and propagation in composite plates[J].Composites Part B:Engineering,2001,32:513-520.

    [14]Tay T E,Tan S H N,Tan V B C,et al.Damage progression by the element-failure method(EFM)and strain invariant failure theory(SIFT)[J].Composites Science and Technology,2005,65:935-944.

    [15]Zhang Y,Zhu P,Lai X M.Finite element analysis of low-velocity impact damage in composite laminated plates[J].Materials and Design,2005,27:513-519.

    [16]Choi I H,Lim C H.Low-velocity impact analysis of composite laminates using linearized contact law[J].Composite Structures,2004,66:125-132.

    [17]Zhou G.Damage mechanisms in composite laminates impacted by a flat-ended impactor[J].Composites Science and Technology,1995,54:267-273.

    [18]Sohn M S,Hu X Z,Kim J K,et al.Impact damage characterization of carbon fiber/epoxy composites with multi-layer reinforcement[J].Composites Part B:Engineering,2000,31:681-691.

    [19]Mili F,Necib B.Impact behavior of cross-ply laminated composite plates under low velocities[J].Composite Structures,2001,51:237-244.

    [20]Belingardi G,Vadori R.Influence of the laminate thickness in low velocity impact behavior of composite material plate[J].Composite Structures,2003,61:27-38.

    [21]Hou J P,Petrinic N,Ruiz C.A delamination criterion for laminated composites under low-velocity impact[J].Composites Science and Technology,2001,61:2069-2074.

    [22]Aslan Zuleyha,Karakuzu Ramazan,Okutan Buket.The response of laminated composite plates under low-velocity impact loading[J].Composite Structures,2003,59:119-127.

    [23]Kenny S,Pegg N,Taheri F.Dynamic elastic buckling of a slender beam with geometric imperfection subject to an axial impulse[J].Finite Elements in Analysis and Design,2000,35:227-246.

    [24]Zhang Z,Taheri F.Dynamic damage initiation of composite beams subjected to axial impact[J].Composites Science and Technology,2004,64:719-728.

    [25]Hashin Z.Failure criteria for unidirectional fiber composites[J].Journal of Applied Mechanics,1980,47:329-334.

    [26]ABAQUS analysis manual version 6.5[K].2004.

    [27]Camanho P P,Davila C G,de Moura M F.Numerical simulation of mixed-mode progressive delamination in composite materials[J].Journal of Composite Materials,2003,37:1415-1438.

    軸向沖擊作用下玻璃纖維復(fù)合材料層合梁脫層及其擴(kuò)展分析

    蔡忠云1,莫鑒輝2,唐文勇1,王 剛2,張圣坤1

    (1上海交通大學(xué)海洋工程國(guó)家重點(diǎn)實(shí)驗(yàn)室,上海 200240;2中國(guó)船級(jí)社,北京 100007)

    玻璃纖維增強(qiáng)型復(fù)合材料層合梁在受軸向質(zhì)量塊沖擊時(shí),由于纖維鋪層間的粘結(jié)強(qiáng)度較小,該區(qū)域易出現(xiàn)初始裂紋,進(jìn)而擴(kuò)展為脫層損傷。文章探討了采用有限元數(shù)值模擬對(duì)脫層的產(chǎn)生與擴(kuò)展進(jìn)行建模、計(jì)算分析的方法。針對(duì)發(fā)生在纖維層間的脫層損傷,基于傳統(tǒng)的應(yīng)力失效準(zhǔn)則,結(jié)合斷裂力學(xué)的B-K能量失效準(zhǔn)則,建立了混合失效準(zhǔn)則來(lái)定義界面處的損傷規(guī)律,將發(fā)生脫層的潛在區(qū)域定義為粘結(jié)接觸。計(jì)算結(jié)果與實(shí)驗(yàn)對(duì)比具有較好的一致性。

    層合梁;脫層;動(dòng)力響應(yīng);軸向沖擊;有限元;ABAQUS

    O347.3

    A

    蔡忠云(1978-),男,上海交通大學(xué)博士研究生,中國(guó)船級(jí)社研發(fā)中心工程師;

    張圣坤(1942-),男,上海交通大學(xué)船舶海洋與建筑工程學(xué)院教授。

    O347.3

    A

    1007-7294(2010)06-0649-11

    date:2009-06-03

    莫鑒輝(1961-),男,中國(guó)船級(jí)社總工程師;

    唐文勇(1970-),男,上海交通大學(xué)船舶海洋與建筑工程學(xué)院教授;

    王 剛(1969-),男,中國(guó)船級(jí)社研發(fā)中心總工程師;

    猜你喜歡
    上海交通大學(xué)船級(jí)社軸向
    上海交通大學(xué)
    大型立式單級(jí)引黃離心泵軸向力平衡的研究
    河鋼舞鋼9Ni鋼通過(guò)俄羅斯船級(jí)社認(rèn)證
    四川冶金(2019年4期)2019-11-18 09:30:52
    上海交通大學(xué)參加機(jī)器人比賽
    荒銑加工軸向切深識(shí)別方法
    中國(guó)船級(jí)社實(shí)業(yè)公司
    微小型薄底零件的軸向車(chē)銑實(shí)驗(yàn)研究
    特殊多線(xiàn)螺紋的快速軸向分線(xiàn)法
    河南科技(2014年7期)2014-02-27 14:11:18
    挪威船級(jí)社與德國(guó)勞氏船級(jí)社正式合并
    水上消防(2013年1期)2013-08-15 00:42:30
    《疾風(fēng)圖》
    人民交通(2012年6期)2012-10-26 05:31:10
    亚洲第一青青草原| 男女视频在线观看网站免费 | 一级片免费观看大全| 久久久久久亚洲精品国产蜜桃av| 精品一区二区三区av网在线观看| 曰老女人黄片| 日韩精品免费视频一区二区三区| 一个人免费在线观看的高清视频| 美女 人体艺术 gogo| 久久国产精品人妻蜜桃| 国语自产精品视频在线第100页| 2021天堂中文幕一二区在线观 | 在线观看舔阴道视频| 老司机靠b影院| 亚洲,欧美精品.| 欧美成人性av电影在线观看| 亚洲av电影不卡..在线观看| 日本熟妇午夜| 国产不卡一卡二| 精品国产乱码久久久久久男人| tocl精华| 久久国产亚洲av麻豆专区| 国产成人欧美| АⅤ资源中文在线天堂| 美女 人体艺术 gogo| 中文字幕av电影在线播放| 不卡一级毛片| 亚洲精品美女久久av网站| 给我免费播放毛片高清在线观看| 亚洲 欧美一区二区三区| 欧美三级亚洲精品| 亚洲精品美女久久av网站| 亚洲成av人片免费观看| 精品国内亚洲2022精品成人| 妹子高潮喷水视频| 天堂动漫精品| 别揉我奶头~嗯~啊~动态视频| 亚洲在线自拍视频| 老司机靠b影院| 亚洲av成人av| 无人区码免费观看不卡| 亚洲av中文字字幕乱码综合 | 成年女人毛片免费观看观看9| 搡老熟女国产l中国老女人| 日韩精品青青久久久久久| 久久久水蜜桃国产精品网| 一本久久中文字幕| 男女那种视频在线观看| ponron亚洲| 国产av不卡久久| 午夜精品在线福利| 一级毛片精品| 神马国产精品三级电影在线观看 | 美女 人体艺术 gogo| 中文字幕高清在线视频| 欧美av亚洲av综合av国产av| 中文字幕另类日韩欧美亚洲嫩草| 校园春色视频在线观看| 变态另类成人亚洲欧美熟女| 亚洲成av片中文字幕在线观看| 青草久久国产| 成人精品一区二区免费| 亚洲真实伦在线观看| 啦啦啦韩国在线观看视频| 精品少妇一区二区三区视频日本电影| 波多野结衣高清作品| 欧美乱妇无乱码| 国产精品一区二区免费欧美| 好男人电影高清在线观看| 女生性感内裤真人,穿戴方法视频| 香蕉国产在线看| 精品久久久久久久久久免费视频| 老汉色∧v一级毛片| 长腿黑丝高跟| 一进一出抽搐动态| 欧美乱色亚洲激情| 国产精品久久久av美女十八| 国产黄色小视频在线观看| 色综合欧美亚洲国产小说| 美女国产高潮福利片在线看| 国产精品久久久久久精品电影 | 欧美+亚洲+日韩+国产| 国产一区二区激情短视频| 国产精品美女特级片免费视频播放器 | 在线视频色国产色| 国产精品 国内视频| 国内久久婷婷六月综合欲色啪| 一二三四在线观看免费中文在| 色综合亚洲欧美另类图片| 99riav亚洲国产免费| 中文字幕最新亚洲高清| 精品电影一区二区在线| a级毛片a级免费在线| aaaaa片日本免费| 亚洲一区二区三区不卡视频| 男人舔女人下体高潮全视频| 男人的好看免费观看在线视频 | 12—13女人毛片做爰片一| 国产一区二区激情短视频| 很黄的视频免费| 香蕉久久夜色| 国产成人系列免费观看| 麻豆av在线久日| 久久午夜综合久久蜜桃| 日韩精品青青久久久久久| 亚洲九九香蕉| 亚洲欧洲精品一区二区精品久久久| 亚洲熟女毛片儿| 欧美黑人欧美精品刺激| 亚洲免费av在线视频| 日韩国内少妇激情av| 男女下面进入的视频免费午夜 | 99国产精品一区二区三区| 国产真人三级小视频在线观看| 亚洲国产精品成人综合色| 国产片内射在线| 亚洲 欧美 日韩 在线 免费| 亚洲av电影在线进入| 性欧美人与动物交配| 欧美激情久久久久久爽电影| 亚洲久久久国产精品| 亚洲成人久久爱视频| 精品国产国语对白av| 亚洲成人精品中文字幕电影| 大香蕉久久成人网| 女人爽到高潮嗷嗷叫在线视频| 国产在线观看jvid| 国产av又大| 色播在线永久视频| 国产主播在线观看一区二区| 亚洲成人久久爱视频| 国产精品亚洲美女久久久| 在线观看一区二区三区| 操出白浆在线播放| 亚洲午夜精品一区,二区,三区| 少妇被粗大的猛进出69影院| 日本撒尿小便嘘嘘汇集6| 又黄又粗又硬又大视频| 岛国视频午夜一区免费看| 亚洲人成电影免费在线| 日韩精品中文字幕看吧| 亚洲精品美女久久久久99蜜臀| 麻豆国产av国片精品| 亚洲国产日韩欧美精品在线观看 | 黄色a级毛片大全视频| 天天躁夜夜躁狠狠躁躁| 国产精品久久久久久人妻精品电影| 国产久久久一区二区三区| 亚洲熟女毛片儿| 国产亚洲欧美在线一区二区| 成年女人毛片免费观看观看9| 少妇 在线观看| 国产av不卡久久| 国产亚洲欧美98| 色老头精品视频在线观看| 午夜免费观看网址| 中文字幕精品亚洲无线码一区 | 亚洲性夜色夜夜综合| 免费看日本二区| av免费在线观看网站| АⅤ资源中文在线天堂| 99久久综合精品五月天人人| 成人av一区二区三区在线看| 男女视频在线观看网站免费 | 国内少妇人妻偷人精品xxx网站 | 听说在线观看完整版免费高清| 成人亚洲精品av一区二区| 久久香蕉精品热| 欧美日韩中文字幕国产精品一区二区三区| 国产成人啪精品午夜网站| 久久久久久免费高清国产稀缺| 女生性感内裤真人,穿戴方法视频| 成年女人毛片免费观看观看9| 亚洲三区欧美一区| 午夜亚洲福利在线播放| 夜夜躁狠狠躁天天躁| 最好的美女福利视频网| 亚洲成av人片免费观看| 曰老女人黄片| 国产精品爽爽va在线观看网站 | 久久国产乱子伦精品免费另类| 日本 欧美在线| 啦啦啦韩国在线观看视频| 成人三级黄色视频| 欧美日韩一级在线毛片| 女同久久另类99精品国产91| 国内毛片毛片毛片毛片毛片| 亚洲在线自拍视频| 欧美av亚洲av综合av国产av| 操出白浆在线播放| 中文亚洲av片在线观看爽| 亚洲人成77777在线视频| 午夜久久久在线观看| 999精品在线视频| 男女之事视频高清在线观看| 国产又黄又爽又无遮挡在线| 好男人电影高清在线观看| 免费人成视频x8x8入口观看| 黑人操中国人逼视频| www日本黄色视频网| 十八禁人妻一区二区| 精品高清国产在线一区| 国产精品,欧美在线| 久久这里只有精品19| 777久久人妻少妇嫩草av网站| 哪里可以看免费的av片| 国内久久婷婷六月综合欲色啪| 91字幕亚洲| 国产精品野战在线观看| 男人舔女人下体高潮全视频| av片东京热男人的天堂| 亚洲精品中文字幕在线视频| 最近最新免费中文字幕在线| 欧美绝顶高潮抽搐喷水| 亚洲中文av在线| 午夜成年电影在线免费观看| 人人妻人人澡欧美一区二区| 亚洲一卡2卡3卡4卡5卡精品中文| 国产精品免费视频内射| 亚洲性夜色夜夜综合| 观看免费一级毛片| 中文字幕人成人乱码亚洲影| av福利片在线| 国产亚洲av高清不卡| 国产精品自产拍在线观看55亚洲| 亚洲欧美日韩高清在线视频| 欧美黑人精品巨大| 国产成人欧美在线观看| 男人舔女人的私密视频| 黄片大片在线免费观看| 成年版毛片免费区| 男女之事视频高清在线观看| 窝窝影院91人妻| 在线观看一区二区三区| 精品无人区乱码1区二区| 一二三四在线观看免费中文在| 国产一区二区三区在线臀色熟女| 啦啦啦观看免费观看视频高清| 午夜福利欧美成人| 首页视频小说图片口味搜索| 少妇粗大呻吟视频| 黄片大片在线免费观看| 亚洲欧美精品综合一区二区三区| 性色av乱码一区二区三区2| 精品一区二区三区av网在线观看| 在线永久观看黄色视频| 成人三级做爰电影| 精品久久久久久,| 欧美色视频一区免费| 老司机在亚洲福利影院| 久久精品国产亚洲av高清一级| 免费观看精品视频网站| 99热只有精品国产| 高清在线国产一区| 一区福利在线观看| 两人在一起打扑克的视频| 精品国产超薄肉色丝袜足j| 国产成人精品久久二区二区91| 黄色毛片三级朝国网站| 欧美黄色片欧美黄色片| 亚洲欧洲精品一区二区精品久久久| 天天躁狠狠躁夜夜躁狠狠躁| 免费在线观看成人毛片| 天天躁夜夜躁狠狠躁躁| 黄片大片在线免费观看| 亚洲五月色婷婷综合| 免费女性裸体啪啪无遮挡网站| 国内精品久久久久精免费| 国产主播在线观看一区二区| 亚洲欧美精品综合久久99| 亚洲 国产 在线| 丝袜人妻中文字幕| 老司机在亚洲福利影院| 亚洲一码二码三码区别大吗| 国产伦一二天堂av在线观看| 成人亚洲精品一区在线观看| 久久 成人 亚洲| 国产私拍福利视频在线观看| 在线播放国产精品三级| 一a级毛片在线观看| 国产区一区二久久| 女人高潮潮喷娇喘18禁视频| 欧美日韩福利视频一区二区| 精品不卡国产一区二区三区| 免费人成视频x8x8入口观看| 又黄又爽又免费观看的视频| 国产高清有码在线观看视频 | 国产乱人伦免费视频| 国产精品自产拍在线观看55亚洲| 欧美成人一区二区免费高清观看 | 一卡2卡三卡四卡精品乱码亚洲| 大型黄色视频在线免费观看| 午夜福利视频1000在线观看| 亚洲三区欧美一区| 俺也久久电影网| 美女国产高潮福利片在线看| 两个人视频免费观看高清| 在线观看舔阴道视频| 19禁男女啪啪无遮挡网站| 九色国产91popny在线| 国产高清激情床上av| 久久久久久亚洲精品国产蜜桃av| 日本五十路高清| 男人操女人黄网站| 久久久久久免费高清国产稀缺| 久久天躁狠狠躁夜夜2o2o| 熟妇人妻久久中文字幕3abv| 少妇裸体淫交视频免费看高清 | 国产精品国产高清国产av| 久久久精品欧美日韩精品| 免费在线观看日本一区| 天堂动漫精品| 国内精品久久久久精免费| 亚洲成人国产一区在线观看| 国产又黄又爽又无遮挡在线| 亚洲,欧美精品.| 日本在线视频免费播放| 少妇被粗大的猛进出69影院| 久久久久精品国产欧美久久久| 国产不卡一卡二| 夜夜夜夜夜久久久久| 午夜视频精品福利| 国产精品美女特级片免费视频播放器 | 制服人妻中文乱码| 国产一卡二卡三卡精品| 国产高清videossex| 国产精品香港三级国产av潘金莲| 国产激情久久老熟女| 国产又爽黄色视频| 校园春色视频在线观看| 一区二区日韩欧美中文字幕| 丰满人妻熟妇乱又伦精品不卡| 国产在线观看jvid| 色av中文字幕| 午夜福利欧美成人| 法律面前人人平等表现在哪些方面| 亚洲欧美日韩无卡精品| 欧美成人免费av一区二区三区| 精品久久久久久,| 国产视频内射| 男女午夜视频在线观看| 亚洲成国产人片在线观看| 人人妻人人澡欧美一区二区| 女人被狂操c到高潮| 久久欧美精品欧美久久欧美| 两人在一起打扑克的视频| 欧美又色又爽又黄视频| 免费在线观看亚洲国产| 成人国产一区最新在线观看| 三级毛片av免费| 91字幕亚洲| 一进一出抽搐动态| 精品人妻1区二区| 免费在线观看成人毛片| 午夜福利18| 国产亚洲欧美98| 国产三级在线视频| 精品欧美一区二区三区在线| 久久狼人影院| 欧洲精品卡2卡3卡4卡5卡区| 香蕉av资源在线| 国产精品 欧美亚洲| 日韩欧美一区视频在线观看| 国产高清videossex| 丰满的人妻完整版| 精品第一国产精品| 99在线人妻在线中文字幕| 日韩大尺度精品在线看网址| 国产亚洲欧美在线一区二区| 国产亚洲精品av在线| 欧美性猛交黑人性爽| 中文字幕高清在线视频| 国内毛片毛片毛片毛片毛片| 亚洲中文字幕日韩| www.www免费av| 国产亚洲精品久久久久久毛片| 久久精品成人免费网站| 动漫黄色视频在线观看| av福利片在线| 国产精品影院久久| 可以免费在线观看a视频的电影网站| 亚洲国产精品999在线| 少妇的丰满在线观看| 波多野结衣av一区二区av| 国产亚洲欧美98| 午夜福利18| 久久草成人影院| 97人妻精品一区二区三区麻豆 | 婷婷精品国产亚洲av在线| 欧美色欧美亚洲另类二区| 日本免费一区二区三区高清不卡| 日韩一卡2卡3卡4卡2021年| 人人妻人人澡欧美一区二区| 欧美成人免费av一区二区三区| 午夜福利欧美成人| 正在播放国产对白刺激| 亚洲熟妇中文字幕五十中出| 麻豆一二三区av精品| 国产精品爽爽va在线观看网站 | 欧美激情极品国产一区二区三区| 亚洲av片天天在线观看| 丝袜美腿诱惑在线| 亚洲一区中文字幕在线| 俺也久久电影网| 亚洲精品国产区一区二| 午夜激情福利司机影院| 精品久久久久久,| 色综合欧美亚洲国产小说| 久久亚洲精品不卡| 国产在线精品亚洲第一网站| 成人免费观看视频高清| 国产免费男女视频| 成人午夜高清在线视频 | av福利片在线| 免费看a级黄色片| 成年女人毛片免费观看观看9| 国产不卡一卡二| 在线播放国产精品三级| 久久精品影院6| 一级毛片高清免费大全| 国内毛片毛片毛片毛片毛片| 757午夜福利合集在线观看| 日韩av在线大香蕉| 亚洲五月色婷婷综合| 欧美成狂野欧美在线观看| 99久久久亚洲精品蜜臀av| 午夜激情福利司机影院| 亚洲第一av免费看| 久久久久精品国产欧美久久久| 亚洲男人天堂网一区| 一级毛片女人18水好多| 亚洲av电影在线进入| 免费在线观看视频国产中文字幕亚洲| 欧美黑人巨大hd| 一进一出好大好爽视频| 精品免费久久久久久久清纯| 久久精品亚洲精品国产色婷小说| 叶爱在线成人免费视频播放| 欧美精品亚洲一区二区| 成人手机av| 身体一侧抽搐| 国产视频内射| 久久亚洲精品不卡| 午夜免费鲁丝| 日韩视频一区二区在线观看| 婷婷亚洲欧美| 两性夫妻黄色片| 好男人电影高清在线观看| 亚洲一区高清亚洲精品| 日本 av在线| 九色国产91popny在线| 欧美激情极品国产一区二区三区| 中文字幕精品免费在线观看视频| 18美女黄网站色大片免费观看| 亚洲熟女毛片儿| 日韩有码中文字幕| 亚洲自拍偷在线| √禁漫天堂资源中文www| 深夜精品福利| 精品卡一卡二卡四卡免费| 欧美日韩乱码在线| 一级a爱视频在线免费观看| 制服诱惑二区| 91成人精品电影| 午夜成年电影在线免费观看| 天堂√8在线中文| 中文资源天堂在线| 男女视频在线观看网站免费 | 国产av不卡久久| 91九色精品人成在线观看| 亚洲黑人精品在线| 身体一侧抽搐| 在线av久久热| 亚洲成人国产一区在线观看| 久久久久久久久中文| 两个人视频免费观看高清| 亚洲三区欧美一区| 免费在线观看成人毛片| 久热这里只有精品99| 精品国内亚洲2022精品成人| 国产黄色小视频在线观看| 黑人巨大精品欧美一区二区mp4| 欧美色视频一区免费| 国产亚洲精品第一综合不卡| 丰满人妻熟妇乱又伦精品不卡| 变态另类丝袜制服| 两性午夜刺激爽爽歪歪视频在线观看 | 最近在线观看免费完整版| 国产三级在线视频| 国产人伦9x9x在线观看| 国产精品爽爽va在线观看网站 | 免费看美女性在线毛片视频| 黑人巨大精品欧美一区二区mp4| 在线观看免费午夜福利视频| 国产在线观看jvid| 久久国产精品人妻蜜桃| 极品教师在线免费播放| 国产视频一区二区在线看| 亚洲人成电影免费在线| 精品国产一区二区三区四区第35| 高潮久久久久久久久久久不卡| 久久中文字幕一级| 夜夜看夜夜爽夜夜摸| 日韩一卡2卡3卡4卡2021年| 久久精品aⅴ一区二区三区四区| 脱女人内裤的视频| av视频在线观看入口| 欧美日韩黄片免| 日本撒尿小便嘘嘘汇集6| 久久婷婷人人爽人人干人人爱| 日日摸夜夜添夜夜添小说| 亚洲欧美一区二区三区黑人| 不卡一级毛片| 成年女人毛片免费观看观看9| 亚洲第一青青草原| 国产亚洲精品一区二区www| 亚洲aⅴ乱码一区二区在线播放 | 久久久久久大精品| 国产精品1区2区在线观看.| 国产极品粉嫩免费观看在线| 国产主播在线观看一区二区| 真人做人爱边吃奶动态| 亚洲国产欧美一区二区综合| 999久久久国产精品视频| 欧美另类亚洲清纯唯美| 美女高潮到喷水免费观看| 婷婷亚洲欧美| 国产极品粉嫩免费观看在线| 久久精品aⅴ一区二区三区四区| 成人欧美大片| cao死你这个sao货| 精品电影一区二区在线| 日本三级黄在线观看| 亚洲精品粉嫩美女一区| 欧美激情久久久久久爽电影| 在线观看免费午夜福利视频| 久久亚洲精品不卡| 男男h啪啪无遮挡| 亚洲精华国产精华精| 此物有八面人人有两片| 天堂影院成人在线观看| 亚洲性夜色夜夜综合| 亚洲熟女毛片儿| 十分钟在线观看高清视频www| 国产欧美日韩一区二区三| 色综合婷婷激情| 啪啪无遮挡十八禁网站| 欧美+亚洲+日韩+国产| 丰满人妻熟妇乱又伦精品不卡| 91成年电影在线观看| 婷婷精品国产亚洲av| 久久这里只有精品19| 久久天堂一区二区三区四区| 好看av亚洲va欧美ⅴa在| 国产精华一区二区三区| 丁香欧美五月| 人人澡人人妻人| 日日干狠狠操夜夜爽| 老熟妇仑乱视频hdxx| 亚洲国产精品久久男人天堂| 国产一区二区三区在线臀色熟女| 久久香蕉精品热| 亚洲成国产人片在线观看| 波多野结衣高清作品| 亚洲一区中文字幕在线| 人人妻人人澡人人看| 亚洲激情在线av| 成人永久免费在线观看视频| 成年人黄色毛片网站| 97人妻精品一区二区三区麻豆 | 国产91精品成人一区二区三区| 亚洲一区二区三区不卡视频| tocl精华| 久久精品夜夜夜夜夜久久蜜豆 | 精品福利观看| 国产成人一区二区三区免费视频网站| 香蕉av资源在线| 久久精品亚洲精品国产色婷小说| 1024手机看黄色片| av在线播放免费不卡| 美国免费a级毛片| 两性夫妻黄色片| 午夜福利欧美成人| 人人妻人人看人人澡| 又大又爽又粗| 国产精品久久久av美女十八| 日日摸夜夜添夜夜添小说| 久久精品成人免费网站| 精品久久久久久,| 可以在线观看毛片的网站| 中国美女看黄片| 波多野结衣av一区二区av| 日日夜夜操网爽| 免费看十八禁软件| 国产成人系列免费观看| 久久国产亚洲av麻豆专区| 又大又爽又粗| 精华霜和精华液先用哪个| 亚洲精品av麻豆狂野| 日韩大码丰满熟妇| 日韩成人在线观看一区二区三区| 国产成人av激情在线播放| 久久亚洲真实| 国产av在哪里看| 淫妇啪啪啪对白视频| 老鸭窝网址在线观看| 久久人人精品亚洲av| 精品国内亚洲2022精品成人| 欧美成人一区二区免费高清观看 | 男人舔奶头视频| 国产精品一区二区免费欧美| 人成视频在线观看免费观看| 午夜免费成人在线视频| 国内精品久久久久精免费| 国产精品久久视频播放|