• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    WATER WAVE SIMULATION IN CURVILINEAR COORDINATES USING A TIME-DEPENDENT MILD SLOPE EQUATION*

    2010-04-13 14:49:52TONGFeifei

    TONG Fei-fei

    State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116023, China

    School of Civil and Resource Engineering, The University of Western Australia, Crawley, WA 6009, Australia, E-mail: tongf.fei@gmail.com

    SHEN Yong-ming, TANG Jun, CUI Lei

    State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116023, China

    WATER WAVE SIMULATION IN CURVILINEAR COORDINATES USING A TIME-DEPENDENT MILD SLOPE EQUATION*

    TONG Fei-fei

    State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116023, China

    School of Civil and Resource Engineering, The University of Western Australia, Crawley, WA 6009, Australia, E-mail: tongf.fei@gmail.com

    SHEN Yong-ming, TANG Jun, CUI Lei

    State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116023, China

    (Received May 6, 2010, Revised October 3, 2010)

    The purpose of this article is to model the detailed progress of wave propagation in curvilinear coordinates with an effective time-dependent mild slope equation. This was achieved in the following approach, firstly deriving the numerical model of the equation, i.e., Copeland’s hyperbolic mild-slope equation, in orthogonal curvilinear coordinates based on principal of coordinate transformation, and then finding the numerical solution of the transformed model by use of the Alternative Directions Implicit (ADI) method with a space-staggered grid. To test the curvilinear model, two cases of a channel with varying cross section and a semi-circular channel were studied with corresponding analytical solutions. The model was further investigated through a numerical simulation in Ponce de Leon Inlet, USA. Good agreement is reached and therefore, the use of the present model is valid to calculate the progress of wave propagation in areas with curved shorelines, nearshore breakwaters and other complicated geometries.

    curvilinear coordinates, mild slope equation, water wave, analytical, numerical modeling

    1. Introduction

    Most of the numerical models of nearshore wave propagation based on the mild slope equation have been solved by the finite difference method with rectangular grids[1-6]. However, this kind of grids is not suitable for domains with complicated topography with curved boundaries, and it is better to

    adopt varying grids according to the water depth

    and boundaries. The boundary-fitted curvilinear coordinates have been brought in the simulation of nearshore wave and current for around thirty years, however, until the end of last century, attention had been mostly paid to the effect of different kinds of curvilinear coordinates and finding out analytical solutions[7,8]. Recently, interests about curvilinear wave models have been numerically reignited as Beji and Nadaoka[9]proposed a fully dispersive nonlinear wave model in curvilinear systems, and Yuan et al.[10], Shi and Kirby[11]and Zhang et al.[12,13]introduced curvilinear meshes to their parabolic mild slope equations, respectively. On the other hand, the use of arbitrary curvilinear grids in current simulations in rivers has been investigated intensively by, among others, Bai et al.[14], Zhao et al.[15], Zhang and Shen[16]and Wu and Wang[17]. Significant progress has been made in curvilinear wave models not only because covariant-contravariant tensor was widely used[9,11], but also because several kinds of curvilinear transformation methods were detailedly summarized

    * Project supported by the National Natural Science Foundation of China (Grant Nos. 50839001, 50979036), the National Science and Technology Major Special Project of China on Water Pollution Control and Management (Grant No. 2009ZX07528-006-01).

    Biography: TONG Fei-fei (1983-), Male, Master

    However, it is known that the parabolic approximation of mild slope equation ignores wave reflection in the main propagation direction of waves[1]. Although subsequent researches have made advances to relax this limitation as it might otherwise be, this inferior position still cannot be ignored. The hyperbolic mild slope equation firstly developed by Copeland[1]in the form of a pair of first order partial equations, could describe water wave propagation with a combination of refraction, reflection and diffraction. Madsen and Larsen[2], Lee et al.[3]and Oliveira[4]successively developed Copeland’s model by introducing an efficient numerical methods, enlarging its application areas and summarizing boundary conditions. Zheng et al.[5]brought nonlinear items to the hyperbolic approximation of the mild slope equation and presented an even more efficient finite difference scheme to find out the solution. Interestingly, no literature published has applied this efficient wave model in curvilinear coordinates yet.

    This article presents a numerical model of the Copeland hyperbolic mild slope equation[1]in orthogonal coordinates based on basic coordinatetransformation definition. The transformed model is discretized with space-staggered grids and solved with the Alternative Directions Implicit (ADI) method proposed by Zheng et al.[5]in Cartesian coordinates. Model results are validated by three cases involving a linear channel with varying cross section[9], a semi-circular channel[8]and lastly, the Ponce de Leon Inlet[18]. The agreement of numerical solutions to analytical results available suggests that the current model is an efficient tool for wave simulation in shoaling water with complicated geometry.

    2. Numerical model

    2.1 Governing equations

    The time-dependent mild slope equation, introduced by Booij[19]can be expressed as

    where η is the surface elevation, C and Cgthe phase velocity and the group velocity, ω the angular frequency, and k the local wave number, which can be determined by the linear wave dispersion relation

    where h is the water depth and g the acceleration due to gravity.

    where i is the imaginary unit, thus,

    Then, substitution of Eq.(4) to Eq.(1) gives,

    Based on this euation, Copeland[1]derived the following hyperbolic mild slope equation consisting of a pair of first order partial difference equations.

    2.2 Coordinates transformation

    Assume that the coordinates in Cartesian systemsare (x,y) and the curvilinear coordinates are (ξ1,ξ2). The aim of coordinates transformation is to find an arbitrary relationship, expressed by, ξ1=(x,y), ξ2=(x,y), to change the chosen boundaries and grids in the physical domain (x,y) to become much more ordered in the image domain (ξ1,ξ2), as shown in Fig.1.

    The principle of coordinates transformation can be easily found in literature. For the integrity of this article we simply give the course below, and details could be referred to Tong et al.[20]and Shi et al.[18]In curvilinear coordinates, for a certain function φ,

    J is Jacobian, in orthogonal curvilinear coordinates being simplified to J=?gξ2gξ1, and gξ1, gξ2are the Lamé coefficients

    Equations (11), (12) and (13) constitute the numerical model of Copeland’s mild slope equation in curvilinear coordinates. For convenience, the superscripts of variables in these transformed equations is omitted hereafter.

    3. Numerical approach and boundary conditions

    After coordinate transformation, the curvilinear grids can be regarded as rectangular ones. The numerical approach and boundary conditions are similar to that for the Madsen and Larsen’s mild slope equation[20]. Since each term in the derived hyperbolic mild-slope Eqs.(11), (12) and (13) has its counterpart compared to original Eqs.(6), (7) and (8), the ADI method used by Zheng et al.[5]in Cartesian coordinates can be directly applied in the present model.

    It should be noticed that only the boundary condition for η needs to be given as the equations to be solved here are first-order ones. Assume that the reflected waves are negligible at the incident boundary, where0x,0A and0θ are the position of initial boundary, wave amplitude and wave direction (based on x-direction in Cartesian coordinates) of incident waves.

    Lateral boundary conditions are expressed as[20]

    where φ is a certain scalar function at the boundary, n the unit vector normal to the boundary and α the absorption coefficient of the boundary.

    where θ is the wave direction at the right boundary.

    In order to minimize the effect of wave reflection due to unknown wave direction, the so-called sponge layer might be needed to place at the computationalboundary[2,4].

    4. Validations and results analysis

    The transformed model is validated by three tests, and the numerical results are compared to available analytical results. The first case is about wave propagation in a liner channel with varying width, the second example describes wave movement in a semi-circular channel, and the last one gives an engineering application of the model to the Ponce de Leon Inlet, USA. Analysis of the numerical results is also presented in this part.

    When regular waves propagate in a channel with slowly varying cross section, the wave amplitude changes according to the following formula[9]

    where a0and b0are wave amplitude and the breadth of the channel at x=0, a(x) and b(x) are the corresponding values of an arbitrary section of the channel.

    Figure 3 shows the surface variation of waves 105 s after its entering the basin. The data are normalized to the wavelength and local breadth of the channel in the x and y directions, respectively. Figure 4 illustrates the comparison of numerical and analytical wave amplitude along the mid-section of the channel. They agree perfectly well with each other. Probably as supposed, the wave amplitude increases when the channel converges, and vice versa, which could be demonstrated by both numerical and analytical data.

    This article chooses the largest channel from Ref.[8] for study as the wave pattern in this case is much more complicated. The channel lies between two circular vertical wall, with the inner radius r=75m and the outer radius R=200m, and covers a 180oarc, as shown in Fig.5. The depth of the channel is of constant value of 4 m. The coordinate transformation can be expressed as

    The time-dependent hyperbolic mild-slope equation is adopted in this article, which makes our calculations show clearly the progress of waves propagating through the flume. Figures 7 and 8 illustrate the transient wave surface distribution after 30 s and 60 s of incidence. It is seen that waves basically propagate straight forward at the beginning, but as the channel bend, wave diffraction phenomenon appears near the inner wall, Fig.8 shows that as waves spread the role of reflection by the outer wall significantly is enhanced, resulting in the disturbance of wave distribution around the bend between 60oand 90o, where reflected wave and diffraction wave produce a strong superposition pattern. Then, wave surface variation seems to be more regular. After 120 s of incidence, waves have spread throughout the channel. Near the outlet boundary, reflection of the outer wall is re-strengthened as shown in Fig.9.

    The calculated wave heights are compared with analytical results in Fig.10 along the 35oand 60oradiuses, respectively. Figure 11 shows a comparisonof numerical and analytical solutions for the normalized surface displacement along the inner and outer walls. It can be easily seen that the results of this article are in good agreement with the theoretical solution. Disagreement can only be found near the outlet boundary, mainly due to the wave angle there being difficult to determine. This indicates that the numerical model of Copeland’s mild-slope equation in curvilinear coordinates is accurate. In addition, compared to the analytical model[8], the present model can clearly exhibit the process of wave propagation in the channel, while the numerical computation is much more efficient than the Boussinesq model in curvilinear coordinates[18].

    4.3 An engineering application of the present model

    Shi et al.[18]carried out numerical simulation of wave propagation in the Ponce de Leon Inlet, USA, using Boussinesq equation in curvilinear coordinates. The Ponce de Leon Inlet consists of two estuaries, a breakwater and complex terrain and shorelines, as shown in Fig.12. We choose the sea area for study and the orthogonal curvilinear grids for computation are shown in Fig.13. The grids resolution near shorelines and the breakwater are a little higher so that waves in these domains could be better simulated.

    The reflection of the incident boundary has not been taken into account in the calculation. Regular incident waves enter the domain from offshore boundary with a small amplitude and 15 s in wave period. The time step is set to be 1.0 s. For this case the model needs approximately 300 iterations to yield the desired results as shown in Fig.14. It is clear that the breakwater has a significant effect on the distribution of water waves. Strong reflection of water waves occurs in the vicinity of upward side of the breakwater, while there seem to be small wave distributing in the other side, mainly generated by the wave diffraction. Near the center of the calculation region, wavelengths change to be much shorter than in most other areas, due to the rapid shoaling water depth. All of these is in line with the actual situation. For the same reasons as Shi et al.[18], i.e., the present model does not consider wave breaking, therefore the present article does not compare the numerical results with field data; but this example shows that the numerical model in this article can be further applied to geometries with complicated topography and boundary conditions in engineering.

    5. Conclusions

    Compared to elliptic and parabolic mild-slope equation, the hyperbolic mild-slope equation can be applied to large sea areas and considers a combination of wave reflection, diffraction and refraction. Thus it is a more efficient tool of nearshore wave model. In order to meet the engineering requirements, i.e., to calculate wave propagation in areas with complicated topography and curved shorelines in most engineering cases, this article has derived a numerical model ofCopeland hyperbolic mild-slope equation[1]in orthogonal curvilinear coordinates. The transformed model is solved by a finite difference scheme using the efficient ADI method. Three numerical tests are conducted to validate the accuracy of the present model. The agreement between numerical results and available analytical solution indicates that this numerical model can effectively simulate the wave transmission in complex regions. At the same time, compared to the analytical result[8], the present numerical model show a clear process of the wave propagation and deformation, while it is much more efficient than the Boussinesq model in curvilinear coordinates[18]in its numerical computation. In addition, the application of the model to the Ponce de Leon Inlet, USA, suggests that it is applicable in large sea areas.

    However, the present model needs to be further improved by introducing the recent advancement of mild slope equation as discussed in Section 1, for example to include wave breaking items and to consider irregular incident wave, in order to be applied more effectively in engineering.

    [1] COPELAND G. J. M. A practical alternative to the mild-slope wave equation[J]. Coastal Engineering, 1985, 9(2): l25-249.

    [2] MADSEN P. A., LARSEN J. An efficient finitedifference approach to the mild-slope equation[J]. Coastal Engineering, 1987, 11(4): 329-351.

    [3] LEE C., PARK W. S. and CHO Y. et al. Hyperbolic mild-slope equations extended to account for rapidly varying topography[J]. Coastal Engineering, 1998, 34(3-4): 243-257.

    [4] OLIVEIRA F. S. B. F. Improvement on open boundaries on a time dependent numerical model of wave propagation in the nearshore region[J]. Ocean Engineering, 2000, 28(1): 95-115.

    [5] ZHENG Yong-hong, SHEN Yong-ming and QIU Da-hong. New numerical scheme for simulation of hyperbolic mild-slope equation[J]. China Ocean Engineering, 2001, 15(2): 185-194.

    [6] TANG J., SHEN Y. M. and ZHENG Y. H. et al. An efficient and flexible computational model for solving the mild slope equation[J]. Coastal Engineering, 2004, 51(2): l43-154.

    [7] KIRBY J. T., DALRYMPLE R. A. and KAKU H. Parabolic approximations for water waves in conformal coordinate systems[J]. Coastal Engineering, 1994, 23(3-4): 185-213.

    [8] DALRYMPLE R. A., KIRBY J. T. and MARTIN P. A. Spectral methods for forward-propagating water waves in conformally-mapped channels[J]. Applied Ocean Research, 1994, 16(5): 249-266.

    [9] BEJI S., NADAOKA K. Fully dispersive nonlinear water wave model in curvilinear coordinates[J]. Journal of Computational Physics, 2004, 198(2): 645-658.

    [10] YUAN D. K., LIN B. L. and XIAO H. Parabolic wave propagation modeling in orthogonal coordinate systems[J]. China Ocean Engineering, 2004, 18(3): 445-456.

    [11] SHI F. Y., KIRBY J. T. Curvilinear parabolic approximation for surface wave transformation with wave-current interaction[J]. Journal of Computational Physics, 2005, 204(2): 562-586.

    [12] ZHANG H. S., ZHU L. S. and YOU Y. X. A numerical model for wave propagation in curvilinear coordinates[J]. Coastal Engineering, 2005, 52(6): 513-533.

    [13] ZHANG Hong-sheng, YOU Yun-xiang and ZHULiang-sheng et al. Mathematical models for wave propagation in curvilinear coordinates and comparisons among different models[J]. Journal of Hydrodynamics, Ser. A, 2005, 20(1): 106-117(in Chinese).

    [14] BAI Yu-chuan, XU Dong and LU Dong-qiang. Numerical simulation of two-dimensional dam-break flows in curved channels[J]. Journal of Hydrodynamics, Ser. B, 2007, 19(6): 726-735.

    [15] ZHAO Ming-deng, LI Tai-ru and HUAI Wen-xin et al. Finite proximate method for convection-diffusion equation[J]. Journal of Hydrodynamics, 2008, 20(1): 47-53.

    [16] ZHANG Ming-liang, SHEN Yong-ming. Threedimensional simulation of meandering river based on 3-D RNG k-ε turbulence model[J]. Journal of Hydrodynamics, 2008, 20(4): 448-455.

    [17] WU Zhao-chun, WANG Dao-zeng. Numerical solution for tidal flow in opening channel using combined MacCormack-finite analysis method[J]. Journal of Hydrodynamics, 2009, 21(4): 505-511.

    [18] SHI F. Y., DALRYMPLE R. A. and KIRBY J. T. et al. A fully nonlinear Boussinesq model in generalized curvilinear coordinates[J]. Coastal Engineering, 2001, 42(4): 337-358.

    [19] BOOIJ N. Gravity waves on water with non-uniform depth and current[D]. Ph. D. Thesis, Delft, The Netherlands: Delft University of Technology, 1981.

    [20] TONG Fei-fei, SHEN Yong-ming and TANG Jun et al. Numerical modeling of the hyperbolic mild-slope equation in curvilinear coordinates[J]. China Ocean Engineering, 2010, 24(4): 585-596.

    [21] LI B. An evolution equation for water waves[J]. Coastal Engineering, 1994, 23(3-4): 227-242.

    10.1016/S1001-6058(09)60118-9

    SHEN Yong-ming,

    E-mail: ymshen@dlut.edu.cnand curvilinear coordinates were employed to the nonlinear Boussinesq model[18]. All of these studies proved that curvilinear numerical models are applicable to practical problems of simulating current and water wave propagation in complicated geometries, such as meandering rivers, estuaries and areas near islands.

    av在线播放免费不卡| 我的老师免费观看完整版| 色播亚洲综合网| 久久精品国产综合久久久| 欧美精品亚洲一区二区| 丝袜人妻中文字幕| 国产一区二区三区视频了| 国产亚洲精品久久久久久毛片| 欧美一级a爱片免费观看看 | 亚洲av电影在线进入| 97人妻精品一区二区三区麻豆| 精品久久久久久久人妻蜜臀av| 国产区一区二久久| 黄频高清免费视频| 1024香蕉在线观看| 正在播放国产对白刺激| 久久午夜亚洲精品久久| 三级男女做爰猛烈吃奶摸视频| 女人爽到高潮嗷嗷叫在线视频| 国内精品一区二区在线观看| 麻豆久久精品国产亚洲av| av天堂在线播放| 欧美av亚洲av综合av国产av| 亚洲国产欧美网| 国产精品精品国产色婷婷| 男男h啪啪无遮挡| 国产黄色小视频在线观看| 香蕉丝袜av| 成人国产一区最新在线观看| 国产亚洲精品久久久久5区| 波多野结衣高清无吗| 亚洲美女黄片视频| 国产免费av片在线观看野外av| 日韩欧美三级三区| 草草在线视频免费看| 美女免费视频网站| 男女午夜视频在线观看| 好男人电影高清在线观看| 夜夜躁狠狠躁天天躁| 精品久久久久久成人av| 少妇的丰满在线观看| 成人av在线播放网站| 99精品久久久久人妻精品| 久久久国产成人免费| 十八禁人妻一区二区| av在线天堂中文字幕| 琪琪午夜伦伦电影理论片6080| 国产av不卡久久| 精品久久久久久,| 97碰自拍视频| 久久久久久人人人人人| 成人特级黄色片久久久久久久| av免费在线观看网站| 特级一级黄色大片| 香蕉久久夜色| 欧美日本视频| 99久久国产精品久久久| 亚洲成人免费电影在线观看| 91麻豆av在线| 亚洲五月天丁香| 又大又爽又粗| 18禁裸乳无遮挡免费网站照片| 国产成人精品久久二区二区91| a级毛片a级免费在线| 国产亚洲精品久久久久5区| 大型av网站在线播放| 麻豆国产97在线/欧美 | 真人做人爱边吃奶动态| 99热这里只有是精品50| 叶爱在线成人免费视频播放| 日韩欧美国产在线观看| 免费在线观看黄色视频的| 日本a在线网址| 亚洲成人国产一区在线观看| 在线永久观看黄色视频| 久久久久久久午夜电影| 香蕉av资源在线| 亚洲精品美女久久av网站| 制服丝袜大香蕉在线| 色综合亚洲欧美另类图片| 久久久久免费精品人妻一区二区| 又黄又爽又免费观看的视频| 成人国产综合亚洲| 三级国产精品欧美在线观看 | 看黄色毛片网站| 全区人妻精品视频| 欧美乱色亚洲激情| 在线观看66精品国产| 老熟妇乱子伦视频在线观看| netflix在线观看网站| 国产91精品成人一区二区三区| 三级国产精品欧美在线观看 | 久久精品91无色码中文字幕| 不卡一级毛片| 国产99白浆流出| 人妻夜夜爽99麻豆av| 亚洲人成网站在线播放欧美日韩| 亚洲电影在线观看av| 在线视频色国产色| 国产亚洲欧美在线一区二区| 欧美zozozo另类| 日日干狠狠操夜夜爽| 久久久国产成人免费| 国产片内射在线| 在线观看舔阴道视频| 在线观看免费视频日本深夜| 成人三级黄色视频| 国产午夜精品久久久久久| 十八禁人妻一区二区| 亚洲第一欧美日韩一区二区三区| 国内精品久久久久精免费| 国产精品免费视频内射| 一级a爱片免费观看的视频| 国产三级黄色录像| 99精品久久久久人妻精品| 天堂影院成人在线观看| 国产乱人伦免费视频| 久久香蕉精品热| 巨乳人妻的诱惑在线观看| 国产一区二区在线av高清观看| 欧美成人一区二区免费高清观看 | av视频在线观看入口| 国产麻豆成人av免费视频| 最近最新中文字幕大全电影3| 国产精品亚洲美女久久久| 亚洲全国av大片| 九色成人免费人妻av| 在线观看午夜福利视频| 国产aⅴ精品一区二区三区波| 少妇熟女aⅴ在线视频| 人妻夜夜爽99麻豆av| 久久精品国产清高在天天线| 91国产中文字幕| 91麻豆av在线| 亚洲一区二区三区不卡视频| 一进一出抽搐gif免费好疼| 国产蜜桃级精品一区二区三区| 免费观看人在逋| 国内精品久久久久久久电影| 啦啦啦韩国在线观看视频| 亚洲 欧美 日韩 在线 免费| 欧美+亚洲+日韩+国产| 欧美黑人欧美精品刺激| 亚洲精华国产精华精| 老司机午夜福利在线观看视频| 99国产精品99久久久久| 97碰自拍视频| 国产av不卡久久| 久久天躁狠狠躁夜夜2o2o| 欧美极品一区二区三区四区| 啦啦啦韩国在线观看视频| 99久久久亚洲精品蜜臀av| 国产91精品成人一区二区三区| 日韩av在线大香蕉| 高清毛片免费观看视频网站| 中文字幕最新亚洲高清| 国产视频一区二区在线看| 两个人免费观看高清视频| 国产高清有码在线观看视频 | 成人18禁在线播放| av免费在线观看网站| 男女下面进入的视频免费午夜| www.999成人在线观看| 一边摸一边抽搐一进一小说| 国产精品 欧美亚洲| 亚洲一区中文字幕在线| 亚洲片人在线观看| а√天堂www在线а√下载| 欧美色欧美亚洲另类二区| 国产99久久九九免费精品| 欧美日韩精品网址| 婷婷六月久久综合丁香| 一边摸一边抽搐一进一小说| 99热这里只有精品一区 | 欧美日韩亚洲国产一区二区在线观看| 99国产精品一区二区三区| 亚洲乱码一区二区免费版| 日韩av在线大香蕉| 中亚洲国语对白在线视频| 亚洲精品国产精品久久久不卡| 亚洲色图av天堂| 免费在线观看日本一区| 欧美一区二区精品小视频在线| 香蕉av资源在线| 久久亚洲真实| 老司机午夜十八禁免费视频| 最近在线观看免费完整版| 久久久水蜜桃国产精品网| 黄色女人牲交| 在线观看www视频免费| 亚洲精品在线观看二区| 国产一区二区激情短视频| 中亚洲国语对白在线视频| 国产精品美女特级片免费视频播放器 | 丰满人妻熟妇乱又伦精品不卡| 国产免费男女视频| 两个人免费观看高清视频| 成人手机av| 午夜精品一区二区三区免费看| 人妻夜夜爽99麻豆av| 国产精品日韩av在线免费观看| 人成视频在线观看免费观看| 国产麻豆成人av免费视频| 色尼玛亚洲综合影院| 两性午夜刺激爽爽歪歪视频在线观看 | 欧美一区二区国产精品久久精品 | 搡老熟女国产l中国老女人| www.自偷自拍.com| av有码第一页| 成人av在线播放网站| 成人一区二区视频在线观看| 一区二区三区激情视频| 香蕉av资源在线| 嫁个100分男人电影在线观看| 国产高清videossex| 在线a可以看的网站| 18禁国产床啪视频网站| 亚洲五月婷婷丁香| 久久热在线av| 人妻夜夜爽99麻豆av| 最近最新中文字幕大全免费视频| 一级毛片高清免费大全| 久久精品国产清高在天天线| 欧美极品一区二区三区四区| 欧美日本亚洲视频在线播放| 成人av在线播放网站| 亚洲av五月六月丁香网| av在线天堂中文字幕| 久久热在线av| 色在线成人网| 狠狠狠狠99中文字幕| 欧美日韩福利视频一区二区| 国产一区二区在线av高清观看| 高清毛片免费观看视频网站| 亚洲国产精品久久男人天堂| 中文资源天堂在线| 国产三级中文精品| 老汉色av国产亚洲站长工具| 国产成人aa在线观看| 精品一区二区三区av网在线观看| 精品少妇一区二区三区视频日本电影| avwww免费| 免费看美女性在线毛片视频| 国产成人一区二区三区免费视频网站| 久久人妻av系列| 免费无遮挡裸体视频| 色噜噜av男人的天堂激情| 精品国产乱码久久久久久男人| 欧美日韩一级在线毛片| 中文字幕高清在线视频| 欧美 亚洲 国产 日韩一| 男人舔奶头视频| 亚洲精品色激情综合| 免费看十八禁软件| 亚洲avbb在线观看| 国内精品一区二区在线观看| 国内揄拍国产精品人妻在线| 国产高清有码在线观看视频 | 日韩欧美国产在线观看| 精品国产亚洲在线| 男女床上黄色一级片免费看| 狂野欧美白嫩少妇大欣赏| 久久精品亚洲精品国产色婷小说| 无遮挡黄片免费观看| 国产成人精品无人区| 中文字幕最新亚洲高清| 亚洲一区二区三区色噜噜| 久久久久久久午夜电影| 首页视频小说图片口味搜索| 白带黄色成豆腐渣| 丰满的人妻完整版| 亚洲成av人片免费观看| 麻豆一二三区av精品| 久久人人精品亚洲av| 日本 欧美在线| 精品久久久久久久久久免费视频| 国产精品综合久久久久久久免费| 在线永久观看黄色视频| 亚洲国产看品久久| 亚洲国产欧美一区二区综合| 午夜久久久久精精品| 国产精品一区二区精品视频观看| 日本精品一区二区三区蜜桃| 毛片女人毛片| 欧美国产日韩亚洲一区| 国产99白浆流出| 视频区欧美日本亚洲| 久久草成人影院| 一区二区三区激情视频| 免费看美女性在线毛片视频| svipshipincom国产片| 亚洲成人久久性| 亚洲人成77777在线视频| 欧洲精品卡2卡3卡4卡5卡区| 免费在线观看视频国产中文字幕亚洲| 久久这里只有精品中国| 两性夫妻黄色片| 国产亚洲精品一区二区www| 亚洲真实伦在线观看| 国产一区二区激情短视频| 在线看三级毛片| 婷婷精品国产亚洲av| 色综合站精品国产| 国产人伦9x9x在线观看| 一区二区三区高清视频在线| 成人午夜高清在线视频| 国产成人av激情在线播放| 高清毛片免费观看视频网站| 一级毛片精品| 国产野战对白在线观看| 免费人成视频x8x8入口观看| 久久热在线av| 亚洲美女黄片视频| 成人午夜高清在线视频| 麻豆一二三区av精品| 亚洲乱码一区二区免费版| 精品久久久久久久毛片微露脸| 日本撒尿小便嘘嘘汇集6| 欧美日韩精品网址| 国产黄a三级三级三级人| 亚洲男人的天堂狠狠| 亚洲中文字幕一区二区三区有码在线看 | 久久国产精品人妻蜜桃| 国产高清视频在线播放一区| 亚洲欧美一区二区三区黑人| 九色国产91popny在线| 国产精品影院久久| 亚洲国产欧美一区二区综合| 亚洲中文日韩欧美视频| 国产精品久久久人人做人人爽| 在线观看日韩欧美| 国产精品亚洲美女久久久| 香蕉av资源在线| 美女 人体艺术 gogo| 婷婷亚洲欧美| 老汉色av国产亚洲站长工具| 少妇的丰满在线观看| 妹子高潮喷水视频| 51午夜福利影视在线观看| 亚洲人成网站高清观看| www日本黄色视频网| 久久香蕉激情| 激情在线观看视频在线高清| 色噜噜av男人的天堂激情| 男女下面进入的视频免费午夜| 中亚洲国语对白在线视频| 久久久久免费精品人妻一区二区| 床上黄色一级片| 制服人妻中文乱码| 亚洲美女黄片视频| 免费在线观看黄色视频的| 久久精品91蜜桃| 两个人视频免费观看高清| 国产精品电影一区二区三区| 男女做爰动态图高潮gif福利片| 麻豆国产av国片精品| 日本成人三级电影网站| 丝袜美腿诱惑在线| 国内精品久久久久精免费| 日本 av在线| 免费在线观看亚洲国产| 动漫黄色视频在线观看| 91av网站免费观看| 欧美最黄视频在线播放免费| 国产精品av视频在线免费观看| 免费在线观看黄色视频的| 亚洲熟女毛片儿| 我要搜黄色片| 国产精品电影一区二区三区| 国产精品久久久久久精品电影| 女人被狂操c到高潮| 男人舔女人的私密视频| 麻豆av在线久日| 免费一级毛片在线播放高清视频| 国产91精品成人一区二区三区| 两人在一起打扑克的视频| 免费无遮挡裸体视频| 听说在线观看完整版免费高清| 国产精品亚洲av一区麻豆| 每晚都被弄得嗷嗷叫到高潮| 免费搜索国产男女视频| 欧美日本视频| 亚洲精品美女久久久久99蜜臀| 国产成人aa在线观看| av免费在线观看网站| 90打野战视频偷拍视频| 中文在线观看免费www的网站 | 一夜夜www| 免费一级毛片在线播放高清视频| 国产主播在线观看一区二区| 午夜激情福利司机影院| 一区二区三区激情视频| 久久精品国产亚洲av高清一级| 天堂av国产一区二区熟女人妻 | 精品欧美国产一区二区三| 在线十欧美十亚洲十日本专区| 亚洲精品美女久久av网站| 久久伊人香网站| 色在线成人网| 日本一区二区免费在线视频| 久久香蕉精品热| 人成视频在线观看免费观看| 午夜日韩欧美国产| 国产av不卡久久| 精品国内亚洲2022精品成人| videosex国产| 日韩国内少妇激情av| 人成视频在线观看免费观看| 亚洲成人免费电影在线观看| 精品熟女少妇八av免费久了| 人人妻,人人澡人人爽秒播| 99久久精品国产亚洲精品| 色在线成人网| 国产精品 欧美亚洲| 亚洲成人国产一区在线观看| 看免费av毛片| or卡值多少钱| 亚洲va日本ⅴa欧美va伊人久久| 国产高清有码在线观看视频 | 久久人妻福利社区极品人妻图片| www日本在线高清视频| cao死你这个sao货| 亚洲电影在线观看av| 欧美人与性动交α欧美精品济南到| 国产一级毛片七仙女欲春2| 亚洲人成电影免费在线| av中文乱码字幕在线| 欧美一级毛片孕妇| 国内揄拍国产精品人妻在线| 久久午夜综合久久蜜桃| 日本精品一区二区三区蜜桃| 波多野结衣巨乳人妻| 欧美黑人欧美精品刺激| www.精华液| 美女大奶头视频| 久久久久性生活片| 男人舔女人的私密视频| 久久中文字幕人妻熟女| 50天的宝宝边吃奶边哭怎么回事| 国产在线观看jvid| 国产精品美女特级片免费视频播放器 | 制服诱惑二区| 小说图片视频综合网站| 欧美在线一区亚洲| 全区人妻精品视频| svipshipincom国产片| 国产av在哪里看| 国产麻豆成人av免费视频| 精品电影一区二区在线| 制服诱惑二区| 色哟哟哟哟哟哟| 久久午夜亚洲精品久久| 精品国产亚洲在线| 久久性视频一级片| 久热爱精品视频在线9| 在线观看美女被高潮喷水网站 | 韩国av一区二区三区四区| 亚洲美女视频黄频| 久久九九热精品免费| 国产精品98久久久久久宅男小说| 免费高清视频大片| 国产午夜精品久久久久久| 成人手机av| 看免费av毛片| АⅤ资源中文在线天堂| 欧美成人一区二区免费高清观看 | 国产精品电影一区二区三区| 国产成年人精品一区二区| 国产单亲对白刺激| 午夜免费成人在线视频| 午夜激情福利司机影院| 老汉色∧v一级毛片| 欧美黑人巨大hd| 欧美 亚洲 国产 日韩一| 国产精品一及| 精品国产美女av久久久久小说| 亚洲av电影不卡..在线观看| 五月伊人婷婷丁香| 欧美3d第一页| 一边摸一边做爽爽视频免费| 国产成年人精品一区二区| 亚洲精品国产一区二区精华液| 我的老师免费观看完整版| 舔av片在线| 亚洲av成人一区二区三| 亚洲av日韩精品久久久久久密| 免费一级毛片在线播放高清视频| 哪里可以看免费的av片| 中文字幕久久专区| 亚洲精品粉嫩美女一区| 99精品在免费线老司机午夜| 一二三四社区在线视频社区8| 级片在线观看| 久久婷婷人人爽人人干人人爱| 99热这里只有精品一区 | 人人妻人人看人人澡| 视频区欧美日本亚洲| 精品久久久久久久人妻蜜臀av| 国产精品日韩av在线免费观看| 日日摸夜夜添夜夜添小说| 精品乱码久久久久久99久播| 国产精品一区二区免费欧美| 日韩欧美一区二区三区在线观看| 天堂av国产一区二区熟女人妻 | 国产精品野战在线观看| 十八禁网站免费在线| 国产又黄又爽又无遮挡在线| 国产精品香港三级国产av潘金莲| 中出人妻视频一区二区| 日韩欧美国产一区二区入口| 国内精品久久久久久久电影| 久久久国产欧美日韩av| 亚洲欧美精品综合久久99| 午夜福利欧美成人| 欧美色欧美亚洲另类二区| 国产精品久久久久久亚洲av鲁大| bbb黄色大片| 欧美一区二区精品小视频在线| 亚洲人成电影免费在线| 18禁观看日本| 午夜激情福利司机影院| 99国产极品粉嫩在线观看| 非洲黑人性xxxx精品又粗又长| 国产av在哪里看| 欧美中文日本在线观看视频| 亚洲欧美日韩无卡精品| 精品欧美一区二区三区在线| 美女大奶头视频| 欧美极品一区二区三区四区| 久久亚洲精品不卡| 国产高清videossex| 丰满人妻一区二区三区视频av | 久久精品国产清高在天天线| 两个人看的免费小视频| 久久精品影院6| 亚洲av中文字字幕乱码综合| 最近视频中文字幕2019在线8| 无限看片的www在线观看| 国产精华一区二区三区| 村上凉子中文字幕在线| 淫妇啪啪啪对白视频| 搡老妇女老女人老熟妇| 999久久久精品免费观看国产| 少妇的丰满在线观看| 国产高清视频在线观看网站| 亚洲专区字幕在线| 亚洲欧美日韩高清专用| 国产成人系列免费观看| 亚洲 欧美一区二区三区| 欧美成人性av电影在线观看| 国产爱豆传媒在线观看 | 床上黄色一级片| 成年版毛片免费区| 99热6这里只有精品| 久久精品国产清高在天天线| 亚洲专区字幕在线| 久久久国产成人免费| 午夜a级毛片| 看黄色毛片网站| 18禁裸乳无遮挡免费网站照片| 2021天堂中文幕一二区在线观| 男女那种视频在线观看| 亚洲七黄色美女视频| 老熟妇仑乱视频hdxx| 精品久久久久久成人av| 一个人免费在线观看的高清视频| 午夜两性在线视频| 精品久久蜜臀av无| АⅤ资源中文在线天堂| 国产黄片美女视频| 午夜老司机福利片| 免费av毛片视频| 熟妇人妻久久中文字幕3abv| 制服诱惑二区| 亚洲片人在线观看| 国产亚洲精品av在线| 十八禁人妻一区二区| 丁香欧美五月| 啦啦啦韩国在线观看视频| av超薄肉色丝袜交足视频| 此物有八面人人有两片| 亚洲欧洲精品一区二区精品久久久| 中文字幕熟女人妻在线| 国产亚洲精品久久久久久毛片| 成年免费大片在线观看| 天堂√8在线中文| 亚洲午夜精品一区,二区,三区| 日本一区二区免费在线视频| 国产精品一及| 欧美日韩瑟瑟在线播放| 中文字幕精品亚洲无线码一区| 精品乱码久久久久久99久播| 欧美激情久久久久久爽电影| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲片人在线观看| 啦啦啦观看免费观看视频高清| 中文字幕熟女人妻在线| 欧美日韩瑟瑟在线播放| 1024视频免费在线观看| 欧美成人午夜精品| 在线观看午夜福利视频| 久久久久久九九精品二区国产 | 神马国产精品三级电影在线观看 | 久久久国产欧美日韩av| 国产精品 欧美亚洲| 国产av不卡久久| 欧美日韩国产亚洲二区| 男女视频在线观看网站免费 | 久久久久九九精品影院| 可以免费在线观看a视频的电影网站| 日本五十路高清| 成熟少妇高潮喷水视频| 欧美黄色片欧美黄色片| 亚洲精品av麻豆狂野| 丝袜美腿诱惑在线|