許友卿 莊 麗 丁兆坤
多不飽和脂肪酸(poly unsaturated fatty acids,PUFAs)是指含有兩個或兩個以上雙鍵且碳鏈長為16個碳原子以上的直鏈脂肪酸。它主要包括n-3、n-6和n-9系列脂肪酸,其中n-3和n-6系列的PUFAs具有重要生物學(xué)意義。n-3系列的PUFAs如亞麻酸(linolenic acid,LNA,C18:3n-3)、二十碳五烯酸(eicosapentaenoic acid,EPA,C20:5n-3)和二十二碳六烯酸(docosahexaenoic acid,DHA,C22:6n-3)等。n-6系列的PUFAs如亞油酸(linoleic acid,LA,C18:2n-6)和花生四烯酸(arachidonic acid,AA,C20:4n-6)等。PUFAs中碳鏈≥C20且含三個或更多雙鍵的不飽和脂肪酸稱為高度不飽和脂肪酸(highly unsaturated fatty acids,HUFAs),如AA、EPA、DHA等。而LA是合成AA的前體,LNA是合成EPA和DHA的前體[1]。海水魚需要HUFAs作為必需脂肪酸來滿足其正常生長和發(fā)育。同種海水魚在仔稚魚、幼魚和成魚階段,對其餌料或飼料中HUFAs的需要量是不相同的,以仔稚魚階段對餌料或飼料中HUFAs的需要量最高。
目前,我國養(yǎng)殖的名貴海水魚,如真鯛(Pagrus major)、黑鯛 (Sparus macrocephalus) 和牙鲆(Paralichthys olivaceus)等,其生產(chǎn)性育苗成活率一般低于20%,是因?yàn)楹K兄婶~容易發(fā)生大量死亡[2],而餌料缺少PUFAs特別是缺乏n-3HUFAs,是導(dǎo)致海水仔稚魚發(fā)生死亡的一個重要原因[3]。DHA、EPA和AA等PUFAs是構(gòu)成細(xì)胞膜的重要成分;能夠影響細(xì)胞吞噬能力及呼吸爆發(fā)強(qiáng)度;可以調(diào)節(jié)與免疫相關(guān)的酶活性以增強(qiáng)魚體的免疫能力;AA和EPA還是類二十烷酸的前體,類二十烷酸是細(xì)胞和整體應(yīng)激反應(yīng)的產(chǎn)物,能夠通過環(huán)氧化酶(COX)途徑進(jìn)入前列腺素(PGs)和凝血噁烷(TXs),通過脂氧合酶途徑進(jìn)入白三烯(LTs)和羥基二十碳四烯酸(HETEs),通過環(huán)氧化物酶進(jìn)入環(huán)氧二十碳四烯酸(EETs)[4],進(jìn)而發(fā)揮各種生理功能。因此PUFAs在維持機(jī)體的正常機(jī)能、促進(jìn)生長、發(fā)育、繁殖和提高成活率等方面發(fā)揮重要的生理作用[5]。
相對于幼魚和成魚而言,仔稚魚生長發(fā)育更為迅速,對環(huán)境更加敏感而適應(yīng)能力差,對營養(yǎng)尤其是PUFAs需要較高。由于海水魚類合成HUFAs的關(guān)鍵酶缺乏或活性低而不能合成HUFAs或合成HUFAs量不足[1,6],因此,海水魚類尤其是海水仔稚魚對外源HUFAs依賴特別強(qiáng),HUFAs對促進(jìn)海水仔稚魚的生長發(fā)育以及提高存活率的意義重大。本文主要綜述PUFAs對海水仔稚魚生長發(fā)育的影響及機(jī)理,旨在為仔稚魚的營養(yǎng)研究及培育提供參考。
PUFAs是細(xì)胞膜磷脂的重要成分,對細(xì)胞膜的功能有決定性影響。要保持膜的相對流動性,脂肪酸必須有適度不飽和性,以適應(yīng)體內(nèi)的粘度,并具有必要的表面活性。n-3 PUFAs可以選擇性地滲入某些重要器官,如大腦皮質(zhì)、視網(wǎng)膜等,參與構(gòu)成乙醇胺磷脂和神經(jīng)磷脂,對神經(jīng)系統(tǒng)起作用。細(xì)胞膜上的AA和EPA經(jīng)環(huán)加氧酶和脂氧化酶的作用,代謝合成各種具有生物活性的類二十烷酸,類二十烷酸是一類重要的多聚不飽和脂肪酸化學(xué)信使物,在免疫和炎癥反應(yīng)上起至關(guān)重要的作用,從而調(diào)節(jié)海水仔稚魚的健康和生長發(fā)育。
仔稚魚階段正是腦神經(jīng)和視神經(jīng)迅速生長發(fā)育的時期,需要從食物中攝取DHA等重要營養(yǎng)物質(zhì),以滿足其腦神經(jīng)和視神經(jīng)發(fā)育的需要。仔稚魚餌料中缺乏DHA可能會顯著地影響神經(jīng)和視覺系統(tǒng)的發(fā)育,進(jìn)而導(dǎo)致依賴神經(jīng)內(nèi)分泌系統(tǒng)的生理和行為發(fā)生變化。由于DHA對仔稚魚腦和視網(wǎng)膜的發(fā)育有著特殊的作用[7],因此,在脊椎動物生命的早期,供應(yīng)高水平DHA對神經(jīng)和感官的正常發(fā)育至關(guān)重要[8]。這就是DHA被強(qiáng)烈保留在歐洲海鱸(Dicentrarchus labrax L.)腦組織脂肪中[9]、大西洋鱈(Gadus morhua)[10]和虹鱒(Salmo gairdneri)[11]的腦和視網(wǎng)膜中之緣故。在仔魚神經(jīng)組織的發(fā)育過程中,DHA有助于色素正常沉積,提高視覺的靈敏度,色素沉積異常會損害視力的正常發(fā)育[12],而視力的好壞對仔魚判斷、追逐和捕食活餌料至關(guān)重要。仔魚日糧中DHA不足會降低視覺反應(yīng)[7,13]。McEvoy等[14]認(rèn)為,鲆鰈類色素不正??赡芘cDHA的需求有關(guān)。在魚類神經(jīng)和視覺細(xì)胞膜,尤其在棒狀細(xì)胞和突觸體膜上DHA的濃度很高[15-16]。當(dāng)食物中缺少DHA時,稚魚的棒狀細(xì)胞功能受到影響,視力降低,導(dǎo)致魚在光線較暗的水域捕食能力削弱[17,7]。缺乏DHA的大西洋鯡(Clupea harengus)稚魚,其視神經(jīng)發(fā)育不良,視力下降,在光線較弱的條件下,捕食能力也隨之下降[7]。
PUFAs特別是HUFAs研究是近年脂類研究的熱點(diǎn),其中AA是前沿。緣由之一是因?yàn)锳A是類二十烷酸的前體,AA及其代謝產(chǎn)物對神經(jīng)細(xì)胞的影響很大,包括調(diào)整神經(jīng)元的跨膜信號、神經(jīng)元之間有效信號傳遞、調(diào)節(jié)神經(jīng)遞質(zhì)的釋放以及葡萄糖的攝取等[18]。AA在腦和神經(jīng)組織中的含量通常占PUFAs的40%~50%,在神經(jīng)末梢中高達(dá)70%,是大腦功能和視網(wǎng)膜發(fā)育必不可少的物質(zhì)[18]。研究表明,類二十烷酸參與比目魚色素的沉積,若增加2系列類二十烷酸的前體AA,會顯著地降低幾種比目魚物種色素的正常沉積[19-21]。Villalta等(2005a)[21]研究發(fā)現(xiàn),AA 對變態(tài)的塞內(nèi)加爾鰨(Solea senegalensis)的色素調(diào)控起重要作用,餌料中AA/EPA和頭部AA的含量與色素沉積有明顯的負(fù)相關(guān)。但是,低水平的DHA不會抑制塞內(nèi)加爾鰨色素沉積[22]。如果2系列的類二十烷酸抑制色素細(xì)胞的發(fā)育,增加EPA和DHA的水平可以刺激這一發(fā)育,因?yàn)樗鼈兛梢酝ㄟ^不同的機(jī)制同時抑制2系列類二十烷酸的生成[23-25]。此外,AA還可以形成視網(wǎng)膜的感光體,促進(jìn)視神經(jīng)元樹狀突大量增加、延長以及髓鞘形成,并與視網(wǎng)膜光感受器的發(fā)育快慢密切相關(guān)[18]。因此,AA對正在迅速生長發(fā)育的仔稚魚尤為重要。
不但PUFAs的不同種類和含量影響仔稚魚的生長發(fā)育,而且它們的比例亦然。許友卿等(2007)[5]指出,由于PUFAs在代謝方面存在競爭作用,主要是DHA和EPA與AA的競爭,尤其是EPA與AA之間的競爭,以致這三種PUFAs的比例是否恰當(dāng)會直接影響海水仔稚魚視網(wǎng)膜和腦的發(fā)育。張其永等[26]研究發(fā)現(xiàn),比目魚類眼側(cè)出現(xiàn)不良色素沉積與DHA、EPA和AA的比例失調(diào)有關(guān),導(dǎo)致視網(wǎng)膜和腦不能正常發(fā)育,嚴(yán)重影響視力。McEvoy等(1998a)[19]報道,日糧中AA和EPA對大菱鲆和大西洋大比目魚的色素沉積作用相反,當(dāng)腦中EPA/AA為4:1時,是色素正常沉著的最佳比例,而當(dāng)比例低于1:1時,會導(dǎo)致色素100%沉著異常。Hamre等(2008a)[27]研究發(fā)現(xiàn),大西洋大比目魚仔魚全身DHA的含量高于總脂肪酸13%時,可獲得正常的色素沉著,此時EPA/AA約為3.5:1。餌料中的DHA/EPA>2及EPA/AA>5可以有效改善大菱鲆(Psetta maxima)和庸鰈(Hippoglossus pinguis)眼側(cè)的色素沉著(Bell等,2003)[28]。
據(jù)報道,DHA、EPA和AA等PUFAs可以調(diào)節(jié)與免疫相關(guān)的酶活性以增強(qiáng)魚體的免疫力,飼料中脂肪酸水平可以影響機(jī)體組織中脂肪酸水平,因此,在仔稚魚飼料中添加適量的PUFAs可以調(diào)節(jié)機(jī)體的免疫功能。但是,PUFAs對魚體免疫功能的調(diào)控機(jī)制還不很清楚,可能是通過調(diào)節(jié)生成產(chǎn)物的比例來調(diào)控機(jī)體的免疫功能,而類二十烷酸的生成與活性受到組織磷脂中脂肪酸比例的影響(Sargent等,1999)[16]。
在某些情況下,改變魚類日糧中PUFAs的水平可能會對抵抗疾病和免疫狀態(tài)有益,并起決定性作用。然而,攝入高水平PUFAs會抑制某些免疫功能,降低存活率[29-32]。飼料中高水平的DHA/EPA會顯著地增強(qiáng)石斑魚(Epinephelus malabaricus)稚魚細(xì)胞吞噬活性和呼吸爆發(fā)活性[33]??墒怯糜衩子?00%替代魚油飼喂石斑魚稚魚8周會顯著地降低循環(huán)白細(xì)胞的呼吸爆發(fā)[34]。同樣,用混合植物油或個別植物油40%替代歐洲海鱸(Dicentrarchus labrax)飼料中的魚油會顯著地降低頭腎白細(xì)胞的呼吸爆發(fā)[35-36]。但是,用單個或混合的植物油60%(W)和80%(W)替代魚油飼喂烏頰鯛魚204 d,不會影響循環(huán)中性粒細(xì)胞的呼吸爆發(fā)[37]。Montero等[38]用亞麻籽油或大豆油100%替代魚油飼喂尖頭鯛稚魚,會顯著地降低吞噬活性和血清補(bǔ)體旁路活性,而用50%亞麻籽油+50%大豆油混合(W/W)的植物油對此不會產(chǎn)生顯著影響。海鱸(Dicentrarchus labrax)稚魚日糧中共軛亞油酸(conjugated linoleic acid,CLA)的含量達(dá)到1%會增加血漿溶菌酶的活性,并與補(bǔ)體旁路活性呈正相關(guān),這可能意味著抗菌能力的增加[39]。Montero等[37]研究發(fā)現(xiàn),與攝食亞麻籽油、菜籽油或豆油的烏頰鯛魚相比,攝食魚油的烏頰鯛有較高的血清溶菌酶活性。
炎癥反應(yīng)是血液中的細(xì)胞和蛋白成分穿過血管壁進(jìn)入組織的過程。創(chuàng)傷、抗原或異物入侵、感染等都可引起炎癥反應(yīng),引起多種生物活性物質(zhì)的釋放。PUFAs是細(xì)胞膜磷脂的主要結(jié)構(gòu)成分,也是炎性介質(zhì)底物的主要來源。PUFAs調(diào)節(jié)炎癥反應(yīng)的機(jī)制還不清楚,可能與以下幾點(diǎn)有關(guān):①影響類二十烷酸化合物的合成;②改變膜脂成分,影響膜流動性、某些酶活性、激素與受體的結(jié)合和信號的傳遞;③調(diào)控基因的表達(dá);④影響脂質(zhì)代謝等。AA通過環(huán)氧化酶可產(chǎn)生前列腺素(PGs),特別是PGE2,是炎癥發(fā)生的介質(zhì)。AA還通過白細(xì)胞的5-脂氧化酶產(chǎn)生白三烯(LTs),如LTC4、LTD4、LTA4、LTB4 等,其中 LTB4 具有很強(qiáng)的白細(xì)胞趨化性,在炎癥的發(fā)生中起重大作用;LTC4和LTD4也通過增加血管的通透性參與炎癥反應(yīng)。而EPA可通過白細(xì)胞的5-脂氧化酶產(chǎn)生一類幾乎無生理活性的物質(zhì)LTA5、LTB5等,后者競爭抑制LTB4等的合成,LTA5還可阻礙LTA4轉(zhuǎn)化成LTB4。EPA也可通過競爭性抑制作用使AA合成PGE2減少,降低急性炎癥的嚴(yán)重性,因而具有抗炎作用[40]。雖然DHA不是環(huán)氧化酶和脂氧化酶的底物,但是它可以通過抑制膜上AA的釋放影響類二十烷酸化合物的合成。此外,DHA是機(jī)體合成PGs的強(qiáng)烈抑制劑[41],因此,DHA也具有抗炎作用。魚油中含有特別豐富的n-3PUFAs,具有顯著的抗炎作用[42-43]。例如,攝食富含n-3PUFAs的橄欖油和魚油等食物會對機(jī)體炎癥性腸病有一定的保護(hù)作用[44-45]。Belluuzzi(1996)[46]也發(fā)現(xiàn)用魚油膠囊可以治療局限性腸炎(Crohn's disease)。魚油對急性壞死胰腺炎也有一定的治療作用[47-48],口服n-3PUFAs可以減輕患有急性胰腺炎的炎癥反應(yīng),這是因?yàn)镋PA和DHA能置換細(xì)胞膜磷脂中的AA,競爭環(huán)氧酶和脂氧合酶,從而減少來源于AA的炎性介質(zhì),減輕炎性反應(yīng)[49]。對急性壞死性胰腺炎機(jī)體輸注n-3PUFAs比其他類型的脂肪乳劑更能降低胰腺的脂質(zhì)過氧化反應(yīng)和超氧化物歧化酶活性,組織學(xué)上胰腺壞死的程度也明顯減輕[50]。雖然這些結(jié)果是在哺乳類機(jī)體獲得的,但是具有重要的參考價值,對研究水產(chǎn)動物特別是魚類具有重要的指導(dǎo)意義。
PUFAs的來源較廣,可源自魚油、海藻和植物油等,但是HUFAs主要源于魚油和海藻。因此,用富含n-3PUFAs的魚油或海藻飼喂海水仔稚魚,可促進(jìn)其生長發(fā)育,提高存活率,而對某些海水仔稚魚僅用或大部分用植物油的效果則相反。由于海藻(Schizochytrium sp.)富含DHA,因此在全植物性飼料中添加1.0%~1.5%的干海藻會促進(jìn)斑點(diǎn)叉尾鮰(Ictalurus punctatu)的生長[51]。用干海藻或海藻油全部或部分地替換海魚油飼喂真鯛仔魚[52],不會影響其生長和存活。Fountoulaki等(2009)[53]用植物油如大豆油和菜籽油替代69%的魚油飼喂真鯛,不會影響其生長,而用棕櫚油替代魚油飼喂真鯛則影響其生長。Peng等(2008)[54]用大豆油部分替代魚油飼喂黑鯛(Acanthopagrus schlegeli)稚魚9周,對其生長沒有消極影響,而替換比例達(dá)到100%則會降低其生長。而用80%的大豆油或亞麻油飼喂烏頰鯛 (Sparus aurata)6個月,其生長速度下降[55]。Llorens等[56]研究發(fā)現(xiàn),直到實(shí)驗(yàn)的第211 d,日糧中大豆油的水平(0%、24%、48%、72%)對烏頰鯛的生長沒有影響,而在實(shí)驗(yàn)的第309 d,攝食72%大豆油日糧的魚增重最低。Montero等[57]用菜籽油替代魚油的60%對歐洲海鱸進(jìn)行了為期8個月的實(shí)驗(yàn),結(jié)果是歐洲海鱸生長下降。Francis等[58]用菜籽油100%替代魚油飼喂默里鱈(Maccullochella peelii peelii)稚魚會導(dǎo)致其生長降低,死亡率增高。用植物油100%替代魚油會降低尖頭鯛稚魚的生長[38]。Yanes-Roca 等[59]報道,梭魚(Centropomus undecimalis)卵中的DHA含量占總脂肪酸的13%時,其仔魚的成活率較高。飼料HUFAs不足會降低軍曹魚(Rachycentron canadum)稚魚[60]、大菱鲆(Scophtalmus maximus)稚魚[61]和真鯛(Sparus aurata)仔魚[62]的生長和成活率。Hamre等[63]研究發(fā)現(xiàn),攝入DHA的量不足會影響大西洋大比目魚(Hippoglossus hippoglossus L)仔稚魚的生長和存活,而富含n-3HUFAs(DHA)的海藻飼料可促進(jìn)斑點(diǎn)叉尾鮰(Ictalurus punctatus)幼魚的生長[51]。上述例子都說明飼料中PUFAs的含量影響海水仔稚魚的生長和成活率。
然而,也有不同的報道,Benedito-Palos等[64]用混合植物油聯(lián)合替代魚粉和魚油飼喂真鯛稚魚,其生長表現(xiàn)沒有差異。Lin等[65]報告,攝食魚油或植物油的石斑魚(Epinephelus coioides)之生長或存活沒有顯著性差異??赡苁囚~種、環(huán)境和實(shí)驗(yàn)周期不同的緣故。
日糧中PUFAs的比例對海水仔稚魚的生長和存活也有重大影響,因魚種、環(huán)境和PUFAs而異。劉鏡恪等[66]研究發(fā)現(xiàn),牙鲆(Paralichthys olivaceus)仔稚魚實(shí)驗(yàn)微粒飼料中EPA與AA的比例為2/1時,牙鲆仔稚魚的生長、存活達(dá)到最佳。Blanchard等[67]研究證明,稚鱸(Perca fluviatilis)日糧中LNA/LA比例的遞增或用植物油部分替代魚油不會影響其生長。然而,丁兆坤等(2009)報道,當(dāng)DHA和EPA的總量為1.50%不變時,不同 DHA/EPA 比例(0.90、1.10、1.30、1.50、1.70、1.90、2.10)對軍曹魚幼魚生長、成活率、核酸和脂肪酸影響不顯著[68-69]。
此前普遍認(rèn)為,海水魚必須從食物中攝取DHA、EPA等HUFAs,是因?yàn)槠洳荒芎铣苫蚝铣傻腍UFAs關(guān)鍵酶少的緣故[1,6]。但是,2009年,丁兆坤、許友卿博士與英國合作研究的結(jié)果表明,軍曹魚具有合成高度不飽和脂肪酸的關(guān)鍵酶-△6、△5去飽和酶和延長酶,預(yù)示軍曹魚可能具有合成高度不飽和脂肪酸的能力[70],海水魚類對脂肪酸的代謝能力可能與魚種及生活環(huán)境密切相關(guān),進(jìn)一步的深入研究正在進(jìn)行中。
綜上所述,PUFAs對海水仔稚魚健康、生長、發(fā)育和成活均產(chǎn)生重要的影響,但是某些機(jī)理尚待進(jìn)一步深入研究。而用分子生物學(xué)技術(shù)研究PUFAs對海水魚特別是仔稚魚的調(diào)控,從分子和基因水平闡明其機(jī)理,將是該領(lǐng)域?qū)W者義不容辭的任務(wù)。
[1]Sargent J R,Tocher D R,Bell J G.The lipids [M].Halver J E,Hardy R W,Fish Nutrition,3rd ed,Academic Press:San Diego,2002:181-257.
[2]劉鏡恪,徐世宏.海水仔稚魚必需脂肪酸和磷脂的營養(yǎng)需求[J].海洋科學(xué),2006,30(11):75-81.
[3]Copeman L A,Parrish C C,Brown J A,et al.Effects of docosahexaenoic,eicosapentaenoic and arachidonic acids on the early growth,survival,lipid composition and pigmentation of yellowtail flounder(Limanda ferruginea):A live food enrichment experiment[J].Aquaculture,2002,210:285-304.
[4]Bell J G,Ashton I,Secombes C J,et al.Dietary lipid affects phospholipid fatty acid compositions,eicosanoid production and immune function in Atlantic salmon(Salmo salar)[J].Prostaglandins Leukot.Essent.Fat.Acids,1996,54:173-182.
[5]許友卿,張海柱,丁兆坤.二十二碳六烯酸和二十碳五烯酸的代謝研究[J].水產(chǎn)科學(xué),2007,26(10):580-583.
[6]Zheng X Z,Tocher D R,Dickson C A,et al.Highly unsaturated fatty acid synthesis in vertebrates:New insights with the cloning and characterisation of a Δ6 desaturase of Atlantic salmon[J].Lipids,2005,40:13-24.
[7]Bell M V,Batty R S,Dick J R,et al.Dietary deficiency of .docosahexaenoic acid impairs vision at low light intensities in juvenile herring(Clupea harengus L.)[J].Lipids,1995b,30:443-449.
[8]Sastry P S.Lipids of nervous tissue-composition and metabolism[J].Prog.Lipid Res.,1985,24:69-176.
[9]Pagliarani A,Pirini M,Trigari G,et al.Effects of diets containing different oils on brain fatty acid composition in sea bass(Dicentrarchus labrax L.)[J].Comp.Biochem.Physiol.,1986,83B:277-282.
[10]Tocher D R,Harvie D G.Fatty acid compositions of the major phosphoacylglycerols from fish neural tissues;n-3 and n-6 polyunsaturated fatty acids in rainbow trout(Salmo gairdneri)and cod(Gadus morhua)brains and retinas[J].Fish Physiol-Biochem,1988,5:229-239.
[11]Bell M V,Tocher D R.Molecular species composition of the major phospholipids in brain and retina from rainbow trout(Salmo gairdneri)[J].Biochem.J.,1989,264:909-915.
[12]Kanazawa A.Nutritional mechanisms involved in the occurrence of abnormal pigmentation in hatchery-reared flatfish[J].J.World Aquacult.Soc.,1993,24:162-166.
[13]Benitez-Santana T,Masuda R,Juarez Carrillo E,et al.Dietary n-3 HUFA deficiency induces a reduced visual response in gilthead seabream Sparus auratalarvae[J].Aquaculture,2007,264:408-417.
[14]McEvoy L A,Naess T,Bell J G,et al.Lipid and fatty acid composition of normal and malpigmented Atlantic halibut(Hippoglossus hippoglossus)fed enriched Artemia:a comparison with fry fed wild copepods[J].Aquaculture,1998b,163:237-250.
[15]Sargent J R,McEvoy L A,Bell J G.Requirements,presentation and sources of polyunsaturated fatty acids in marine fish larva feeds[J].Aquaculture,1997,155:117-127.
[16]Sargent J,McEvoy L,Estevez A,et al.Lipid nutrition of marine fish during early development current status and future directions[J].Aquaculture,1999,179:217-229.
[17]Bell J G,Castell J D,Tocher D R,et al.Effects of different dietary arachidonic acid:docosahexaenoic acid ratios on phospholipid fatty acid compositions and prostaglandin production in juvenile turbot(Scophthalmus maximus)[J].Fish Physiol.Biochem.,1995a,14:139-151.
[18]丁兆坤,劉亮,許友卿.二十碳四烯酸研究[J].水產(chǎn)科學(xué),2007,26(12):684-688.
[19]McEvoy L A,Estevez A,Bell J G,et al.Influence of dietary levels of eicosapentaenoic and arachidonic acid on the pigmentation success of turbot(Scophtalmus maximus)and halibut(Hippoglossus hippoglossus)[J].Bull Aquac.Assoc.Can.,1998a,98:17-20.
[20]Estevez A,McEvoy L A,Bell J G,et al.Growth,survival,lipid composition and pigmentation of turbot(Scophthalmus maximus)larvae fed live-prey enriched in arachidonic and eicosapentaenoic acids[J].Aquaculture,1999,180:321-343.
[21]Villalta M,Estevez A,Bransden M P.Arachidonic acid enriched live prey induces albinism in Senegalese sole(Solea senegalensis)larvae[J].Aquaculture,2005a,245:193-209.
[22]Villalta M,Estevez A,Bransden M P,et al.The effect of graded concentrations of dietary DHA on growth,survival and fatty acid profile of Senegal sole (Solea senegalesis)larvae during the Artemia feeding period[J].Aquaculture,2005b,249:353-365.
[23]Ringbom T,Huss U,Stenholm A,et al.COX-2 inhibitory effects of naturally occurring and modified fatty acids[J].J.Nat.Products,2001,64:745-749.
[24]Denkins Y,Kempf D,Ferniz M,et al.Role of omega-3 polyunsaturated fatty acids on cyclooxygenase-2 metabolism in brainmetastatic melanoma[J].J.Lipid Res.,2005,46:1278-1284.
[25]Roman A S,Schreher J,Mackenzie A P,et al.Omega-3 fatty acids and decidual cell prostaglandin production in response to the inflammatory cytokine IL-1 beta [J].Am.J.Obstet Gynecol.,2006,195:1693-1699.
[26]張其永,洪萬樹.海洋養(yǎng)殖魚類仔稚魚攝食和營養(yǎng)研究的進(jìn)展[J].臺灣海峽,2001,20(增刊):1-10.
[27]Hamre K,Harboe T.Critical levels of essential fatty acids for normal pigmentation in Atlantic halibut(Hippoglossus hippoglossus L.)larvae[J].Aquaculture,2008a,277:101-108.
[28]Bell J G,McEvoy L A,Estevez A.Optimising lipid nutrition in first-feeding flatfish larvae[J].Aquaculture,2003,227:211-220.
[29]Erdal J I,Evensen O,Kaurstad O K,et al.Relationship between diet and immune response in Atlantic salmon(Salmo salar L)after feeding various levels of ascorbic-acid and omega-3-fatty-acids[J].Aquaculture,1991,98:363-379.
[30]FracalossiDM,LovellRT.Dietarylipidsourcesinfluenceresponsesof channel catfish(Ictalurus punctatus)to challenge with the pathogen(Edwardsiellaictaluri)[J].Aquaculture,1994,119:287-298.
[31]Kiron V,Fukuda H,Takeuchi T,et al.Essential fatty-acid nutrition and defense mechanisms in rainbow trout(Oncorhynchus mykiss)[J].Comp.Biochem.Physiol.,1995,111:361-367.
[32]Misra S,Sahu N P,Pal A K,et al.Pre-and post-challenge immuno-haematological changes in Labeo rohita juveniles fed gelatinised or non-gelatinised carbohydrate with n-3 PUFA [J].Fish Shellfish Immunol.,2006,21:346-356.
[33]Wu F C,Ting Y Y,Chen H Y.Dietary docosahexaenoic acid is more optimal than eicosapentaenoic acid affecting the level of cellular defence responses of the juvenile grouper Epinephelus malabaricus[J].Fish Shellfish Immunol.,2003,14:223-238.
[34]Lin Y H,Shiau S Y.Effects of dietary blend of fish oil with corn oil on growth and non-specific immune responses of grouper,Epinephelus malabaricus[J].Aquac.Nutr.,2007,13:137-144.
[35]Mourente G,Good J E,Bell J G.Partial substitution of fish oil with rapessed,linseed and olive oils in diets for European sea bass(Dicentrarchus labrax L.):effects on flesh fatty acid composition,plasma prostaglandins E2 and F2a,immue function and effectiveness of a fish oil finishing diet[J].Aquac.Nutr.,2005,11:25-40.
[36]Mourente G,Good J E,Thompson K D,et al.Effects of partial substitution of dietary fish oil with blends of vegetable oils,on blood leucocyte fatty acid compositions,immune function and histology in European sea bass(Dicentrarchus labrax L.)[J].Br.J.Nutr.,2007,98:770-779.
[37]Montero D,Kalinowski T,Obach A,et al.Vegetable lipid sources for gilthead seabream (Sparus aurata):effects on fish health[J].Aquaculture,2003,225:353-370.
[38]Montero D,Grasso V,Izquierdo M S,et al.Total substitution of fish oil by vegetable oils in gilthead seabream(Sparus aurata)diets:Effects on hepatic Mx expression and some immune parameters[J].Fish Shellfish Immunol.,2008,24:147-155.
[39]Makol A,Torrecillas S,Fernández-Vaquero A,et al.Effect of conjugated linoleic acid on dietary lipids utilization,liver morphology and selected immune parameters in sea bass juveniles(Dicentrarchus labrax)[J].Comp.Biochem.Physiol.,2009,154:179-187.
[40]Gill I,Valivety R.Polyunsaturated fatty acids,part 1:Occurrence,biological activities and applications [J].Trends Biotechnol.,1997,15:401-409.
[41]James M J,Beringer C,Kless T.Dietary polyunsaturated fatty acid and inflammatory mediator production [J].Clin.Nutr.,2000,71:343-348.
[42]Calder P C.n-3 polyunsaturated fatty acids,inflammation,and inflammatory diseases[J].Am J Clin Nutr,2006,83:1505S-1519S.
[43]Priante G,Bordin L,Musacchio E,et al.Fatty acids and cytokine mRNA expression in human osteoblastic cells:a specific effect of arachidonic acid[J].Clinical Science,2002,102:403-409.
[44]Camuesco D,Comalada M,Concha A,et al.Intestinal anti-inflammatory activity of combined quercitrin and dietary olive oil supplemented with fish oil,rich in EPA and DHA (n-3)polyunsaturated fatty acids,in rats with DSS-induced colitis[J].Clinical nutrition,2006,25:466-476.
[45]Camuesco D,Gálvez J,Nieto A,et al.Dietary olive oil supplemented with fish oil,rich in EPA and DHA(n-3)polyunsaturated fatty acids,attenuates colonic inflammation in rats with DSS-induced colitis[J].J.Nutr.,2005,135:687-694.
[46]Belluzzi A,Brignola C,Campieri M,et al.Effect of an entericcoated fish oil preparation on relapses in Crohn's disease [J].N Engl.J.Med.,1996,334:1557-1560.
[47]劉納新,鄭聰,姚建高,等.魚油對大鼠急性壞死性胰腺炎抗氧化酶的影響[J].肝膽胰外科雜志,2008,20(2):97-100.
[48]曹亞娟,謝敏,潘一鳴,等.ω-3魚油脂肪乳劑對實(shí)驗(yàn)性急性胰腺炎IL-1β、TNF-α和紅細(xì)胞膜穩(wěn)定性的影響[J].藥學(xué)進(jìn)展,2007,31(6):269-273.
[49]趙坤,朱維銘,李幼生,等.n-3多不飽和脂肪酸對急性胰腺炎大鼠炎性細(xì)胞因子表達(dá)的調(diào)控作用[J].腸外與腸內(nèi)營養(yǎng),2008,15(1):23-25.
[50]Kilian M,Heukamp I,Gregor J I,et al.n-3,n-6,and n-9 polyunsaturated fatty acids-which composition in parenteral nutrition decreases severity of acute hemorrhagic necrotizing pancreatitis in rats?[J].Int.J.Colorectal.Dis.,2006,21(1):57-63.
[51]Li M H,Robinson E H,Tucker C S,et al.Effects of dried algae Schizochytrium sp.,a rich source of docosahexaenoic acid,on growth,fatty acid composition,and sensory quality of channel catfish Ictalurus punctatus[J].Aquaculture,2009,292:232-236.
[52]Ganuza E,Benitez-Santana T,Atalah E,et al.Crypthecodinium cohnii and Schizochytrium sp.as potential substitutes to fisheries-derived oils from seabream (Sparus aurata)microdiets[J].Aquaculture,2008,277:109-116.
[53]Fountoulaki E,Vasilaki A,Hurtado R,et al.Fish oil substitution by vegetable oils in commercial diets for gilthead seabream(Sparus aurata L.);effects on growth performance,flesh quality and fillet fatty acid profile Recovery of fatty acid profiles by a fish oil finishing diet under fluctuating water temperatures[J].Aquaculture,2009,289:317-326.
[54]Peng S,Chen L,Qin J G,et al.Effects of replacement of dietary fish oil by soybean oil on growth performance and liver biochemicalcomposition in juvenileblack seabream,Acanthopagrus schlegeli[J].Aquaculture,2008,276:154-161.
[55]Izquierdo M S,Montero D,Robaina L,et al.Alterations in fillet fatty acid profile and flash quality in gilthead seabream (Sparus aurata)fed vegetable oils for a long term period.Recovery of fatty acid profiles by fish oil feeding[J].Aquaculture,2005,250:431-444.
[56]Llorens S M,Vidal A T,Monino A V,et al.Effects of dietary soybean oil concentration on growth,nutrient utilization and muscle fatty acid composition of gilthead seabream(Sparus aurata L.)[J].Aquac.Res.,2007,38:76-81.
[57]Montero D,Robaina L,Caballero M J,et al.Growth,feed utilization and flesh quality of European sea bass(Dicentrarchus labrax)fed diets containing vegetable oils:a time-course study on the effect of a re-feeding period with a 100%fish oil diet[J].Aquaculture,2005,248:121-134.
[58]Francis D S,Turchini G M,Jones P L,et al.Growth performance,feed efficiency and fatty acid composition of juvenile Murray cod,Maccullochella peelii peelii,fed graded levels of canola and linseed oil[J].Aquac.Nutr.,2007,13:335-350.
[59]Yanes-Roca C,Rhody N,Nystrom M,et al.Effects of fatty acid composition and spawning season patterns on egg quality and larval survival in common snook (Centropomus undecimalis)[J].Aquaculture,2009,287:335-340.
[60]王驥騰,韓濤,田麗霞,等.3種植物油源對軍曹魚生長、體組成和脂肪酸組成的影響[J].浙江海洋學(xué)院學(xué)報,2007,26(3):237-245.
[61]Bell J G,Tocher D R,Farndale B M,et al.Effects of essentiel fatty acid-deficient diets on growth,mortality,tissue histopathology and fatty acid compositions in juvenile turbot(Scophtalmus maximus)[J].Fish Physiol.Biochem.,1999,20:263-277.
[62]Robin J H,Peron A.Consumption vs.deposition of essential fatty acids in gilthead seabream (Sparus aurata)larvae fed semi-purified diets[J].Aquaculture,2004,238:283-294.
[63]Hamre K,Harboe T.Artemia enriched with high n-3 HUFA may give a large improvement in performance of Atlantic halibut(Hippoglossus hippoglossus L.)larvae [J].Aquaculture,2008b,277:239-243.
[64]Benedito-Palos L,Saera-Vila A,Calduch-Giner J-A,et al.Combined replacement of fish meal and oil in practical diets for fast growing juveniles of gilthead seabream (Sparus aurata L):networking of systemic and local components of GH/IGF axis[J].Aquaculture,2007,267:199-212.
[65]Lin H Z,Liu Y J,He J G,et al.Alternative vegetable lipid sources in diets for grouper,Epinephelus coioides(Hamilton):effects on growth,and muscle and liver fatty acid composition[J].Aquac.Res.,2007,38:1605-1611.
[66]劉鏡恪,陳曉琳,徐世宏.實(shí)驗(yàn)微粒飼料中廿碳五烯酸(EPA)與廿碳四烯酸(AA)的比例對牙鲆仔稚魚生長、存活的影響[J].海洋科學(xué),2005,29(10):40-43、53.
[67]Blanchard G,Makombu J G,Kestemout P.Influence of different dietary 18:3n-3/18:2n-6 ratio on growth performance,fatty acid composition and hepatic ultrastructure in Eurasian perch,Perca fluviatilis[J].Aquaculture,2008,284:144-150.
[68]Ding Z,Xu Y,Zhang H,et al.No significant effect of additive ratios of docosahexaenoic and eicosapentaenoic acids on the survival and growth of cobia (Rachycentron canadum)juvenile[J].Aquac Nutr,2009,15:254-261.
[69]Xu Y,Ding Z,Zhang H,et al.Different ratios of docosahexaenoic and eicosapentaenoic acids do not alter growth,nucleic acid and fatty acids of juvenile cobia(Rachycentron canadum)[J].Lipids,2009,44:1091-1104.
[70]Zheng X,Ding Z,Xu Y,et al.Physiological roles of fatty acyl desaturases and elongases in marine fish:Characterisation of cDNAs of fatty acyl Δ6 desaturase and elovl5 elongase of cobia(Rachycentron canadum)[J].Aquaculture,2009,290:122-131.